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1. In the present paper it is proposed to investigate the nature of the
functions denned by linear difference equations of the first order. The
three main questions to be considered are (i.) the existence of a solution,
(ii.) its analytical expression, (iii.) its place among transcendental functions.
These questions are, of course, bound up with one another.: the first is
obviously contained in the second; and the third has already formed the
subject of a separate paper,* in which the general results here obtained
were assumed.

Linear difference equations arose historically in arithmetical investiga-
tions connected with the theory of interpolation and with the necessarily
discontinuous nature of physical experiments. And, in consequence, until
recently such equations have been considered only in cases where the
variable is a real number. References to many investigations of this
nature are given by Boole, t The first investigation where the variable
was supposed to assume all complex values appears to have been given by
Guichard.l By means of Hermite's coupures he proves that there exists
a holomorphic solution of

f(x+l)-f(x) = n(x)

* Proc. London Math. Soc, Ser. 2, Vol. 2, pp. 280-292.
t Boole, Finite Differences, Third Edition, pp. 232, 263.
X Guichard, Annales cle VEcole Normale Supirieure (1887), Ser. 3, T. iv., pp. 361-380.
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when fi (x) is holomorphic. He further gives a criterion for the nature of
the holomorphic function v (x) that

f(x+l)-u(x)f(x) = 0

may admit a holomorphic solution.
Appell* was the next to give an expression for the holomorphic

solution of

when /m (x) is holomorphic.
Then Mellin,t starting from a result in the theory of gamma functions

due to Prym,t considered the nature of the solution of

f(x+l)-r(x)f(x) = s(x)

where >(#) and s(x) are rational functions of x.
More recently there has appeared a paper by Hurwitz. § Some of his

results anticipate those of the present investigation ; they are indicated in
the text. Hurwitz solved independently, but by substantially the same
method, the problem considered by Appell, and showed how to solve the

equation 0 ( « ) / ( * + 1 ) - X (*)/(*) = *(*)

where 0(x), x(#)> an(^ ^0*0 a r e meromorphic functions.

2. The linear difference equation of the first order may be written

where we assume <p(z), x(£), and yjr(z) to be analytic functions of z. It is
at once evident that we may reduce this equation to two others of simpler

/iW xW

and /a^+ft))—/2(z) = ' ' > /i(^)» (B)

and that then f(z) =

For, substituting fi(z)f(z) for f2(z) in the second equation, we have

* Appell, Liouville (1891), Ser. 4, T. VII., pp. 157-219, especially chapter i.
t Mellin, Acta Matheinatjca, T. xv., pp. 317-384.
X Prym, Crelle, Bd. LXXXII., pp. 165-172.
§ Hurwitz, Ada Mathematiea (1897), T. xx., pp. 285-312 ; T. xxi., p. '^43.
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so that, by the first equation,

0(*)/(H-»)-x(*)/(*) = W«).
which is the equation from which we started.

We may then regard (A) and (B) as the two fundamental equations.
Although, by taking logarithms, we may reduce these to a common form,
yet it is convenient to consider each separately. By so doing, we not only
avoid the deviation from uniformity introduced by the logarithm, but we
obtain two expressions representing solutions of either equation which
correspond in some degree to the expression by the theorems of Weierstrass
and Mittag-Leffler of a uniform transcendental function.

3. We propose to limit ourselves to the case when the coefficients in
the difference equation are uniform functions with a single essential
singularity at infinity. It is obvious that, with such a restriction, we may
take <p(z), x(z), and \js(z) to be integral functions (holomorphic functions—
fonctions entieres).

In three papers * recently published I have analysed integral functions
and introduced certain definitions which it is convenient to repeat here.

A simple integral function is a function which may be expressed as a
single Weierstrassian product, whose ?i-th zero an depends solely upon n
and certain definite constants, and which is such that the law of dependence
of an upon n is the same for all but a finite number of zeros. Tha function
is called a non-repeated function if the ?i-th primary factor of Weierstrass's
product does not correspond to a zero of order depending upon n. If there
is such dependence, it is called a repeated simple integral function.

Functions of multiple linear sequence are functions whose general zero
is of the type r . , _ , ,• -.

the m's being the integers which define the particular zero.

The order of a simple non-repeated integral function is a real positive
03 1 °> i

quantity p such that 2 -. — converges and 2 -,—•— diverges, how-
ever small the real positive quantity e may be. When p is dependent
upon n the function is of infinite order.

Analogous definitions can be given for the order of repeated functions

* (1) " A Memoir on Integral Functions," Phil. Trans. Roy. Soc. (A), Vol. 199, pp. 411-500;
(2) " T h e Classification of Integral Functions," Camb. Phil. Trans., Vol. xix., pp. 322-355;
(3) " T h e Asymptotic Expansion of Integral Functions of Multiple Linear Sequence," ibid.,
Vol. xix., pp. 426-439.
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and functions of multiple linear sequence. For them I may conveniently
refer to the papers cited.

Suppose now that we have the equation (A),

where <j>(z) and \(z) a r e simple non-repeated integral functions of finite or
infinite order. The equation may be written

where G(̂ ) is an integral function.
Now it is evident that a solution of

is eGl(r) where Gx{z) is a solution of f(z-\-co)—f(z) = G(z), which is of the
form of equation (B).

We limit ourselves then to the case when the quotient ^7-7, expressed
X(*)

as a quotient of two Weierstrassian products, involves no extraneous
exponential factor.

4. In the first place, we consider the equation

where <p(z) is a holomorphic function of finite order with no extraneous
exponential factor whose zeros are all negative with respect to w. By this
we mean that, if we draw a line from the origin to the point to, the zeros
all lie in the half plane which is on the other side from w of the perpen-
dicular through the origin to Ooo. This part of the plane is shaded in the
figure (p. 442).

When expressed as a Weierstrassian product
P 1 (_)

7 1 = 1

where p is the integer next greater than the order of the function, and
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=0. x

— , ..., — , ... form a series of quantities whose real parts are positivea*
CO CO

and whose moduli are arranged in non-decreasing order of magnitude.
Take the simple modified gamma function*

—)
11100/

which satisfies the difference equation

/(*)
= „

As usual, we write

Construct the product

= n
n=i

where o- is an integer to be presently determined.
The first k — 1 terms of this product for P(z) are evidently convergent

so long as P (z) is finite. If we suppose that | z \ < | au \, we may expand

7"?log by Taylor's theorem and write the remaining terms in the

product for P(z) in the form

exp 2 2

• This function is chosen with form given on account of its analogy with multiple gamma
functions. Its theory was worked out by the author in the Messenger of Mathematics, Vol. xxix.,
pp. G4-12S.
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Now tf>W = _J!. + ! 2 K - _ . L _ 2 { ^ - L I ,
ft) to z m=\ {z-j-mco mta)

and therefore, if s > 1,

is?(z)=(-)s(S-l)\ 2

The remaining terms in the product for P(z) may therefore be written
(assuming that a- > 1)

^m oo co oo / &\& T

exp 2 2 2 . —- = exp Z, say.

Consider first the double series
00 CO ( \ S

2 2 ( 8)

<» ^ ^ s _ (s) 2s .

Each series 2 , , —rr, being equal to V̂ i (aj—r, is absolutely con-

vergent for all values of s.
Again, since — an is negative with respect to a>, we may use the

asymptotic expansion for ^Kctn), and we see that

2 2 . , —r. converges with 2 —r -— , , ,
=<r s\

and is thus absolutely convergent if | z/an \ < 1.
For when | z \ is large and not near the line of poles of ifs^Hz) we

have asymptotically*

and yjsi {z) = -—' x—— + smaller terms.

Hence, by a result due to Cauchy,t the double series is equal to

CO CO

2 2 (~"*)l

We may therefore write
00 CO oo / \ S

Z = 2 2 2
n=k m=0 s=<r

* Zoc. eit., Part iv.
+ Analyse Algebriqtte, Note vn. ; Resumes Analytiques, § 8.
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1 oo oo oo

Z\<— 2 2 2
O" n=fc m=0 s=cr

1 oo oo

<— 2 2
<T n = f c TO=o / ( -

provided \zl{an,-\-mo$)\ < 1, that is to say, remembering the distribution of
the points an, provided | z | < ak.

If now ix be the minimum value of 1— \ z / (an-\-nuo) \, we have

Z\< lil: OS CO

2 2
i=k 1)1=0

It is necessary now to investigate series of this type.

5. We proceed to prove that, if

form two series of quantities whose graphic representations lie within a
quadrant of the Argand diagram, and whose moduli form in each case a

non-decreasing series, and if 2 :—r and 2 • ̂  • are absolutely

convergent, then is

an absolutely convergent series, provided s is equal to or greater than the
greater of the two quantities 2/o and 2<r.

Since the quantities an and /3m lie within a quadrant of the Argand
diagram, we readily see from a figure that

I aw+pV |2 > <4+*4
where ati = | an \ and bm = \ /8,n | .

In the limiting case when the
quantities lie respectively on the
arms of the quadrant this inequality
becomes an equality.

The modulus of the series to be
investigated is therefore

< 2 2
71 = 1 1 7 1 = 1

1
2 \ * s '
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Now a j+6 i ^ %anbm; hence the modulus is
oo 05 1

Thus the series is absolutely convergent, in any of the four ways in which
we may sum it, and converges to the same definite limit provided s is
greater than or equal to the greater of the two quantities 2p and 2tr. The
proposition is therefore established.

6. Return now to the series 2 2 -.—: rz, which arose in § 4.

The only restriction which we have so far imposed upon <x is that it is
greater than 1. The quantities av ...,an, ... were taken to be positive
with respect to the co's, which is equivalent to saying that the a's lie in
the Argand diagram within an angle of 90° on either side of the positive
direction of the axis of w.

00 J

We assumed that 2 .—r- is convergent, and we know that
71 = 1

is convergent, if e > 0.
00 00 1

Hence the series 2 2 -.—; r̂  is absolutely convergent, pro-

vided a- ^ 2/o and a- > 2.
With these limitations on o- we see that P(z) is absolutely convergent

at all points of the plane except the poles of the functions F1(^+art).
P{z) is therefore a one-valued meromorphic function of z with these poles
and no zeros.

7. Consider now the quotient P{z+u>)jP{z).
Since Yx{z-\-w) = zTx(z), we evidently have

= n [+
n=iL\ an

x fi
n=i

Now P{z-\-co), P(z) and the first product on the right-hand side are each
absolutely convergent. The second product on the right-hand side is
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therefore absolutely convergent and may be written
c r"2

m=0

where the c's are definite finite functions of the a's.*
We have now

-i

Sm(z) \, where Sm(z) is the Bernoullian

function of z,\ satisfies the difference equation with which we started in
§4' /(*+«)-*(*)/(*) = 0.

Hence the function P(z) exp 2 c
Lro=0

The general solution of this difference equation is the particular
solution multiplied by a simply periodic function of z of period co.

The principal solution is a meromorphic function with no zeros, all
of whose poles are at the points

z=-—an—mu> (m = 0, 1, ..., oo),

the zeros of <j> (z) being at the points z = — an.
We propose to say that the poles of the particular solution are at the

points negatively congruent to the zeros of </>(z). These points are the
doubly infinite series formed by sequences of points stretching out
negatively at intervals w from the points z = — an as in the diagram.

* In certain special cases I have evaluated the c's by means of asymptotic expansions. See
" T h e Theory of the Double Gramma Function," Phil. Trans. Roy. Soc. (A), Vol. 146,
pp. 265-387, §§ 40 and 41 ; and, for the extension to multiple gamma functions, Camb. Phil.
Trans., Vol. xix., pp. 374-425, Part 3.

+ Vide Messenger of Mathematics, Vol. xxix., pp. 64-128, Part 2.
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The reciprocal of the particular solution is a non-repeated integral
function of double sequence.

In the course of the proof we have imposed on <j>{z) the limitation that
all its zeros should be negative with respect to to. But it is evident that,
in general, a finite number may be at finite points on the positive side of
or actually on the perpendicular through the origin to Oco. For, corre-
sponding to such points, we have in general a finite primary gamma
factor multiplying the solution obtained. The exceptional case, which
may be readily treated, occurs when —(an-\-viw) is, for some values of m
and n, identically zero.

8. We will consider next the solution of the difference equation

where <j){z) is a simple non-repeated integral function of finite order
without extraneous exponential factor, and all but a finite number of its
finite zeros lie on the positive side of the perpendicular through the origin
to Ow.

Neglecting the exceptional zeros which may be treated separately, we
may put

where p is the integer next greater than the order of the function and
fijco, ..., /3a/(a, ... form a series of quantities which have their real parts
positive, and are arranged so that their moduli are in non-decreasing order
of magnitude. We construct the product

= ft

The terms of P(z) after the first (k — 1) are equal to

exp [ 2 2 { - (-=f^ itf (*>+&) 11

provided | z \ <

Therefore, if a- > 1, we see, as in § 4, that they may be written

t - a> • eo <» -,S ~I f oo m oc s - I

- 2 2 2 . , 1 , rs = exp - S 2 2 -jrA-—^ .
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Exactly as in § 6, we can now demonstrate that the product PC?) is ab-
solutely convergent, provided a- ^ 2p and a- > 2. Now

n = l

X
2:

.9=1 S

»=1

s=0

where the quantities d are finite functions of the /3's.. Thus a solution of

f{e+(*)-<f>b)f{8) = 0

i s
s=0

and the general solution consists of this function multiplied by an arbitrary
simply periodic function of z of period w. The particular solution thus
obtained is an integral function of z whose zeros are at the points posi-
tively congruent to the zeros of <p(z), these zeros excluded.

When to = 1 our restriction is that all but a finite number of zeros of
<p(z) should lie to the right of the imaginary axis, in order that a particular
solution of / (2+1) = cj>{z) f{z), where <p{z) is holomorphic, should itself
be holomorphic. It may be compared with Guichard's result.*

9. It is now evident that there exists a meromorphic solution of

= 0

where ix (z) is a meromorphic function of z which is a quotient of two
simple non-repeated integral functions of finite order which when ex-
pressed as Weierstrassian products involve no extraneous exponential
factor.

Under the specified conditions we may write

/*« = n
71 = 1

Loc. cit., J 1, p. 376. See also Hurwitz, loc. cit., p. 312.
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where p, a, T, U are integers next greater than the orders of the respective
products, and ajoo, ..., ajoo, ..., and the three corresponding sequences
form series whose real parts are positive and whose moduli are arranged
in non-decreasing order of magnitude.

And now, from the results of § § 7 and 8, a solution of

/<*+•>-/*«/<*> = 0

. g . - i *! l <0+ n'~\
• s TT I- x lV«n; -I L.± i\u>~rVn — *) J

71 = 1

IL Tx(yn) \\sx{(a+8n-zY JJ

Xexp I 2 dmSn{z)
V 8 = 0

where /o', o-', T', V' are integers such that p' ^ 2p and p' > 2 and corre-
sponding inequalities, and S is the greatest of p', a-', T', V'. The general
solution is this meromorphic solution multiplied by a simply periodic
function of z of period unity.

The particular solution is a meromorphic function with (1) sequences
of zeros proceeding positively from but excluding the points {5n, (2) se-
quences of zeros proceeding negatively from and including the points — y»,
(3) sequences of poles proceeding negatively from and including the points
—an, (4) sequences of poles proceeding positively from but excluding the
points 8n.

10. We have now to consider the solution of the equation

when n(z) is a meromorphic function, as in §9, except that the Weier-
strassian products are of infinite order. The investigation can be briefly
indicated: it is an almost obvious extension of the process previously
employed. Take first the equation

f(z+co)-<p(z)f{z) = 0

where <j>(z) is a similar function to that considered in § 4, but of infinite
order. We may put

3KB. 2 . VOL. 2 . NO. 8 7 9 . 2 G
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«> 1
where pn is an integer infinite with n such that the series 2 — is

n=l an"

absolutely convergent. (As is well known, it always suffices to take pn = n-)
Construct the function

Neglecting a finite number of factors, and taking | z | < | a* |, we see that
P(e) converges with r „ „ „ ,

exp 2 i X /

By exactly the same process as before, we prove that this expression is
convergent if %crn > pn and <rn > 2. The second of these criteria is
included in the first, and we see that we must have a-n > Zpn-

Proceed again as before, and we see that

where G(z) is an integral function which, when written in the form

G(z) = 2 anz
n,

u = 0

has its coefficients a definite functions of the quantities a. Before, then,
we can completely solve

f(z+u)-<j>(z)f(z) = 0

we must solve f(z-\-oo)—eG<-z)f(z) = 0,

an equation whose solution is eCn{:) where G1(z) is a solution of

/(«+«)-/(*) = G(z).

This equation belongs to the type (B) of § 2. We now proceed to consider it.

11. I have previously investigated* the extended Riemann f function,
which, when 3&,(z/a>) is positive, can be represented by

Loc. ci/., $ 4, P a r t i n .
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The integral is taken along a contour
extending along the axis of l/o> from
+ °°/a> round the origin and back again
to +00/w, as in the figure, the contour
containing no infinities of the subject of
integration except the origin. That value

°f ( - 2 / r 1 = exp((s~l) log {-y)\

is taken which has its principal value with
respect to the axis to 1/co.

The function is fundamental in the
theory of simple gamma and Bernoullian functions, and, as Mellin* has
shown, can be represented by a series of functions valid for all values of z.

When s is a positive integer greater than 1

and when s is a negative integer

Also, qua function of s, £(s, z, u>) is finite for all values of s except s = 1.

Further, £(s, z-\-w, w) — £(s, z, u>) = — z~s,

the principal value relative to the axis of —<o being taken when 5 is
not an integer. Thus for all values, real or complex, of s, except s = 1,
—f (—s, z, a>) is a solution of the difference equation

/ (*+»)- / (*)=*• . (1)
Not only so, but, if ^(s, z, w) denotes the function defined as above when
3& (#/&>) is positive, except that the contour of the integral includes 2k
of the poles of the subject of integration besides the origin, — &•(-—s, z, w)
is equally a solution of the difference equation (1).

Suppose now that we have the equation

/(*+»)-/« = G(z)
00

where G(z) is the integral function 2 anz
n. A formal solution will be

u=0

CO

— 2 an£kn(—n, z, o>),

* Mellin, Acta Soc. Sci. Fennica, T. xxiv., No. 10, Part i. Mellin's function is obtained by
putting o) = 1. I have generalized it and extended the theory to the case of r parameters in my
memoir on the multiple gamma function.

2 G 2
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and this solution will be valid provided the series of functions is absolutely
convergent at all finite points of the plane. Suppose, in the first place,
that G(z) is of finite non-zero order p. Then* \an\ behaves when n is
very large like (l/n!)1/p to a first approximation. And therefore

00

— 2) an£(—n, z, co)
ii=O

behaves like

« f e~yz v , / w n - u ' [e-yz\lr(Xly)dyI ~ 2 n\ an{—y) dy = — \ -LJ

where the contour of integration includes the origin, but no other zero of
1—e-""*, and where

When p < 1, | (—rann! | behaves to a first approximation like
and therefore ^Cz) is an integral function of order pl(l—p). Thus, when

P< 1, a solution of / ( * + „ ) - / « = 0(f)

This integral defines a solution for all values of z and w. For the integral
taken along the prescribed contour may be at once reduced to an integral
taken round a circle, centre the origin, and radius less than

12. We have thus found a solution of

f{z+co)-f(z)=G(z)

where the order of G(z) is less than unity.
If the order of G {z) is not less than unity, one of two things may

happen: yjr{z) may still be a function convergent within a circle of finite
radius X, or the series for \fr(z) may diverge absolutely. In the first case
our course is evident: we take the previous integral round a circle of radius
> I/A, and thus obtain a solution of the difference equation. In the
second case the series for yp-(y) is truly asymptotic, i.e., of zero radius of
convergence, and the solution breaks down. But in this case the formal
solution which we have found is not altogether nugatory. For G{z) and
\fs {z) are what Borelt has called associated functions, and, as may be

* See the author's "Classification of Integral Functions" (loe. cit. §3), § 35, p. 349, where
references to the work of Hadamard, Borel, and others are given.

f Borel, Annales de VEcole Normale Superieure (1899), pp. 1-136, especially pp. 89 et seq.
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deduced from the theory of asymptotic series,* the divergent series for
\jr{y) may be used to determine a function which possesses the properties
which are required to build up by the method indicated a solution of the
difference equation.

By means, however, of a series of modified functions £m{—)n, z, co) we
may formally give a convergent expansion for this solution.

Let £m(—w, z, co) denote the integral

iffl! f e~zy dy
2 7 J 1—e-my {-ij)m+1

taken round a circle of radius (2m-fl) TI/W, SO that the subject of integra-
tion has 2m poles inside the contour in addition to the origin. At the pole

the residue is

\ CO /

The function £m(—m, z, co) therefore differs from £(—m, z, co) by a
function of z which is simply periodic of period oo. We have

€m(—in, 2-f-co, oo) — £m(—m, z, co) = — zm,
00

and hence — 2 a-;i,£n(—», 2, co) is a formal solution of the difference equation
n=0

f (z+w)—f (z) = G(z).

Now, when n is large, t

| $n(—n, z, co) |

K TTl
(271+1) —

CO

where K is the minimum value of | 1—e~a>y \ on the circle of radius
(2w+l)Wt0> a nd is therefore > 0.

Thus \£n(—n, z> w)| < 5 approximately.
K

CO

Now, since G(z) is an integral function, \\/an\ tends to zero with Ijn.
Hence \\/{an£n(—n, z, co)} \ tends to zero with 1/n, and therefore the

00

formal solution 2 an£n(—n, z, co) is a series of functions absolutely
n=0

convergent for all finite values of \z\. It therefore represents an integral

* See the author's Memoir on Integral Functions, § 29, &c.
I Forsyth, Theory of Functions (1900), § 15.
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function of z. Therefore there exists a solution of

where G (z) is any integral function of z, which is an integral function:
the general solution is obtained by adding to this particular solution an
arbitrary simply periodic function of z of period w.

The substitution of the function f»(—n, z, w) for f (—n, z, w) is
substantially the same as the process employed by Mittag-Leffler in
his well known theorem. It is from this point of view that the matter
has been considered by Hurwitz, who has anticipated the results just
obtained.

18. We see now that we have the means of completing our solution
of the equation , , . . , . .. . _

for all cases in which /JL(Z) is a meromorphic function of infinite order
with simple sequences of non-repeated zeros and poles.

A particular solution is a meromorphic function of z which may be
expressed in the form

where dT(̂ ) denotes a primary gamma factor, and where G^{z) is an
integral function which reduces to a polynomial when the orders of the

integral functions <f>(z) and x(^) whose quotient ^-f\ forms ix{z) are finite.

The products fi [dfr,»(s)] (r = 1, 2, 8, 4)
n=\

are constructed from the integral functions <f>{z) and xC2)- I n such
construction there is an element of arbitrariness as regards the finite
zeros of <f>(z) and xC?)* correspondining to the fact that, since

co sin

we may take either T1 {z) or =— as the basis of the primary factor.
1 i (ft) Z)

But ultimately the infinite terms of the products must be such that,
corresponding to zeros of <p(z) and xfc) negative with regard to o>, we
must have sequences of poles and zeros respectively of the solution
negatively congruent to and including these zeros, while, corresponding
to positive zeros of <j>{z) and x(<?)> we must have sequences of zeros and
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poles respectively which are positively congruent to but exclude the
corresponding points.

From a diagram the rule for congruent zeros is evident : the
sequences from zeros or poles of fi (z) whose moduli are very large must
not cross the finite part of the plane. And this geometrical point of view
explains the restriction introduced by the analysis ; if this phenomenon
did occur, we should get, in general, critical points of the solution at all
points in the finite part of the plane, so that this part of the plane would
be a lacunary space for the function. In special cases the distribution
of the zeros and poles of fi(z) may be such that they lie on a finite number
of lines parallel to the axis of w, and then we should get lines of
singularity in the finite part of the plane ; except in the case when these
sets of zeros and poles are all congruent with regard to w, when isolated
essential singularities would arise.

The previous investigation may be readily extended to cases when
ix{z) has repeated zeros or poles or is of multiple sequence. After the
previous investigation a discussion of these cases would be tedious : a
single example will be given later.

14. It is possible to express the principal solution of

in two other forms. We proceed first to write it as a doubly infinite
product of strict Weierstrassian form. As before, we express n (z) as
a quotient of two pairs of integral functions, each with its ultimate
sequence of zeros all positive or all negative with regard to w, so that
a typical factor is the function

<l>i(z) = n
n=l L \ a,,

defined as in § 10.
The solution of ,., , = 0

has been shown (§ 10) to be

where <rn ^ %pn when pn depends upon n, and where <r ^ Zp and cr > 2
when p, the integer next greater than the order of faiz), is finite.

Consider now the product
T»->

= n n |~(
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It converges with

exp 2 2 2 - — — i T - ) '

those terms (finite in number) being omitted from the summation with
regard to m and n for which |an-\-m«o\ ^.\z\.

By an extension of the process employed in §§ 4 and 5, we see that
this expression is convergent if rn ^ 2/o;i, (a detailed proof for a more
complicated case is given in § 16). If, then, we put T» = <rn, we see
that Px (z) Ql (z) is a function with no zeros or poles, and therefore of
the form eG(r) where G(z) is an integral function. Therefore the
p r i n c i p a l s o l u t i o n of £l , x A ,\£,\ n

may be written

y
n f(i+-JL_)6.?. . u + ^ 1

u=i »»=o L \ an-\-moo/ J
A solution of f(z-\-oo) — <p2(z)f(z) = 0

Pn~l L( ±\s

where <p2 (*) = & | " ( l - -f)

and the real parts of fiju), ..., fin/co, ... are positive is, similarly,
y

n=l m=l L \ mw+pj

where o-n ^ 2pn if plh depends upon n, and <rn ^ 2p and cr > 2 if <f>2{z) is
of finite order. Solutions of

/ < « + » ) - / « / X i « = 0, / («+»)- /W/xaW = 0

can be written down in similar manner, and the principal solution of

will be the product of all four of such solutions.
We see that the products Qx{z), ... which arise are, in the notation

to which reference was made in § 3, functions of double sequence, linear
CO CO -J

with respect to one of the sequences. If 2 2 ——; -r̂ — is con-
1=1 ™=o|(a7l+mco)p+e

00 CO -j

vergent and 2 2 -—• -r̂ — is divergent, we say that the order of
& 7»=i m=o | (au+mo)) \R-e ° J

the function is B, this being the natural extension of the definition
of order for functions of double linear sequence. With this definition we
see (§ 5) that the order of Qt(^) is at most 2 or 2/o', where p' is the order
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of the function faiz) from which Qi(z) is derived, whichever be the greater
of these two quantities.

15. We proceed to write the solution just obtained in yet another form.
Take, as before, the equation

/(«+«)-&«/(«) = 0
and consider the product

where X(i'>(*) = j£ log fc(z).

Since an is positive with respect to w, we have |an+ww| > \vua\, and
therefore, for values of z inside a circle centre the origin and radius | kw \,
log faiz+vua), where m > k, can be expanded in an absolutely convergent
series of powers of z. Hence each term of Bi(z) after the first k terms
can for such values of z be written in the form

exp

We may choose rm so that the series inside the bracket is as small
CO

as we please, let us say <C em. We choose the T'S SO that 2 em is

absolutely convergent, and thus ensure the convergency of Rx (z).
But 2?! (z) has the same poles as P1 (z), and neither function has

any finite zeros. Hence the solution of

/GH-»)-fc«/to = 0
may be written

, < , . , ft
where Gx{z) is an integral function of z.

We may now prove that it is sufficient to take rm equal to the
quantity o- of § 6 in the case when the order of <pi(z) is a finite quantity.

For, for values of z such that | z \ < | koo \, the product BY (z) is con-
vergent with r a, co ^ -i

exp - 2 2 -)$>(m»)\.

Now

r=0
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so that B^z) is convergent with

I I I (-)Vr 1
Lr ^ / +

m=ks=Tm,Z\ a L(??ia)+a,()
s
 r = 0 \ s — 1 n

When pn is finite and equal to p, the integer next greater than the
finite order of <t>x{z), the summation in the bracket vanishes when s ^ p .
The series last written becomes

and will be convergent when | z | < | ^(ku>) | if we take rm = cr (a quantity
independent of m) and such that cr ^ 2p and cr > 2. For in this case the
series of moduli is

-*• Xr 00 1 IS "1

^ » 2J Z-i 2J I II . . ; TTL

provided | z \ < | /̂(A-w) |. And therefore within the circle defined by the
inequality last written the product is absolutely convergent provided
a- ̂  2p and a > 2. Since we may make | V(M | as large as we please, the pro-
duct must be, when TM = a-, absolutely convergent for all finite values of | z\.

16. As has been stated, the investigation of the solution of

/(«+»)-/*(*)/(*) = 0
can be extended to cases when n (z) is a function with repeated zeros or
poles or of multiple sequence. Suppose, as an example, that

'i'4 (-r-V 11;
s=i s \ aj J J

/*(*) = n
u=i

so that fx{z) is a function with repeated zeros. The function will be of
finite order p if we can choose for a-,,, a number <r independent of n and

such that <r>/o^<r—1, where 2-—^~ is convergent and 2-j—^-^

is divergent, however small the positive quantity e may be. In other

cases we must take <rn such that 2 /nn
n=k

is convergent when | z \ is

finite. Since the sequence a0, av ..., <xn, ... tends to infinity, this is
00

equivalent to saying that 2 . ^ must be convergent.
n=k I t/;t | "

If now the quantities a,,, be positive with respect to <o, we may, to
obtain a solution corresponding to the second of the three preceding
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types, form the product

,i=im=oL\ an-rmw/ [ s==1 a +

This product will be convergent for values of z such that \z\ is

sufficiently small if exp — 2 2 2 — (—-^— 1 is convergent, those

terms (finite in number) being omitted from the summations with regard
to m and n for which | an+mw | < \z |. The series is convergent with

CO 00

22 an-\-nuo

1 -

and therefore with 2 2

Suppose now that | loo | > | z | !> | {I— l)w |, | ct/; | > | z | ̂  | ajt-i |.
Then the double series is less than

fc-l 00 l - l -O 00 X

2 2 + 2 2 + 2 2/o
u=0 m=0 m=0 n=0 m=l n=k

The first set of single series is finite for all finite values of k if rn > 1
for all values of n. The second set of series is finite for all finite values
of I if T.tt ̂  <rn. The third double series is less than (§ 5)

00 00

2 2
|*T" I moo |4T"

< 2
moo

2 ,
n=k

where TA; is the value of rn when »i = fc, this value being less than any
succeeding value for sufficiently large values of k. Thus the third double
series is convergent if r/c > 2, rn ̂  2crn. Finally, then, the original
product is absolutely convergent for all finite values of \z\ if rlh ^ 2<rtl,
Trt being >• 1 for all values of n. When a-,,, is independent of n* and
equal to a, say, we must have r ^ 2<r and T > 2.

The reciprocal of the product multiplied by a function of the type eGl(z)

is a solution of the difference equation.

The method of extension to cases of more complicated integral or
meromorphic functions is now obvious.

We have the general theorem that a solution of the linear difference

equation /(,+„)-„»/« =0

An example is given in the author's "Memoir on Integral Functions," § 81.
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where fx (z) is a meromorphic function of z can always be obtained as a
meromorphic function with sequences of poles and zeros of the same order
as the corresponding poles or zeros of n(z). This solution can be written
in three different forms. In each the sequences of zeros proceed positively
from but exclude the positive zeros of /x (z) and negatively from and include
the negative poles of n{z), while the sequences of poles proceed positively
from but exclude the positive poles of n (z) and negatively from and include
the negative zeros of

17. We have now to consider equations of the type B (§ 2), that is an
equation -. , . , , . . .

1 f(z+u>)—f(z) = fi(z)
where ix{z) is a meromorphic function of z.

For this purpose we express /a(z) by Mittag-Leffler's theorem, just as
to solve */ i \ / N a \ A

f(z+u>)—n(z)f(z) = 0
we expressed /J. {Z) as a quotient of Weierstrassian products.

Briefly recapitulated Mittag-Leffler's process is as follows. When the
poles of IJ.{Z) are arranged in order of non-decreasing moduli, let the r-th
pole a,, be of order kr and let the expansion of /x {z) in its vicinity be

= 2
s=i

h 2 bs(z—ar)
s, say.

- s=i

So long as | z \ < | a,. | we have the expansion

t?j"\Z"~~Cif) — Zd t^"n\.Z .

Take now Fr{z) = fr(2—a,.)— 2 rcmzm;
m=0

so that, when \z\ < | ar |,

Choose now a value of mr sufficiently large and we shall have, when

\z\ < | ctr|, I-FV^I < er, where the series 2 er is absolutely convergent.
r=\

CO

And now i*{z) = 2 Fr(z)-\-G(z) where G(z) is an integral function of z.
r=0

To solve the equation /(2+o>) —f(z) = /x {z)}
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divide the poles of /JL(Z) into two sets a0, a1} ..., att, ... and /30, ftv ..., j3n,...
respectively negative and positive with respect to to.

(_y»-i (s)

We know that -, r-rr V î (z) is a solution of
(s—1)! r

Z

and therefore we take a function <j>r(z) corresponding to Hr {z—ar), and such
that kr , Y - x

Then, since |m<o—ar\ > | a r | , we shall have, when \z\ < | a r | , the ex
pansion a,

DI=0

18. We now need the following lemma:—

If <p(z) be a solution of the difference equation

/(*+»)-/(*)=! <*-a),
where W(z—a) can, within a circle of radius \a\ and centre the origin, be

00

expanded in a convergent series 2 cmzm, so that when m is large to a
m=0

first approximation \cm\ = l / | a | m , then, if | a(2xi/w)| > 1/e, we shall
have, within a circle of radius p given by

g P I * ™ / * ! = e \ a

an expansion for <}>{z) of the form
00

vr{z, a, to)— 2 cm£m(—m,z,a>),

the series being absolutely convergent so long as | ^ | < / a and TB(Z, a, w)
being a simply periodic function of z of period w.

00

Consider the series 2 cTO£TO(—m, z, w). By the results of § 12 it is
«»=o

convergent, provided

i.e., provided | z \ < p , as above defined.
We note that p always exists as a positive quantity provided

| a(2-7n/a>) | > 1/e. Again p is less than \a\. For, putting | 27n/to | = 6, p is
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defined by the equality Pe-i _ i i a

Now, if x be real and positive, or real, negative, and < 1,

e* > 1-f x ;

therefore p < | a |.

Further, we note that p increases to infinity with a.

Assume now that | a | > e~x \ OO^TTI \. Then, within a circle of

radius p, 2 c,u£m(—m, z, w) is convergent. Therefore within this circle

00 CO CO

2 Cm£m( — m> Z> « ) — 2 Cm*TO = 2 Cw^m( — W, ^ + W, ft))
m=0 IH=O ?it=0

00 ,

is convergent. Hence, provided | z \ < p, 2 cm^m(—w, ^, to) is a
solution of the difference equation m=0

or / («+«)

And the general solution will be

VT(Z, a, a))— 2 cm^m(—w, 2, w),
m=0

where CT(Z, a, on) is a simply periodic function of z of period co.
We note that, if <j> (z) has no singularities within the circle | z \ < p,

neither has 7AF(Z, a, co) singularities within the same circle. The lemma is
thus established.

COKOLLARY.—We can deduce an interesting result in the theory of the
expansion of an arbitrary function in a series of functions.

Let/C?) be an arbitrary integral function. Then f{z-\-oo)—f{z) is an
integral function and therefore capable of expansion in the form

2 cnz
n.

m=0

The general solution of the equation

/ («+»)- / («) = 2 cmzm

m=0
00

is zs(z, co)— 2 cn£m(—m> z, w),
m=0

the series being valid for all finite values of \z\.
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Hence any integral function of z can be expanded in the form

oo

zr(z, oo)— 2 cTO£m(—m, z, co),
0m=0

where TJ{Z, O>) is a finite simply periodic function of z with no finite poles,
and the expansion will hold for all finite values of \z\.

19. Take now the function

(j>r(z) = 2 rrrOa^ri'V —Or).

If | ar(27rt/(o)| > 1/e, which will be the case for sufficiently large values
of r, since fx(z) is meromorphic and consequently the sequence of its poles
tends to infinity, we may expand <f>r{z) in the form

7Sr{z, ar, ft)) — 2 rCmfm(-W, Z, ft)),
m=0

the expansion being valid, provided | z \ <C pr, where pr tends to infinity
with | ar | and therefore with r.

Let us take

$>r(z) = <j>r{z) — VTr{z, ar, ft))+ 2 rCm£m( — W, Z, ft)) J
m=0

then, so long as | z \ < p,., we have

$r(z) = — 2 rCm^m( —W, Z, ft)),
W = (X,.

and the modulus of this series may for sufficiently large values of fxr be
made as small as we please.

We choose fxr such that, when \z\<.pr, I cJ?»-(#) | < er, where
CO

2 er is absolutely convergent.

CO

Then, for values of \z\ < pr, the series 2 $s(^) is absolutely con-

vergent, and hence 2 $ s (z) is a series convergent at all points of the
s = l

plane except the points negatively congruent to and including the
poles ar. And we have

$r(z+oo)-$r(z) = 2 ^ - ^ rcT O^w= 2 rcm2"1,
s = l v^ " r / m = 0 "l=:f*i-

b y § 17 , w h e n \z\ < aT.
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20. For the poles /3r of /J. (Z) we proceed in an analogous manner.
By the fundamental difference equation for the gamma functions

\}r^){(a—z)l(s—l)\ is a solution of f(z-\-(a)—f(z) = I/*8, when s is an
integer.

If near its r-th pole /3r, positive with regard to to, ix{z) admit the
expansion

fi(z)= 2 _ k + 6 b + c
s= l V# Pr)

we construct the function

s= l

Then, when \z\ < <rr, where <rr tends to infinity with /3r, we have the
absolutely convergent expansion

00

\ffr(z) = 7S{Z, fa, ft))— 2 A £ m ( — W, 2, ft)).

v
We take ^"r («) = ^ r («)—CT (*, /3,, ») + S rc?m Cm (—m, z, «),

m=0

and, by choosing v, sufficiently large, we can ensure that 2 ¥s{z) is a
s=l

series convergent at all points of the plane, except the points positively
congruent to but not including the poles /Sr.

And now 2 [$s(^)+>irs(^)] will be a meromorphic function satisfying
ls = l

the difference equation

where MI (*0 —M U) is an integral function which may be expanded in the
CO

series 2 emzm, valid for all finite values of | z \.
m=0

Finally, then, a solution of the equation f(z-\-cS)—f{z) = jx(z) is given
by

2 [ $ . « + ¥ . (*)-«.&(-«, *, to)],
ls = l

and the general solution is this function plus an arbitrary simply periodic
function of z of period w.

The form of the principal solution just obtained can be modified as
regards sequences proceeding from the poles of fx{z), which are in the
finite part of the plane.
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21. It is possible to give two other forms to the solution just obtained.
Retaining the notation of § 20, consider <pr(z). We have

2 7TTl^V^l (s=\ \S—L)l

K 00 1

,=2 m=o (z — ar+mw)8

[ W z—ar m_i \z—ar+W(o

oo

Therefore 2 $s(z) has its sole poles at the points negatively congruent to

the a's (these points included), and each pole congruent to ar is an infinity
of exactly the same nature as the infinity ar of —n(z).

Hence, if fx(z) = na(z)-\-f*fi(z), the two meromorphic functions
possessing respectively the sequences of poles negative and positive with
respect to w, we see that

— W * ) + 0 o ( s ) l — {pa(8+u>)+gM\ —...— {pate+iwd+gmte)} —..-,

the functions g(z) being integral functions of z, will have poles exactly
CO

like those of 2 $s(z).
s=l

We can chose the functions g(z) so that the series just written shall
be convergent. For the poles of fxa(z-\-?noo) (m > k) will have moduli
greater than | kto|, and hence, when \z\ < \kw|, we shall have the
expansion „ ,

Haiz+mco) = 2 — M ! S ) W .
s=0 S •

If then we take
Sm~ 1 2s

Ma(z+mco) = — ixa
s=0

we shall have, when |^| <C |A;co|,

Ma(z+m(v) = - 5 4
s=sm Si

so that, by choosing sm sufficiently large, we may make \Ma(z-\-moo) \ < em
00

where 2 em is absolutely convergent.
co

Then 2 Ma(z-\-m(jo) is absolutely convergent except at the poles of
00

2 4?s(2), and only differs from the latter series of functions by an integral

function.
8KB. 2. VOL. 2. NO. 880. 2 H
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Repeating the same argument for the /3's and constructing the series
of analogous functions

we see that

is a solution of f{z-\-w)—f{z) = /JL(Z).

It is a solution analogous to this which Hurwitz * has given.

22. We may now express the solution in a third form. We take,
as before,

oo r K n
 mr~l -1

^~ ^ I ^ } \s ^ r ^ m * I

co r- K Z. w , - 1 -I

r=l L*=l {Z—Pr) ">=0 J

the a poles being negative and the /3 poles positive with regard to w.
And we construct the function

oo co ^r (

«(») = - 2 2 2 a, r
m=0 r=l »=1 \(z-

+ 2 2 2 6, - — J rs+(-)°-1 2
m-l r=l «=1 Ife—fl— W w ) s t=
m - l r = l «=1

2 (

Consider the first series. If those values of m and r be omitted for
which |^| ^ |ar—mco\, the series converges with the group of series

22 2

Now, when r is very large, r r~~ ) behaves to a first approximation

like p r r ^ " 1 w n e n s ^ 1- Hence, by the same method of proof as that

employed in § 16, the series are absolutely convergent provided scrr > 2/>r

for all values of 5 and r, where pr is the integer next greater than the

* Hurwitz, Ada Mathematica, T. xx., pp. 308-311.
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order-number of the sequence alf a2, ..., ur, .... When the order of the
sequence is finite, so that pr = p, we may take sov to be a finite quantity
°" where ^ ,

o- > 2p and <r > 1.
Similar remarks apply to the second series.
The function Q (z) is a meromorphic function, and, by suitable choice

of the integral function G{z), we may make Q (z)-\-G (z) a solution of the
difference equation ... . . . . . , .

* f(z+«o)—f(z) = fi(z).
In each case the particular solution which we have obtained of this

equation is a meromorphic function whose poles are two series of points,
those negatively congruent to the poles of fx(z) negative with regard to w
(these poles being included), and those positively congruent to the poles of
ix (z) positive with regard to w (these points being excluded).

23. We have now completed the solution of the two fundamental
subsidiary equations (A) and (B) of § 2. Let us then consider the nature
of the solution of • 0

We have /(*) =

where / i ( *+») - ^ / i W = 0

and />(*+»)-/.(«) = ^ 7 7 /!(*)•

Let the n-th. positive and negative (with respect to w) zeros of <f> (z),
X {z), and \fs (z) respectively be an and a'n, fin and /3>n, yn and yn. We have
seen that we may take fx{z) to be a meromorphic function with poles at
the sequences ^ ^ pn+{m+l)a (m = 0, 1, ..., GO)

and zeros at the sequences

an+(w +1) oo, /3'n—mo),

these poles and zeros being of the same order as the corresponding zeros
of <p(z) and xC*)«

Hence ^7-7 / , (z) has poles at the sequences
x(*)

dn—mco, /3n+mw (m = 0, 1, ..., oo),

these poles being of the same order as the corresponding zeros of <f>{z) and
2 H 2
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Consider now the solution of

f2(z+w)-f2(z) = ±&fl{z).

A particular solution will be a meromorphic function with its sole poles at

the sequences ^ ^ /3H+(m+D» (m = 0, 1, ..., . ) .

These poles will be of the order of the corresponding zeros of <f> {z) and
xC?), but not of the same type, i.e., the coefficients in the expansion near a
pole will in general be different.

f (z)Finally, the particular solution f(z) = ^ ~ of the difference equation

0(s)/(<*+«•>)—x (*)/(*) = i^te) w ^ be a one-valued meromorphic function
whose sole poles are at the sequences

(1) ft-wto (ra = 0, 1, ..., oo),

each of the order of the corresponding zero f¥n of x 0*);

(2)

each of the order of the corresponding zero an of <j>(z).
The general solution of the difference equation

is /(2)+sr (*,

where CT {Z, a>) is a simply periodic function of z of period to.
It may be noticed that, unless CT (Z, U>) has finite poles, this solution

has its only poles at the sequences

Pn—moo, an+{m+l)a>.

It must be distinctly understood that we have given the nature of the
general solution on the assumption that <t>{z), x(2)> a nd V'^) a r e arbitrary
integral functions of z. And the solution given may admit of reductions
which will simplify its character when there are relations between the
zeros of these functions.

24. As a single example of the general theory we may mention
Prym's* solution of / / _i_ \ a \

J f(z+co)—zf(z) = c,

which is /(«) = ce1"* £ / 7 / 7 1 v.

Here an, a'n, (3n are non-existent, and fix = 0.
• Prym, Orelle, Bd. Lixxn., pp. 165-172.
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Other examples are furnished by the G-function,* the multiple gamma
functions, and the functions constructed by Mellin.l

As an example of the very different form which may be sometimes
given to the general solution we may mention that, if <f>(z), xte), and \[s(z)
are all simply periodic functions of z of period w, the solution of

may be written ^it t \ +
7*(z> ») Tt%

* See a paper by the author, Quarterly Journal of Mathematics, Vol. xxxi., pp. 264-314.
t Mellin, Ada Mathematica, T. xv., pp. 317-384.


