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sufficiently thin to allow the « rays to escape, must decrease
¢n wetght. Such a decrease has been recently observed by
Heydweiler* for radium, but apparently under such con-
ditions that the « rays would be largely absorbed in the glass
tube containing the active matter.

In this connexion it is very important to decide whether
the loss of weight observed by Heydweiler is due to a decrease
of weight of the radium itself or to a decrease of weight of
the glass envelope; for it is well known that radium rays
produce rapid colourations throughout a glass tube, and it.is
possible that there may be a chemical change reaching to the
surface of the glass which may account for the effects
observed.

MeGill University,
Montreal, Nov. 10, 1902,

XVI. On Vector Differentials. By FrRANK LAUREN
HircrHcoor.—Second Paper .

1. THE calculus of Quaternions enables us to represent a

vector, or directed quantity, by a single symbol,
and to work with it easily and compactly. We are not
obliged to resolve into components, nor do we arbitrarily
introduce any lines or planes of reference.

One of the simplest vectors is that of a point in space, re-
presented by the symbol p. If we have a vector function of
p continuously distributed throughout a portion of space, we
may differentiate it : the result is a linear and vector function
of dp, closely analogous, in a mathematical sense, to a homo-
geneous strain. Any such strain is fully determined it we
know the roots of the strain-cubie, and the three directions
which correspond to them.

In an introductory paper on this subject (Phil. Mag. June
1902, p. 576) it was shown that if v be a vector of unit-
length normal to any family of surfaces, and if its differential
be xdp, then one of the roots of the cubicin x is always
zero.

The other two roots give directions tangent to the lines of
curvature. For a line of curvature may be defined as one
such that normals at contiguous points intersect, that is, such
that the three vectors v, v+dv, and dp are coplanar; but
because v is a unit-vector dv is at right angles to v, and
therefore parallel to dp. Accordingly (x—g)dp=0, ¢ being
a root of the strain-cubic.

* Phys. Zeit. 1902,
+ Cummunicated by the Author.
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If we take e a nmit-vector along this direction, and 5
another unit-vector such that en=v, it is legitimate to write

Vv =vyv+exe+nxn ;

the vector part of /v is equal to the term vy, a result of the
paper referred to above; Veye=0 by the last paragraph ;
whence Vyyn also vanishes and 7 gives the other root of the
strain-cubie.

2. To illustrate further these fundamental facts, take Dupin’s
theorem that ‘each member of one of three families of
orthogonal surfaces cuts each member of each of the other
families along its lines of curvature.”

Let the unit-normals be v v,, and v,. Then

VVI = V(ygv) = sz V— V2VV - 2XV2.
Operate by Sy;, remembering that
SvVy=8y,Vr;=8r,Vr,=0;

we thus have at once

Svixrs=0,

that is, yv, is at right angles to »,.  But yv, isalready known
to be at right angles to v, and is therefore parallel to v,.
This proves the proposition.

3. In order to study certain quantities related to the
second differential of the vector » we may adopt the nota-
tion

dVVv=ndp,

and remembering that yv and VV» have the same tensor
we may put

xv=cA; VVv=cp.
Thus A, #, and v form a rectangular unit system. Differen-
tiation with regard to these three directions may be repre-

sented by :Zil’ d_‘fr_z’ and (%z respectively. Here A and p are

not the same as the ¢ and 5 of Art. 1, except in certain
cases, of which families of cylinders are among the simplest.

The constituents of 4 may be arranged according to the
following skeleton :—

VA=Pr+ru+gv

Yu=rr+ Qu+py g )
Vyv=¢gA+pp+Ry



Downloaded by [University of California, San Diego] at 12:10 29 June 2016

Vector Diferentials. 189

in which if we interchange p and p', ¢ and ¢, r and +/, we
shall change r into .

To build up this function notice first that the quantity ¢
is éhe absolute curvature of the orthogonal trajectories of the
given surfaces. If ¢\ be the tortuosity of these curves then

d

AR -
In Y N €Y
¢f. Tait’s ¢ Quaternions,” §§ 299, 300. Hence
__diew)
V= dn
e,
T an” T dn
de
= 6‘017\. + 271 Ly s e e e e, (?)

which gives definite values for ¢ and p/, and shows that R
vanishes. Apgain
de=dTVv

= —Spyrdp, by Tait, § 140 (1)
= —Sdpy,

Ve=+'p

de de de
—gl—X-*-d—rn‘u'{-%V, B €3]

giving valnes for Q and ». Next take
1lrdp =dVV»
=d(vx»)
= — Vyvxdp + Vvedp, say ;

so that

then by taking conjugates,
Y'dp=x'Vxvdp—¢'Vvdp,
whence by putting v for dp and remembering that yu=xu,
Yv=—cxp
=cASAyu +epSuxe, . . . . o o (4)

giving values for p and ¢'.
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Furthermore, because V% is a vector,

SVVVr=0
=SV +pudp+ )
=—(P+Q+R)
= (P4 o_(l%-a +0j, by (2) and (3),

whence we have for the value of P,

de
Pz_d_m' e e e e (B

It remains to get an expression for /. ldentically we have
VVVr=(p—pN+g—9Ip+r—")v; . . (6)
operate by Sy and put for r its value from (3),

de

S wlew)=r—"g>

but by the ordinary expansion
de

S vWV(ep)=cSiVu— a1’
whence by equating values

r=eVe. .« . . . . (D)

To sum up results,

de de “ i
YA= — zz;;?\.-{— Jl,u.Jr evS Ay
de |
Y= cSv\p . A+ %l,qucvb/Lx,u L €))
de
‘\Jrl’l‘ ceh + (TE}L

or more eompactly
Vdp= )\Sdp( dﬂncz A—cSrp . p— cc,v) — uSdpJc+ cvSdpxsum.

The quantity + may be expanded thus

¥ =cSvVu

=eSyV (—\y)

= —cSy(VA . v—=AVr—2xN)

=c(BVA—¢c). . v < . . . .9
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4. Quantities such as SV involve operating on v by both

V and d. These operators are not always commutative. In
fact if P be any scalar, and o and 7 any vectors, whose dif-
ferentials we may call ¢dp and Odp, we shall have

V8rVP =8V .VP—@VP, by (5) of the first paper,
=87V . VP +i86:V P+ 588V P + kSO P,

and this extended to a vector by the nsual method gives

Vor=—87V . Vo +ipdi +jpbj +kdpok. . (10)

This eqnation may be obtained in a quite different way.
Write
dyr=dé .7+ ¢dr,

where d¢ . 7 indicates the result of differentiating ¢7 as if 7
were a constant vector.  With this understanding

dd)'r::Sde .87V .o+ ¢bdp
=87V . 8dpV . o+ pbdp,

provided we do mnot substitute for dp any but constant
vectors. If now we call the two terms on the right ¢,dp and
¢odp. we shall obtain from each a part of /¢pr. The first
term gives

=01V .8V .a 487V .8V .o + 487V . SkV . o

=8V (iSi\7 . d+ijv .o+ kSEV . o)

=—87V . Vo,
and the second term gives

g2 =1p0i+ ;0 + kpOk,
leading to the same result as before.
5. From (10), by putting v for = and y for ¢,
Vxv= %Vv+7tx97\+,ux“y+ vl .. (1)

Here the first term on the right is the same as ¥y — dimy

because for any direction at right angles to » dn

s and

X=mgx+m=0, . . . . . (12)
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it follows that
AN+ px =N (mgx = my) A+ p(myx =m0 )
=2m;+ mz()\.xk + y.xy,)
=2y + meS(AYN + pxp +vxv)
=2m; —my¥;

the Jast terin of (11) may be written evyh ; therefora

vav: Yv+evyd
SVxv=2m; —mg?— ?ﬁ ’

n

{l1a)

8V xv may also be expanded thus
SVxr=8V(en)

de
--(/Svh. - (ﬁ’
which by comparison gives
1 5, _dmg de
va—- C—(le my” — -—(El— + d'l f PR (13)
and so from (9)
dm, de .
7"=2m1-—m29-%? +g= . . . (14

6. Because d(cu)=de.p+cdp and p is a unit-vector, it is
clear we may write the value of du by inspection of (8),
dropping the component along w and dividing the rest by ¢.
This gives

dUVTv=28dp(} Zn 8T o) +¥8pxa. (15)

P\o dm R X

The differentials of yv and Uy, that is of ex and X, are

easily expressed in terms of ¥ and . For

dxv=d(VVv.v)=cVuxdp—Vidp;

the first term on the right is the same as ¢vSAydp and the
last term is the same as —ASdpyr'u+uSdpy’A : therefore

dyv= —ASdpVe+ pSdpy'N+evSixdp. . (16)

For dUyv we have only to drop the component of dyv along
A, and divide the rest by ¢. This gives

dev:}ySdp\[f’)\-i-VSdpx’}\. N ¢ V)]
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7. As an application of some of these expressions, let us
examine the criterion that the state of affairs contemplated
in Dupin’s theorem may exist: in other words, find the
differential equation which must be satisfied by the unit-
normal to a family of surfaces in order that there may be
two other orthogonal families.

One form of the condition is that SeVe and SyV4y shall
both vanish, € and % baving the same meaning as in Art. 1.
Furthermore,

Ve=V (qv)
=Vn.v—9Vv—2yn,

and by operating with Se we obtain for all families of
sarfaces

SeVe=SqVn. . . . . . (18)
Hence, if the condition just mentioned is fulfilled,
SeVe+SpVn=0. . . . . . (194)

It is here not essential that e and % shall be of constant
length. We may, therefore, put for them any other vectors
to which they are respectively parallel. If g and ¢’ be the
roots of the quadratic equation

X2 —max + nyy =10,

50 that (x—¢)e=0 and (y—g’)n=0, and if we operate on
any vector at right angles to v with x—¢' and with y—y,
the two results will be parallel, in order, to e and to .
Choosing as a convenient operand the unit-vector w, that is

UVVv, we shall have
S{x—)aV(x—~9w+3x—g)uV{x—Hu=0,. (190)

and by expanding and rearranging

S(2x —my) KV X 4 S (1 — 2my — myx )V g — SpuxuVi, =0, (19¢)

From (10), by writing x for ¢ and w for 7 and du==6,dp,
{
Vxu= ﬁVV + Axﬂ,,k«!»y,xeﬂu +vxOpuv.

The form of (19¢) shows that we ure concerned only with

that part of VVxu lying in the tangent plane, The vector

part of d(_f); Vv is ¥ 5 the terms AxO,A and pxf,pu have no
Phil. Mag. S. 6. Vol. 5. No. 26. Feb. 1903. 0



Downloaded by [University of California, San Diego] at 12:10 29 June 2016

194 Mr., F. L. Hitchcock on

tangential component ; the term vy@uv equals ey, by (1)
or by (15). Thus the first term of (19¢) becomes

S2Xpu —mop)(Yre + v ;
multiplying, and noticing that py=2»x while Syyryp=—m,,
S(2x — mg)urp— 2eymy —cmaSAYA
is the product. We next obtain from (15)
Vu=ASpxp +ple;—SAxp) —v g—/ , . (20)

and here again we are not concerned with the normal com-
ponent. Thus the second term of (19¢) equals

S[ (= 2n) p—maxp] NS pixp+ p{c1—Shxp) ]
= —eymy? + 2SNy + 2eymy — 2mSAyp — emyS .
dm

dn
results and noticing that S(Ax\ 4+ uyp) = —m,, we find that
all the terms containing ¢; cancel out, and the result is

The third term of (19¢) is the same as ——=SAyu. Collecting
X g

dmg\

S(2x—ms)ppp+ Siogp( =2+ TE)=0,  (194)
which by (11a) may be written
S(2x—ma) pfrp—SAxuSVyr=0. . . (19)
Again, because of the identity
(P— 9 u=V(VVVr)u
we shall have the following expansions :—
S (2x —mo) =S (2xpu—mop)(¥' u— KV V)
=S 2x—ms) p¥' 1+ 28pxpV Vv
=82y —my) g’ p + 280 uSyV Vv
=8(2x— ma)ud'p + 280 (SVyv + V2 Vy),
and by using this result in (19¢),
S(2x—me)ud'u+SAxu(SVyy+ 2VVr) =0. . (197)
Finally, by adding (19¢) and (19f)
Su(¥+4') (2x —mp+ 25 uVEVv=0, . (199)

where the only operation involving the second differential
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of the unit-normal is the pure strain y++/. Thus the

equation is of the first order with regard to VVu.
8. In the paper referred to in Art. 1 it was proved that if

P be a scalar such that V2P =0 the unit-normal to the equi-
potential surfaces satisfies the equation

VV(v.yy=0, . . . . . (21)

of which various expansions were given. If v be given
satisfying this condition P is determined by the equation

log TVP=V"(Vv.v), . . . (22)

of which the solution is very direct and obvious. We may
thus write, as a set of equations defining orthogonal isothermal
surfaces

SvWy=0
Sp(r+4') (2x—ma) e+ 28AxpVVv=0 (23)
VYV {Vv.v)=0 a

log TVP=V"(Vr.v)

where the first two equations are to be satisfied by one unit-
vector in order that there may be three orthogonal families
of surfaces, the third equation must be satisfied by each of
the three unit-normals in order that these surfaces may all
be isotherms, and the last equation serves to determine. the
three potentials. Cf. § 336 of Tait’s ¢ Quaternions.’

9. In studying special cases we have evidently at our
disposal a great variety of methods. Equations like (19)
appear to be chiefly useful in general investigations. In
testing whether any given family of surfaces satisfies the
condition discussed in Art. 7 it will usually be easier to find
a vector corresponding to one. of the non-vanishing roots of
the strain-cubic, say parallel to 9, and operate on it with
S.nV,—though indeed the nature of the surfaces may be such
that (19¢) takes a very simple form. As a brief example,
let a family of rings be denoted by the scalar function

P=T4 S—1p¢p,
where y=ix+jy+kc+a and ¢p= —(ix+jy). Then
dTq=—T=¢ Spdp,
so that by differentiating the given function,
dP=—4T2q S~"pdp Spdp — 2T*q S-%p¢pp Sdp¢pp,
and because dP= —S8dp\/ P,
VP =4pT% S‘1%¢g +2¢pT*g S=pepp.
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Then by taking a unit along VP,

v=UVP = (2pSp¢p + ¢pT2¢) (T'g Sppp —1aS%pgp) 4,

T2¢p being here the same as Sppp. In differentiating again

it will be well to put, for brevity, T?%¢=t* and Sppp=s*, so
that we have T?p=12—qa2. The result is
dv=xdp={dp(2t's'—8a*s"} + 45't’pSpdp + pSdpdp(8a’s’t —1t*)
+bdp(s°t° — 4a’s't?) + 25°t*pSdpdp + 8a’s*ppSpdp} {s’t*-— 4a’s'} — 1,
This linear and vector function contains six vector terms, of
which all but the last two are self-conjugate, and therefore
contribute nothing toward VVv. The last two terms give

VVr=(2st'— 8a’s*) Vpp (s°t* — da’s’) —%
=2Vpgp(st*—4a’s') "1,
If this last expression be substituted for dp in ydp above, all
the terms vanish except the first and the fourth, giving
XV Vv =(48Vodp+ 28V pbp) (' —4a’s') ™,

But bv an elementary transformation (Kelland and Tait’s
¢ Introduction to Quaternions,” p. 190, r), since ¢ is self-
conjugate, we have

$Vodpp=—2Vpdp—Vp¢,
and also ¢?p= —=¢p, whence
xVVv=2Vpdp(2s*—t*)(s°t' — da’s)7,

which is a scalar multiple of VVy. Thus Vpgp is a vector
parallel to 7 and

SnVVpdp=8(iy —ja)V (iy —ja) =28k (y —jz) =0.
It is clear also that (19¢) reduces to

de

prial

a general property of surfaces of revolution, provided the
axis is the same for all members of the family,

The following may be taken as further illustrations :—

1. If Sov=0, yo differs from y’e by a normal vector.

2. When applied to a vector in the tangent plane the

operator ¥ {v( )}] or (xVv)? is equivalent to a scalar.
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3. If two vectors at right angles to each other and to the
normal be operated on with 2y —m, they will still be at
right angles.

4. It ye=ge and ym=g'n, then ¢g=—83Ve and
g =+SeVn.

5. With the notation of Art. 4, it may be proved that

-— S'Tgv . ¢TI= —S'Tlv . ¢7'2 + ¢9172—¢62T1.

6. Putting a for Suyxu and b for Shyu, while dyr=d\dp,
we may establish these six results:

(@) Pv=—xxA=N(m—my?) —myyxu—cv(a+ mg);
) { (10 2 d_" _ .
(b) dy=—x XK+)\\(U € \)+ﬂdm Xk ;

(e) Ph(2x—my)A= 12212 YA+ Vmo(a+mg) —Vmy;

d a b d
(d) svxx=(c_ m>m_ ety 4 L

de -
@ VU=t {azn FITH R )= erxp— e

d my

. 01 @
N = ac+ 2b— -

il é% )c—QOl — (a+ma)r's
from which may be deduced the eighteen coustituents of
dx\ and dyu.

7. If v, v, and v, are unit-normals to three orthogonal
families of surfaces, so that xvi=gv; and v, =¢'v,, with similar
expressions for g, 9, and g, g5/, dv may be expressed in
terms of the three normals and the six ¢’s (see Ex. 4).

8. If Sp(¢p+P)p=—1, where ¢ is self-conjugate with
constant constituents, UV P satisfies (21). Thence may be
found the distribution of electricity on an ellipsoid by means
of (22). (In differentiating we may treat ¢ + P like a scalar,
that is

d[ (¢ +P)lp}=(¢p+P)dp— (¢ +P)~%pdP).
9. Of ¢dp and ¢'dp only one can be integrable.



