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Abstract—Received Signal Strength (RSS) localization is widely
used due to its simplicity and availability in most mobile devices.
The RSS channel model is defined by the propagation losses
and the shadow fading. These parameters might vary over time
because of changes in the environment. In this paper, the problem
of tracking a mobile node by RSS measurements is addressed,
while simultaneously estimating a two-slope RSS model. The
methodology considers a Kalman filter with Interacting Multiple
Model architecture, coupled to an on-line estimation of the
observation’s variance. The performance of the method is shown
through numerical simulations in realistic scenarios.

I. INTRODUCTION

The need for localization is not just confined to persons
or vehicles of transportation in outdoor environments where
Global Navigation Satellite Systems (GNSS) play an impor-
tant role for this purpose. But accurately estimating location
indoors, GNSS features remains a difficult problem because of
signal blockage or severe attenuations.

Due to the present ubiquitous availability of powerful mobile
computing devices, the bloom of personalized context- and
localization-aware applications has become an active field of
research. A way of localization in indoor environments is
using signals of opportunity such as WLAN (IEEE 802.11x),
Zigbee, UWB, etc. The advantage of working with signals
of the IEEE 802.11 as the primary source of information to
approach the localization problem is the inexpensive hardware
and the already dense deployment of WLAN Access Points
(APs) in urban areas.

The goal of this work is tracking a mobile path in a indoor
environment using an existing WLAN infrastructure where
several position-related measurements are available. Here we
are interested in algorithms that use Received Signal Strength
(RSS) observations for locating and tracking the mobile node,
since most of mobile devices are equipped with wireless
capability [1]. To achieve this aim in this work, a Kalman
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filtering is considered to perform the sequential tracking in
a two-slope RSS model, for which we use an Interacting
Multiple Model (IMM) architecture.

There are several channel models in the literature to char-
acterize the indoor propagation environment [2], [3]. In this
paper, the IEEE 802.11x model is considered because does
not require an accurate floor plan of the indoor scenario and
can be implemented without using a third party software [4].

This work uses the path loss two-slope model [5], that
is a mathematical model of RSS and relates the path loss
attenuation with distance. This means that the distance data
between mobile target and the AP can be described by two
models which depend of a breakpoint distance value. This
channel model is used to design two kalman filters and an
Interacting Multiple Model (IMM) is used to dynamically
combine the outputs from two filters [6]. IMM technique is
used to estimate the mode (mixing) probabilities for each
model based Kalman filters and mix the two filter results
based on the mode probabilities. Several works has used IMM
techniques for location and control applications [7], [8], [9]

II. SYSTEM MODEL

We are interested in tracking a mobile device using RSS
measurements from a set of N APs. The estimation is per-
formed in two steps: i) estimation of relative distances to the
set of visible APs; ii) fusion of these distance measurements
into a blended tracking solution. In this section, we present the
peculiarities of the two-slope RSS model and the state-space
formulation of the distance estimation problem.

A. Two-slope RSS model
The widely used model for RSS observations is the path loss

model, which is a simple yet realistic model for such measure-
ments. It is parameterized by the path loss exponent (related to
the power decay with respect to distance) and the shadowing
(that is, the random propagation effects). However, it has
been observed in experimental campaigns that these parameters
fluctuate and are indeed distance dependant. As a conclusion,
the parameters employed in the traditional path loss model are
highly site-specific [10] [11]. Therefore, in many situations
more sophisticated models should be accounted.

In this work we consider an extension of the classical path
loss model accounting for two regions of propagation, referred
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to as the two-slope model [5]. Path loss refers to the average
loss in signal strength over distance. For indoor environments,
the path loss depends on the relative distance between the AP
and the sensing device [12]. For far distances (e.g., 5 ≥ d ≥
30 meters), path reflections from the environment (specially
reflections from surrounding walls) generally result in a steeper
overall drop in the signal strength at the receiver. Under this
model, the RSS for the r-th AP (r = 1, 2, . . . , N total number
of APs) to the mobile target is modeled as [5]:

RSSr(d) =

 h(1)(d) + χσ2
1

if d ≤ dbp
h(2)(d) + χσ2

2
if d > dbp

(1)

where d is the relative distance between the AP and the moving
node were the RSS was measured, and

h(1)(d) =10α1 log10(d) (2)

h(2)(d) =10α1 log10(dbp) + 10α2 log10(d/dbp) . (3)

The first equation gives the path loss (in decibels) for close
distances (distances less than dbp, known as the breakpoint
distance) and the second equation gives the path loss beyond
dbp. The α1 and α2 values are the path loss exponents, defining
the slopes before and after dbp, respectively. The functions
h(1)(d) and h(2)(d) were obtained by measurement campaigns
using radio signal ray tracing methods, premeasured RSS
contours centered in the receiver or multiple measurements
at several base stations [1], [13], [14].

Depending on the transmitter/receiver geometrical config-
uration, the RSS measurements might be distorted from the
nominal. This variation (known as shadow fading or log-
normal shadowing) can be modeled by an additive zero-mean
Gaussian random variable. The notation, χσ2 ∼ N (0, σ2) is
used. As happens for the path loss exponents, the variance
values differ before and after the breakpoint distance. Typically
the values depend on the scenario but in all cases it is observed
that σ2

1 ¡ σ2
2 and α1 ¡ α2. The standard deviation of the

received power before and after breakpoint distance, σ1 and
σ2, is expressed in units of dB and is assumed relatively
constant with distance. Figure 1 represents a simulation of
real measurements taken from the two-slope path loss model
at different relative distances between one AP and the mobile
target.

B. State-space model
As previously stated, the proposed strategy to solve the

localization problem uses a two-step approach. In the first step
(i.e., distance estimation) and for the rth AP, the observations
correspond to the RSS measurements and the unknown states
to be sequentially inferred are

θrk =
[
drk ḋrk

]T
(4)

where drk is the distance between the mobile and the r-th AP
and ḋrk is the rate of change of this distance. We assume a
linear evolution of states in the form of

θrk = Aθrk−1 + Bvrk (5)
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Fig. 1. Simulation of a two-slope path loss model with σ1 = 3 dB, σ2= 5
dB, α1=2, α2=3.5, and dbp = 5 meters.

where Bvrk is the process noise accounting for possible model-
ing mismatches, such as a possible acceleration of the mobile.
In other words, this noise term gathers different forces that
could affect target’s dynamics and which are not explicitly
modeled. The process noise is normally distributed with zero
mean and covariance matrix Qk [15]:

Qk = σ2
dBBT (6)

where σ2
d models the uncertainty on the mobile dynamics.The

state equation includes these matrices:

A =

1 ∆t

0 1

 ; B =

∆t2

2

∆t

 (7)

where ∆t is the sampling period.
To complete the state-space representation, the observation

vector is defined. In this case, the RSS measurements per AP
are precisely the observations used to infer θrk, and thus

zrk , RSSr(dk) = h(dk) + nk (8)

where we recall that the model for RSSr(d) depends on
the breakpoint distance. Therefore, h(·) has to be selected
according to (1) and the statistics of the measurement noise as
well, that is whether its variance is σ2

1 or σ2
2 .

In this work, a solution involving an Extended Kalman
filter (EKF) is considered to deal with the nonlinear filtering
problem, for which we have to derive the Jacobian matrix of
the measurements function because h(1) and h(2) are nonlinear.
The 2× 1 Jacobian matrices H

(1)
k and H

(2)
k are

H
(1)
k =

[
α1

log 10
10
d 0

]
; H

(2)
k =

[
α2

log 10
10
d 0

]
. (9)

III. INTERACTIVE MULTIPLE MODEL APPROACH

The main goal in the RSS-based localization problem is to
infer the distance to each AP, and the corresponding distance
rate, from a set of N RSS measurements. The main concern
of this section is to present and justify the reasoning behind
the use of an IMM-based approach to solve such problem.
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A. Parallel IMM-based solution
The first approach that comes to mind to solve this problem

is the use of a traditional filtering solution, such as the
EKF, where the observation accounts for the full set of RSS
measurements zk = [z1

k, ..., z
N
k ]T and the global state evolution

takes into account the N individual states, θk = [θ1
k; ...;θNk ] .

But it is straightforward to see from (1) that this is not a valid
approach, because the measurement model directly depends on
the breakpoint distance. The two-slope model can be used to
model the distance between the AP and the mobile node but
both implicit models must be treated separately. The natural
solution to overcome this model-switching problem is to use
an IMM-based approach.

The key idea behind the IMM is to use a bank of M
KFs, each one designed to cope with a specific model (or
model set), and to obtain the state estimation as a clever
combination of the individual estimates. If the full set of N
independent observations zk is considered, the question that
arises is how many KFs should be considered into the IMM
As each independent observation may obey model 1 or model
2, the answer is 2N filters (i.e., all the possible combinations
of model 1 and 2 for the N observations). It is clear that this
is not a practical solution for an arbitrary number of APs,
therefore, a divide-and-conquer strategy treating independent
measurements separately is the best solution. In this contri-
bution a parallel IMM-based approach is adopted, considering
N IMMs each one involving 2 KFs according to the two path
loss models (shown in Figure 2).

At each discrete-time instant k, the IMM algorithm follows
a clear three step architecture: Reinitialization, KF and Model
probability. The final estimates are obtained as a combination
of the individual KF outputs using the corresponding model
likelihoods. Mathematically, one cycle of the standard IMM
associated to the rth RSS measurement is sketched in Algo-
rithm 1, where πji (for i, j = 1, 2) is a two-state Markov
model transition probability matrix and is set in the proposed
algorithm as,

πji =

0.9995 0.005

0.005 0.9995

 (10)

for each AP.
Notice that in its standard form, both the two-slope model

parameters and the process noise variance, gathered in vec-
tor ψ(1), must be specified in the IMM. These parame-
ters must be set to the true ones for an optimal solution.
Moreover, the initialization of both EKFs and each AP,{
θ̂

(i),r
0|0 ,P

(i),r
0|0 for i = 1, 2

}
, must be set according to the prob-

lem at hand. The error covariance matrix has a initial value
assigned as P

(i),r
0|0 = 4Qk for each AP. The initial value state

vector for the filter is θ̂(i),r
0|0 =θr0 +ω where ω ∼ N (0, 0.8I2).

The initial model probabilities are set as ηr(1),k = ηr(2,)k = 0.5
for every AP also.

B. Location Calculation Model
The final goal is to sequentially obtain the mobile position.

The location calculation is solved with a KF using the N

Algorithm 1 Cycle k of the IMM for the rth AP
1: For i = 1, 2 and j = 1, 2

2: Reinitialization:

Calculation of the predicted mode probability, mixing weights, mixing
estimates and mixing covariances, respectively,

η
(i),r
k|k−1

=
∑
j

πjiη
(j),r
k−1 ; η

j|i,r
k−1 =

πjiη
(j),r
k−1

η
(i),r
k|k−1

(11)

θ̄
(i),r
k−1|k−1

=
∑
j

θ̂
(j),r
k−1|k−1

η
j|i,r
k−1 (12)

P̄
(i),r
k−1|k−1

=
∑
j

[P
(j),r
k−1|k−1

+ (θ̄
(i),r
k−1|k−1

− θ̂
(j),r
k−1|k−1

) (13)

× (θ̄
(i),r
k−1|k−1

− θ̂
(j),r
k−1|k−1

)′]η
j|i,r
k−1

3: Model-conditioned std. KF:
Prediction, innovations’ covariance matrix, Kalman gain, state estimate
and the corresponding error covariance matrix, are given by

θ̂
(i),r
k|k−1

= Aθ̄
(i),r
k−1|k−1

; P
(i)
k|k−1

= AP̄
(i),r
k−1|k−1

AT + Q
(i)
k (14)

S
(i),r
k = H

(i),r
k P

(i),r
k|k−1

(H
(i),r
k )T +R(i) (15)

K
(i),r
k = P

(i),r
k|k−1

(H
(i),r
k )T (S

(i),r
k )−1 (16)

θ̂
(i),r
k|k = θ̂

(i),r
k|k−1

+ K
(i),r
k (zrk −H

(i),r
k θ̂

(i),r
k|k−1

) (17)

P
(i),r
k|k = P

(i),r
k|k−1

−K
(i),r
k S

(i),r
k (K

(i),r
k )T (18)

4: Model probability update:
The model likelihood function and model probability are respectively

L
(i),r
k = N (z̃

(i),r
k ; 0, S

(i),r
k ) (19)

η
(i),r
k =

η
(i),r
k|k−1

L
(i),r
k∑

j η
(j),r
k|k−1

L
(j),r
k

(20)

5: Estimate fusion:

θ̂r
k|k =

∑
i

θ̂
(i),r
k|k η

(i),r
k (21)

Pr
k|k =

∑
i

[P
(i),r
k|k + (θ̂r

k|k − θ̂
(i),r
k|k )(θ̂r

k|k − θ̂
(i),r
k|k )′]η

(i),r
k (22)

distance estimates obtained from the bank of IMMs as observa-
tions (see Figure 2). In the following, the location calculation
model is detailed:

The state vector gathers the mobile position and velocity,
xk = [xk, yk, ẋk, ẏk], and the observations vector is defined
as

zdk =
[
d1,k ... dN,k

]
(23)

where θ̂rk|k(1) , dr,k is the distance obtained from the rth

IMM. The state equation is

xk = Aposxk−1 + Bposwk (24)

where the resulting Gaussian process noise has a covariance
matrix Qpos,k = σ2

pBposB
T
pos, σ

2
p is the variance related to
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the mobile acceleration, and

Apos =


1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

 ; Bpos =


∆t
2 0

0 ∆t
2

∆t 0

0 ∆t

 . (25)

The observation equation is

zdk = hk(xk) + νk (26)

where the observation error is modeled as an uncorre-
lated white Gaussian noise with covariance Rpos,k =
diag(P1

k|k(1, 1), ...,PNk|k(1, 1)), the nonlinear observation
function hk(xk) is defined as the distance of the mobile to
every anchor point,

hk =


√

(xk − x1
p)

2 + (yk − y1
p)2

...√
(xk − xNp )2 + (yk − yNp )2

 =


dm→1

...

dm→N

 , (27)

where {xrp, yrp} is the position of the rth AP, and the jacobian
used to implement the EKF is given by

Hk =


xk−x1

p

dm→1

yk−y1p
dm→1

0 0
...

...
xk−xN

p

dm→N

yk−yNp
dm→N

0 0


∣∣∣∣∣∣∣∣∣
xk=x̂k|k−1

.

The initial value state vector for the filter is x̂0|0 = x0 + ω,
with ω ∼ N (0, 0.8I4).

IV. MAXIMUM LIKELIHOOD COVARIANCE ESTIMATOR
FOR MODEL CALIBRATION

In the two-slope model (1), the RSS measurements may
come from the first equation modeling the propagation for
close distances or alternatively, they may obey the second
equation modeling the propagation for distances beyond the
breakpoint distance.

In the proposed methodology, each IMM inherently treats
this model uncertainty by computing the model likelihood from
the innovations of each KF. For each AP r and model i, the
model probability is given by η

(i),r
k . These probabilities are

used into the filter to weight the outputs of the individual
KFs but can also be reused for the model calibration. At each
time step and using these model probabilities, two subsets of
RSS measurements are constructed: if η(1),r

k > η
(2),r
k , the RSS

measurement yrk is associated to yr1,k (i.e., which represents the
RSS measurements subset obeying Y1,

Yr1,k = {yrk : η
(1),r
k > η

(2),r
k } , (28)

otherwise, it is associated to Yr2,k (i.e., which concatenates the
RSS measurements obeying Y2). For the sake of clarity in the

forthcoming derivations, the elements in the sets are defined
as

Yr1,k = {yr1,1, . . . , yr1,L1
} (29)

Yr2,k = {yr2,1, . . . , yr2,L2
} . (30)

For the rth AP, the `th sample of the first model subset Yr1,k
at time k is Gaussian distributed,

yr1,` ∼ N (ȳr1,`, σ
2,r
1 ), (31)

with ȳr1,` = L0 + 10αr1,1 log10 d
r
` .

Using this subset and assuming a known distance to the rth
AP, dr` , at instant k the ML σ2

1 estimator is given by

σ̂2,r
1 =

1

L1

L1∑
`=1

(
yr1,` − ȳr1,`

)2
(32)

The ML estimator for σ2
2 follows the same procedure but

using the second model subset of RSS measurements. For the
rth AP, the `th sample of the second model subset Yr2,k at
time k is Gaussian distributed as well,

yr2,` ∼ N (ȳr2,`, σ
2,r
2 ), (33)

with ȳr2,` = L0 + 10αr1,2 log10 dbp + 10αr2 log10

(
dr`
dbp

)
.

Using this subset and assuming a known distance to the rth
AP, dr` , then at time instant k the ML estimator of σ2

2 is given
by

σ̂2
2 =

1

L2

L2∑
`=1

(
yr2,` − ȳr2,`

)2
, (34)

V. RESULTS

The first approach in this work was estimating the distance
to every AP in every k instant. A single realization was
performed and the figure 3 shows θ1

k[1,0], illustrating the case
when the mobile node is close to the breakpoint distance.
When this happens, the model probabilities η(1),r

k and η
(2),r
k

exhibit nervous behaviors. The estimated distance referred in
figure 3 corresponds to AP number 5. The top plot presents the
estimated distance and the bottom plot shows the performance
of the decision process in Y1-Y2 switching.

The IMM performance was evaluated with the RMSE val-
ues. Focusing in AP 5 as an illustrative example, the RMSE
for σ1 and σ2 is shown in Figure 4 where is observed the
convergence of our algorithm after some instants.

The bottom plot in the figure 5 shows the average RMSE
of the distance over all 6 APs. The top plot illustrates the
corresponding RMSE of position estimation. From this figure,
it is notable that the IMM algorithm implemented under
covariance estimation has good accuracy in terms of mobile
location.

The calibration performance is also demonstrated in figure 6.
Being in the case when the mobile is close or under the break-
point distance (that is the border for the two-slope model), the
mixing probability η

(i)
k is plotted and the performance of σ1

and σ2 in every k also. This plot is for only one AP and for the
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Fig. 3. Estimated distance according to probability performance η1k to AP 5
for one realization.

case when the mobile moves close to the breakpoint distance
value.

The final result of this work for a long trajectory is shown
in figure 7. This simulation gives a good estimation for the
mobile’s path.

VI. CONCLUSIONS

The mobile location via RSS measurements and the covari-
ance calibration in a realistically wireless scenario has been
formulated as a switching non-linear state problem. This work
proposes an EK-IMM algorithm to face the problem when
the mobile is switching of a model to other. With the aid of
the likelihood function, the proposed method determines the
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Fig. 4. RMSE of the estimation of σ1 and σ2 with AP 5.

probabilities of the two models and so accurate a distance
between the mobile and the Anchor Point. Simulation results
shows that the EK-IMM algorithm gives a good mobile
location estimation alike the covariance calibration of the
channel. However the path-loss model parameters and dbp are
possible to estimate using the same EK-IMM algorithm but
the computational complexity could increase. For this reason,
using other smoothing algorithms are recommended as future
work.
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