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1. Introduction.

In a paper printed in Vol. xxv of the Society’s Proceedings, I have
discussed the groups defined by a congruence of the form

,_az+f3
=
vz+0
where p is prime, and a, 8, v, & are rational integral functions -of the
roots of an irreducible congruence of the »* degree to the same prime
modulus. ’

This discussion was greatly facilitated by the fact that the groups
defined by a congruence of the same form in which the coefficients
ere ordinary integers had been already exhaustively analysed.

Now the corresponding group in two non-homogeneous variables,
namely, the group defined by the congruences

oy = tByty . dztfBy+y d
® T2+ By +'Y”’ Yy —W’ (mo ),

has not hitherto been the subject of any similar discussion. If the

(mod p),
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determinants of all the substitutions be unity, it is kmown to be a
simple group of order
(P'+p+ 1) (p+1)(p—1)* or ¥ (P +p+1) P (p+1)(p—1)}

according as p is congruent to —1 or 1, mod 3; but beyond this
nothing is known of the type and number of the cyclical and other
sub-groups contained in it.

The present paper is intended, to some extent et least, to fill this
gap; and it is an almost necessary preliminary to the discussion,
which I hope to undertake later, of the similar groups in which the
coefficients are rational integral functions of the roots of an irreducible
congruence.

The last paragraph of the paper deals shortly with the two excep-
tional cases of p =2 and p=3. Passing over these, it is clear
that, since the number giving the arder of the group in terms of p
depends on whether p is of the form 3m+1 or 3m—1, these two cases
require separate treatment.

The greater part of the paper is occupied with a detailed discussion
of the case in which p is of the form 83m —1. On passing on to the
cage in which p is of the form 3m+1, it is found that, though the
results are different in form from those of the former case, they are
closely analogous to them, while the process of arriving at them is
practically the same in the two cases. I have, therefore, not thought
it necessary to repeat in detail all the steps of the reasoning in this
second case, which would have considerably increased the length of
the paper, but have simply pointed out the necessary modifications
of the processes employed, and stated the results.

A limitation on the generality of the results, which is not
essential, and is more apparent than real, as the subjoined foot-
note will show, has been introduced, in the assumption that p’+p+1
in the one case, and § (#*+p+1) in the other, is the product of not
more than two prime factors.*

? Pp+l 2 }P+p+1)

[ 31 = prime 7 19 = prime
11 133 = 7.19 13 61 = prime
17 307 = prime 19 107 = prime
23 553 = 7.79 31 331 < prime
29 871 = 13.67 37 469 = 7.67
41 1723 < prime 43 631 = prime
47 2257 = 37.61 61 1261 = 13.97
53 2863 = 7.409 67 1619 = 73.31
59 3581 = prime 73 1801 = prime
71 6113 = prime 79 2107 = 72.43
83 6973 = 19.367 97 3169 = prime
89 8011 = prime
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The results obtained may be summarized as follows.

Ouse 1. p=—1 (mod 3).

The orders of the highest cyclical sub-groups ave p’+p+1, p*—1,
2'—p, p, snd p—1, and every substitution of the group occwrs in
some cyolical sub-group whose order is one of these numbors.

The order and type of the sub-groups within which these cyclical
sub-groups are contained self-conjugately is then determined. For
each cyclical sub-group of order p*+p+1, this is a group of order
3 (p'+p+1), and it is shown that every sub-group containing sub-
stitutions whose orders are equal to or factors of p*+p+1 must he
contained within & sub-group of order 3 (p'+p+1).

Finally, every sub-group which containg no substitutions whose
order is equal to or a factor of p*+p+1 is shown to be contained
either within one of two sub-groups whose orders arve p*(p+1)(p—1)°
or within a sub-group of order 6 (p—1)’. The first two of these
three general types are both isomorphous with the general linear
homogeneous group in two variables, while the third is isomorphous
with the permutation-group of three symbols. In this third cuse,
the form of the sub-group is limited to a-few easily recognised types,
and in the two former the problem of determining all possible types
is not essentially distinct from the corresponding problem for the
general linear group in two homogeneous variables.

Case 2. p==1 (mod 3).
The orders of the highest cyclical sub-groups are } (p'+p+1),
} (@1, $ (P*—p), p, p—1, and §(p—1), and every subsatitution

of the group ocours in some cyclical sub-group whose order is one of
these numbers.

The other resnlts in this case are exactly the snme as in the former
case if the orders of all the sub-groups there mentioned bo divided
by 3.

In the first case, the non-homogeneous group is:holohedvically
isomorphous with the homogeneous group given by

2 =ax +0y +yz
Y =dz+fY +yz (mod p),
g =d2+ 3% +v"2
and advantage is taken of this to avoid ontively working . with the

non-homogencous form. To give comploteness to the puper I have
veutured to deal ut longih with the reduction of a homogeneous sub-
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gtitution in three varinbles to its canonical form, although this
problem has been completoly treated for the genernl case of
n vaviables by M. C. Jordan, in his Traité des Substitutions. It
would, in fact, be at least as longthy to quote M. Jordan’s general
results and apply thom to the purticular case of » =3, as it is to
obtain the resnlts for the partienhw case ab nitio. The group which
is the subject of investigation i veferred to sometimes as the main
group, and sometimes as the group G.

2. On the Representation of G as a Permutation Group.
Oonsider the p*—1 quantities Ax+ By+ Cz formed by giving
4, B, ¢ any integral values from 0 to p—1, with the exception of
simultancous zero values. They may be arranged in p*+p+1 sets of
p—1 each, according to the following scheme

nx, n(y+ke), n (z+ky +K2),
=12 ...p-1; KL¥=012 . p-1

Now any substitution of the homogeneous group which changes
Ax+By+ Oz into A'v+By+ 0’z also changes k (Ax+ By+ 0z) into
k(4’z+By+ 0’z). Hence, if one member of any one of the above
P'+p+1 sets is chunged by the substitution into n member of a
second set, then all the members of the first are changed into the
verious members of the second set. 1If, then, each set is regarded as
a single entity, and is represented by the symbol {4a+ By + Oz}, the
- group is isomorphous with a permutation gronp of the p'+p+1

symbols {z}, {y+ke}, {a+ky+he},

E, ¥ =012, ..p-L
Now from the enumeration of all possible types of substitution given
in the succeeding section, it follows that no substitution can keep

more than p+2 of these symbols unchanged, this maximum number
occurring in the case of substitutions of the type

o’ =av, y=ay, =Pz
which leaves unchanged the symbols
{2}, {y+k}, {5}, *k=0,1,2 ...p~L

Hence the pormutation-gronp of the p?+p+1 symbols is helo-
Ledricully isomorphons, ¢.e., abstractly considered, identical with the
group dofined by the congruences.



62 Prof. W. Burnside on a [Dec. 18,

If now Az+By+ 0z, 4,2+ B,y+ 0,2z are any two linear functions,
one of which is not a multiple of the other, and if Az+By+0',
A2+ Bjy+ 0,z are any other pair satisfying the same condition, the
coefficients being, as is always supposed, unless otherwise stated, real
integers, it is easy to see that six other constants P, Q, R, P, @, R’
may be determined in a variety of ways, so that the congruences

A2’ +By'+ 0% = Az +By + 0,
A’ +Bly'+ 0y’ = A2+ By + 0,2,
Py +Qy +R7 = Pz + Qy + Rz,
give, on solution for &', ¥, 7, a substitution of determinant unity.
Hence the permutation-group is doubly-transitive, and therefore its
order must be (p*+p+1)(p'+p) m, where m is the order of the sub-
group obtained by keeping any two symbols unchanged. The type
of this sub-group may be obtained at once, for, if {y} and {z} are
the two unchanged symbols, two of the defining congruences of every
one of its substitutions must be of the form
y=0y 7=y
The most general substitution satisfying this condition is
‘= azta’y+a’z, y'=Ppy, =1z
where afy =1,
and conversely the totality of substitutions of this type form a group.
Now the congruence afy =1

has (p—1)* distinct solutions; for to a and 8 any values from 1 to
p—1 may be assigned, and then y is determinate; while o’ and o”
may each have any value from 0 to p—1.

The number of distinct sets of defining congruences of the above
type is therefore p* (p—1)% If now the congruence

A2=1=0

has no real solution except unity, that is p = — 1 (mod 3), each set
of defining congruences gives a different substitution, and the order
of the sub-group is p* (p—1)%

If, however, A2—1=0

has three different real roots, 1, ¢, ¢!, or if »p =1 (mod 3), the three
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sets of congruences
¢ =aw+ay+a’z Yy =8y, =y
2 = eavtea’y+ea’z, y =efy, 2 =eyz

2’ = luzt+ela'y+ela’z, y =Py, =y

give the same substitution, and the order of the sub-group is
32 (p-1)%

Hence, when p is an odd prime greater than 3, the order of the
main group is

(P +p+1) (P +p) P (p—1)' or L (P+p+1)(@+p) P (p—1)%

according ns p is of the form 3m -1 or 3m+1. When p is 2 or 3,
the order of the group is given by the former of these two expressions.
These two special cases are, however, exceptional, and will be con-
sidered later.

‘When the characteristic congruence, as defined in the next section,
is irreducible, no linear function of =z, y, 2 with real coefficients is
altered into a multiple of itself; and when it is the product of a
linear factor and an irreducible quadratic factor there is one such
function. An inspection of the other types of substitution, which are
given explicitly in the next section, shows that in other cases
there may be 3, p+1 or p+2 linear functions which are changed into
multiples of themselves. The substitutions of the group, therefore,
when expressed as o doubly-transitive permutation group of p*+p+1
symbols, must eithér permute all the symbols or must keep 1, 3, p+1
or p+2 symbols unchanged.

Cass L. p=—1 (mod 3).
3. On the Typical Forms of the Substitutions of G.

Let a'=azr +by +cz

¥ = da+by +¢ (mod p),
Z=a"2+b"y+c"z

be any substitution S, of determinant unity, Then
Az’ + By' 4+ 0z’
= (da+Bd + 0a”) x4+ (Ab+ BV + OV") y+ (Adc+ B’ + 0c”) z.
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Hence 4z+By+ 07 is transformed into a multiple A, of itself, if
A(@=N+ Bd + 08 =0,
4b +B@'-N+ . 00" =0,
dc + B +0(c"-M)=0,
so that A is given by '

a—A, o, ¢ |1=0
b, b'=A, b’
¢, c, ¢=A

This congruence is known as the characteristic congruence of the
substitution, and it is well known that if 7' is any other substitution
of the same form as S, then T-'ST has the same characteristic con-
gruence as S ;* which is the same as saying that all conjugate
substitutions within the group have the same characteristic con-
gruences. The converse of this theorem is not generally true.

If, however, the characteristic congruence has three unequal roots,
whether real or imaginary, then all substitutions which have such a
common characteristic congruence are conjugate substitutions. This
theorem is of so great importance.for what follows that I give a
formal proof of it,

Suppose, then, that A;, Ay, Ay are the. three unequal roots.of the
above congruence. Corresponding to A, the ratios 4 : DB : 0 are
given by ‘

: 4,:B,:0,
3 AT=A (B ") + 07— bA + b o—bc” & A +bc’—be.
If, then, & =ua,
n=— (t'+c") z+by+cz,
t — (b’C”— bncr) a4 (c'a"—c"af) y + (arbu_ai/b'/) 2,
the substitution S may be written in the form
NE AN+ =N A+ +0),
NE+Mn +8 =\ (A +2),
NE+AD L =N (A +0),

* Jordun, Lraitd des Substitutions, p. 98.
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while every other substitution with the samo characteristic equation
can be represented in this form when € 5, ¢ ave replaced by three
other independent linear functions of a, y, z with real integral co-
officients. In particular, the above form, when §, y, { arereplaced by
@, 9, z, may bo taken ay the type of all substitutions whoso charac-
teristic congruences have the three unequal roots Ay, Ay, Ay
1£, now, in this form 2, ¥, 2 bo replaced by

av +By +yz,

aw +03% +y'z

«“w+ Yy +y"s
and a corresponding chango be made in the uccented symbols, tho
i'csuli;ing substitution is that reprosented by 2'S7-', where 1' is the
substitution

a'=av +fy +vz
Y= a'utfiy+v7s,
7= a"z+ 34y
This will not generally bo a substitution of determinant wnity, so
that I'S7'"" is not necessavily conjugate to S within the group con-
sideved, - It remains to bo shown that ' can be expressed in the
form 1,1y, whero 1) is o substitution of deterninant unity, where 7',
in permutable with §. Writing the substitution §, for a moment, in
the abbreviated form
X'=\NX, Y=\Y, 4=\%
it is evidently permutable with cvery substitution of the- form
X=X, Y=Y, 4 =x1,

and this latter will cortainly be o substitution with real cocflicients if

Ky = f()‘l_)a g =), s=[ (),

whero f (X) is any rational function of A with real coefficients. The
determinant of this substitution iz f(A) f (A,) f(}y), which may bo
given any valuo from 1 to p—1, by suitubly choosing f (A).  1lenco,
whatevor the doterminant # of 7' may bo, a substitution of deter-
minant 2 may ho fouud which ‘is permutable with S; and, since the
completo set of substitutions of determinant  arise by combining any
one of them with the group of substitutions of detérminant nnity, it
follows that 1" can he expressed in the required form I'1),

1t may be pointed out thad the theorem thas proved, and the proof

VoL, XXVE~—NO. S04, b
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itself, hold equally well whatever the number of variables involved
may be.

The charactervistic congruence may be (i) irreducible, (ii) the
product of an irrcducible quadratic factor and a linear factor, or
(iii) the product of three linear factors; and it is clearly only in the
last case that it can -have equal roots. A typical form of any substi-
tution for which the three roots are all unequal has already been
found. , ,

Suppose, now, that the congruence has two equal roots, so that the
roots may be taken as a, 8, 3; these being real numbers. Exactly
as before, two iudependent linear functions of @, y,.z may be found
(heve mecessavily with veal coefficients) which the substitution
multiplics by « and 3, so that taking these to replace  und y, the
substitution may be written

= af,
n’ = fin,
2=« EH B+ e
Hence 2 +DPE+Qn' = fis+ (a”+Pa) £+ (3" +QB) n.

It A’ =0,
and P is chosen so that P (B8—a) = ",
then SHIE+Qn =+ D6+ Qn) ;
w0 that, writing {=zc+ ¢+ Qq, o
the substitution takes the form
= ag,
n' =Py,
r=pL.

If, however, 37 £ 0, it is impnssible to reduce the substitution
to this form. In this case, if

P(B-a)=d,
= 0;
aund = 2+ P,
the substitution may be written

vz o =pn 0=p(e+E),
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and if, further, » be written for %— n, the form will be

f=qf n'=pn, =L+

Every substitution whose characteristic congrucnce has two equal
roots must come under one of theso two types, but it is immediately
evident that a substitntion of tho one typo cannot bo conjugate to
one of the other type. On the other hand, a repetition of the pre-
vious reasoning will show that all substitutions of the first of these
two types with a common charactoristic congruence are conjugate.

If tho charactevistic congruence has three cqual roots, each must
be wunity. In this case one linear function of =, o, z with real
coeflicients can be fonnd which is unaltcred by the hul)stltui.mn, and,
if this be denoted by ¢, the substitution can hie oxpressed in the form

V=g
v =AY+
?l = tt”é +'/')”:l/+‘)’"l'-'.

where =X v = (]:—/\)?.
B
Now, Py'+ Q7' = (rg+ Ql"") Y+ Py +Qy") s+ (Pa’+Qa’’) &
and the congrucnces = ]"ﬁ'-{-_QB",
Q=DPy+Qy”

are, from the above equation of condition, equivalent to each other.
Hence, if P and @ are determinod from

P =1)+Qp" =0,
e+ Qq.” = 1,
then Dy + Q" = 'y+0:+8;
and, when 5 is writfen for Py + (Jz, the substitution takes the form

4
&

]
fr.-

7)’ = ";:{" ",

”e

= "+ "+ 2

n

Here agnin
L+ MEANy = To+ T + M+ N) §+ (L6 4+ N) 9,
¥ 2

]



68 Prof. W. Burnside on « [Dec. 13,

and if La"+N =0,
Ly” =1,
LY+ ME+Nn' = Lz+M{+ Nn+n;
hence, writing { = Lz+4 Mé{+ Ny,
the substitution becomes ¥=¢
7 =€+,
=+

[t has been assnmed that b” is different from zevo; if, however, b”
were zero, the corresponding typieal form would be

V=g,
n=t+n,
&=

0 that again, when the chavacteristic equation has three eqnal roots,
there are two distinet types.

4. On the Ovrders of the Substitutions of G, and on their Distribution in
Cyclical Sub-Groups.

When the characteristic congruence
NM—aX+A—-1=0
of a substitution is irveducible, the roots are, according to Galois’
theory, of the form A, A, X" where
A1 =0,

Now, if the real form of the substitntion is

' =av +by ez,

¥ = e 40y 4,

F=a24+0y+d",
then a=a+b+c’,’

ﬁ ==+ m"—c"(z+m'b-—¢b’,

and « and 3 can ovideutly, by suitably choosing the substitution,-

tako all possible values. Hence all cubic congruences in which the
coeflicient of the leading term is unity, while the constant tevm is
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negative unity, must occur among the characteristic congruences.
Among those that are irreducible must therefore occur congruences
satisfied by a primitive root of

A4 ] = 0,
If X=X, Y=NY, Z=M\Z

18 a substitution in its typical form corresponding to such a con-
gruence, its order m is the loast integer which satisfies

Am = Amp == A"l]l”

and, since in the case considered p—1 has no factor in common with
P*+p+1, this least value of m is p*+p+1.

Moreover, the roots of any other irreducible characteristic con-
gruence can be clearly expressed in the form A7, X", A", go that the
corresponding substitutions are ™" powers of substitutions of orders
P’+p+1. The orders of all substitutions, therefore, whose charac-
teristic congruences are irreducible ave either p’+p+1 or a factor of
this number.

When the characteristic congrueunce is resolvable into a linear
factor and an irreducible quadratic factor, so- that

M—al’+r—1 = A\ —n)(A*—a'A +[3),
where n, o, ' ave real, the qnadratic congrnence
N—dA+3 =0
may he any whatever, since a and B can take all possible values, and
among such congruences must occur those satisfied by a primitive

root p of
=1 =0.

The typical form of the corresponding substitution is
Nz= X, Y=y, Zuzp iy,

and its ovder, which is the least integer m satisfying
#m = 'ump = !"-m(,wl)’

is p’—1. The roots of every other ivreducible quadratic congruence
can bo expressed in the form p", p'”, whervo ¢ is not a multiple of
p+1; and therefore the order of every substitntion whose charne-
teristic congruence has an iredncible quadeasic faclor is cither p*—1
or some factor of this number which is not at the same time o factor
of p—1.
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It has been seon that all other substitutions can be reduced, with-
out the usc of imaginaries, to one of the five following typical
formsg ;—

() =, ¥y =3y, 7 =yz, afy =1;
(i) '
(iii) @' = az, 3" = By, Z=00G+y), af=1;

(iv) e’ =a, y=y+z &

a, y=Py  F=f  F=1;

1l

(v) 2’=w, oy =yte, s =zt+y.

The orders of these types can be determined by inspection.  For (i)
ov (ii) the ovder is p—1, or a factor of p—1; for (iii) itis p (p-1),
or a factor of this number which itself containg p as a factor; for
(iv) and (v) the order is p.

The vesult of this discussion is to ‘show that the main group con-
taing cyclical sub-groups whose orders ave p*+p+1, p*—1, p’—p,
p—1, p, or factors of these numbers, and that every substitution of
the group, except identity, is contained in some such sub-group.

T go on next to discuss the number of cyclical sub-groups of each,
by pe, andd their distreibution into conjugate sets.

Order p*4+p+1. The type of substitution S which will generate
a eychical sub-group of order p*+p+1 is

Nz A, Y =NY, 2=\,
where X=MNe +Ay +z,
Y= A" + Ny 4z,
7 == N\ a4 )\”’y/ +z.

If o substitution 7T is permutable with 9, it must keep the same three
(imaginary) clements unchanged, and must thercfore be of the form
X =N, Y=xY, Z=x/

1f, now, k== (N k== (W), k= S (W),

ihis is a real substitution, since when expressed in terms of =, 4, 2
the cocflicients ave symmetric functions of A, A, A, and thercfove
real.  But, if the «'s are not of the above form, the cocflicients are
unsynimetric functions of A, A%, N are therefore necessavily imaginary.
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Now, any rational fanction of A with real coefticients is some power
of A;, & primitive root of

M '—1=0
and if Al = f_(x),
AN =[fn] =1,
and A= ().

The determinant of
X'=fMX, Y=FfA)Y, Z=Ff0N")2Z
is then only unity when

x{(l"ﬂ’ﬂ)_l =0
or when r is a multiple of p—1.
But in this case ) =N"" =N,

and therefore the only substitutions with which S is permutable are
its own powers.

The substitntion S, therefore, forms one of a set of —,—N—— con-
P+p+1

jugate substitutions, the symbol N denoting the order of the main
group. Now, the only powers of S which have the same multipliers
(¢.c., the same characteristic congruence) as S.are clearly 8" and S”,
and to cach set of three substitutions such as 8", 8, 8™ contained
in the cyclical sub-group generated by 8, which belong to the snme
N

chavacteristic congruence, there corresponds such a set of ———
pipt+l

. I N
rate substitutions, There thevefove, in all L (p*+p) — —
conjugate substitution ere are, thevefove, inall L (p*+p) FpTl
substitutions whose orders are p’+p+1 or one of its factors, and

these form 1 ]?-i-zpv-l-l conjugate cyclical sub-groups of order

p'+p+1, cach of which must therefore be contained self-conjugately
in a sub-group of order 3 (p*+p+1).

Order p’—1. The type of substitution S which will generate a
cyclical sub-group of order p’—1 is

.X’ = [-‘X, «Y; = I.L"Y, Z! = P_(’”])Z’
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where p 18 8 primitive root of
p1—1=0.

By reasoning almost identical with that used in the previous case,
it may be shown that this substitution is permutable only with its

own powers, 80 that S is one of a set of
tions.

The only power of S which has the same multipliers as S is S7,

pro conjugate substitu-

and therefore this set of conjugate substitutions consists of %7&—1—1
P —

no one of which is a power of any other, and their p* powers. Theso
3 ];3—]\_[—1— substitutions genernte as many conjugate cyelical sub-groups

of order *—1, each of which is thervefore contained- self-conjugately
in a sub-group of order 2 (p*—1).

That tho substitntions contained in these cyclical sub-groups,
whose orders are not p—1 ov a factor of p—1, are all different, may
be verified by noticing that they form § (p*—p) different sets, each
sct having the same multipliers; while each set with common

multipliers are shown above to contain ,,N 1 conjugate substitutions.
P‘—

The total mumber of substitutions contained in the main group, then,
whose ovders are equal to or factors of p*—1, without being equal to
“Np
1

or factors of p—1, is § ===,
rt
Order p*—p.  'The type of substitution which generates a cyclical
sub-group of order p*—p is
¥Y=alety), y=ay, 7=a?s
where a is & primitive root, mod. p,

Considered as an operation of the permutation group, this is -an
oporation helonging to the sub-group which keeps the two symbols
{y} und {z} fixed. The gencral type of such sub-group is

'=aztayta’z Y=y, =7y offy=1,

and, since the permutation group is doubly transitive, there ave
1 (p'+p+1)(p"+p) such sub-groups all conjugate to cach other. I
shall then first consider the  number of cyclical sub-groups of order
P'—p contained in the sub-gronp that keeps {y} and {z} fixed, and



1894.] Class of Groups defined by Congruences. 73

their relation to ench.other. It will then be easy to extend the re-
sults to the totality of such cyclical sub-groups.

The nccessary and sufficient conditions that the typical substitution
of the sub-group, above written, should be of order p (p—1) aro that
(i) ashould be a primitive root, mod. p; (ii) either B=a and o’ # 0,
ory=a and a” Z0. Taking first =a and o’ # 0, the 2" power
of the substitution

2’ =aztda'y+az, yY=ay, F=az

is r=d"w+na'a"'y+na’a Pz, y'=a"y, 2=a "z

Hence neither of the substitutions
¢ =art+y+dz, Yy =ay, & =as
¥ =art+y+Bz, ¥y =ay, 7 =az

can be a power of the other, when A aud B ave different; and there-
fove the p substitutions obtained from either of these by writing for
A or B all values from O to p—1 generate p different cyclical sub-
groups of order p*—p. Morcover, every substitution of the sub-
group that keeps {y} and {:;} fixed, whose ovder is a factor of p*—p
without at the same time being p or a factor of p—1, and for which
a = /3, is contained in one of these cyé]ical sub-groups. For let

o = dvtay+a’s, y=dy, =Pz
be such a substitution.
The [s+x(p—-1)]"‘ power of
@ =avty+ds, Y =ay, F=az
is 2’ = a2+ [s+x (p—l)] o ly+ [s+x (_p—l)] Ad?-22,
’ I

yY=ay, F=a
= a'y, = z,

and ¢, A can be chosen in one way so that this is the same as the
given substitution. _

There ave, thevefore, within the sub-group which keeps {y} and
{ z} fixed, p cyclical sub-groups of order p*—p for which a = f, and
there arc thercfore p more for which a=1y. Morcover, these cyclical
snb-groups are all conjngate with the larger sub-gronp considered.
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For it may be verified by actnal calculation that the substitution

(w-}- 5—4 z, Y, z)*

al—a
transforms (az+y+ Az, ay, a?z)
into (ax+y+ Bz, ay, a"é);
while (e, —z, )
transforms (az+y, ay, Bz)
into (az+2, By, az).

The sub-group which keeps {y} and {z} fixed contains, then, 2p con-
jugate cyclical sub-groups of order p'—p, and the substitutions ;of
these cyclical groups whose orders are not p or factors of p—1 are all
diffcrent. :

The % (p'+p+1)(p'+p) conjugate sub-groups each of which
keeps two symbols fixed contain in all (p*+p+1)(p*+p) p conjugate
cyclical sub-groups of order p*—p. This number is equal.to
i’-z;-_—l-);, and therefore each such cyclical sub-group is contained
self-conjugately in a group of order p(p—1)®. The type of this
group is given by ’

¥ =avtay, y¥y=By, F=yz afy=1l

Tach of the cyclical sub-groups contains (p—1)( p—2) substitutions,
whose orders are neither p nor p—1 or one of its factors, and the

main group therefore contains E((-P—lg)) substitutions whose orders
pip—

are factors of p*—p, which ave different from p and from p—1 and
its Tactors.

Order p. There are two types of sub-group of order p, and of these
I first consider those of the form

(e+2, v, 2).

* Where thero is no risk of confusion, the substitution
Z=ar+by+ez, Yy =dz+by+cz, 2 =ad"c+b'y+c"z
will in future be written in the abbreviated form
(ex+dy +¢ez, o'z + Vy+e'z, a"x+¥'y4¢"%).
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The sub-group which keeps {y} and {7} fixed contains p*—1 sub-
stitutions of this type, which are given generally by

(etay+fs, g, 2),
wheie a and 3 take all possible values. Now, the substitution

(az, by, cz)

will transform (@+ay +P82 v, 2)
into (e+ay+5y, vy, 2),
if aa = ba', ap =cf.
Since abe =1,
.these congruences give == ;; ,
a

which, when a, 3, «', 3' ave finite, always has a real solution, in the
case p = —1 (mod. 3), which is under consideration. On the other
hand,

(@ 5 —y)
transforms (x—vy, vy, 2)
into (m+z, u, 2),

and therefore the whole set of p*—1 substitutions are conjugate within
the main group. The p* substitutions give p+1 cyclical sub-groups
contained in the sub-group which keeps {y} and {2} fixed. Every sub-
group keeping two symbols fixed gimilarly contains p+ 1 such cyclical
sub-groups; but these are not all distinet, for the cyclical sub-groups
occurring in the groups keaping any two of the p+1 symbols {y},
v {z}, {y+nz}, n=1,2, ... p—1, ave evidently all the same. Hence

: 1, ,
the main group contains 2 (P +p+1)(pi+p) (p+1) such cyclical

1(p+D)p
sub-groups, which are all conjugate to each other, as also are all
their substitutions. This number, expressed as before, is T(QNT)E ,
p{p—

so that each such sub-group is countained self-conjugately in a sub-
group of order p* (p~1)". Thus the cyclical sub-group generated by

€ y+3, %
is solf-conjugate within the group given by

(ax+by+cz, Vy+cs, c'z), ab'e’=
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Tho total number of substitutions of order p and of this first type
.o . . N
contained in the main group is
group 2p=D"
The second type of substitution of order p is
(=+y, y+2, 2).

The »*™ power of this substitution is
(v +ny+1n (n=1)2, y+nz 2),

and the conditions that the substitution should be transformed into
its 2 power by

(ax+by+cz, a'z+by+c'z, a’z+by+c'z)

are easily found to be

”

d=ad"=V=0, an =V, bn=2¢", ¢ =bn+ian(n—1).

These give
a==—, V=1, ¢"=u, ¢ =but}(u-1).

Hence the sub-group given by all substitutions of the form
1 .
—a+b : bn —1) |2
(n z+by+cz y+[ n+% (n )]z nz)

is the sub-group of greatest order which contains the cyclical sub-
group gencrated by
‘ (=+y, y+z 2)

self-conjugntely. Since b, ¢ may take all possible values, and = all
values except zero, the order of this sub-group is (p—1)p" Hence

the cyclical sub-group is one of n conjugate set of —1{——“ contained
in the main group. (p—Dp"

By transforming (x+y, y+2, 2) with a substitution which kecps
{z} fixed, it muy be scen ut onco that all possible sub-groups of the
type considered may be obtained for which {z} is unchanged; and
henco the conjugato set of sub-groups just obtained contains all sub-
groups of the ovder p and of tho second type. . -

I'he substitutions of these groups are necessarily all different, and
all conjugate with cach other; and the numbor of such substitutions

. . . . N
contained in the main group 1s = .
Y4
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Order p—1. The cyclical sub-groups of order p—1, unlike the
sub-groups of other orders, do not form a single conjugate set. If a
is any primitive root, mod. p, a", a*, a~*+* will be the multipliers of a
substitution of order p —1, if and only if the greatest common factor
of r and s is prime relatively to p—1. The cyclical sub-group
gencrated by (a'z, a'y, a~!"**z) will contain ¢ (p—1) substitutions of
ovder p—1, whero ¢ (n) is the symbol used in the theory of numbers
for the number of integers less than and prime to n. Two of these
substitutions will have the same multipliers if the set of quantities
a™, a™, a”"+" ig identical with the sot a", a’, a="*9 for some value -
of m different from unity; and it may be at once verified that the
only values of 7, s, and m for which this can be the case are given by

r+s=0, m=p—2 (mod. p—1).

Hence in a cyclical substitution arising from a substitution with the
multipliers, a, @™, 1, the sets of multipliers of the substitutions of
order p—1 are the same in pairs, and the sub-group contains only
$¢(p~1) such gets of multipliers; whereas in every cyclical sub-
group of order p—1 which arises from a substitution with multipliers
no one of which is unity the sets of multipliers of the ¢ (p—1) sub-
stitutions of order p—1 are all different.

Now, the number of ways in which two distinet symbols 7, s, less
than p—1, may be chosen so that their highest common factor is
prime relatively to p— 1, excluding simultaneous zero values, is

¢ (p—1)y (p-1)*
where ¥ (p=1) = (p—1) (1+ %) (1+ %)

Q. G being the different prime factors of p—1.

If -5-,.5, —(r+35), the indices of a set of multipliers of a substitution
of order p—1, are all different, then

rsy 1 —(+8); s —(r+s);
sy =),y —(re), s
will appear in the above solution as six distinct ways of cloosing
r and s, which, however, all lead to the samo set of multipliers.
If, on the other hand, », 7, —2r ave tho multipliers of a substitution
of order p—1, then
;o =2, —2r7r

¢ ¢f. Jordun, Traité des Substitutions, p. 96.
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will appear as three distinct ways of choosing = and s, which again
all lead to the same set of multipliers,

In thig latter case, » must be prime to p—1, and may therefore
have ¢ (p —1) values. There are, then, 3¢ (p—1) such solutions of
the problem of choosing r and s, leading to ¢ (p—1) sets of multipliors.
Subtracting these 3¢ (p—1) solutions from the total number, there

remain
¢ (p=1) [y (p—1)-3]
solutions, leading to 3¢ (p—1) [l/l (1)—1)—3]

further sets of multipliers; and the number of distinct sets of
multipliers is thercfore in all

i (p-1) [v (p—~1) +3].

Of these sets of multipliers 3¢ (p—1) occur in a eyclical sub-
group arising from a substitution whose multipliers are «, a”', 1;
while it Lias been seen that the sets of multipliers of the substitutions
of order p—1 in any other cyclical sub-group of this ovder are all
distinct. Hence there are 3y (p—1) further types of cyclical sub-
group of order p—1, each type containing an entirely distinct collec-
tion of sets of multipliers of the substitutions of order p—1 from all
the others. The total number of types of cyclical sub-group of order
p—1 is thevefore 1y (p—1) +1.

The cyclical sub-group arvising from the substitution
(am, a”'y; 2)
is transformed' into itself by an operation which transforms the
substitution itself into its (p—2)" power, that is, into
(«'%, ay, 2).
The general form of an operation which will effect this transforma-

tion is
(ay, bz, cz) abe=—1,

and the group that arises by combining together these substitutions
in all possible ways, containing all substitutions of the above forms
together with those of the form

("2, Uy, ¢'z) o'l =1,

is of ovder 2 (p—1)%  Henee Lhis Ly pe of cyelical sub-gronp of order
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p—1 is self-conjugate in a group of order 2 (p—1)?% and thereforo
forms one of a set of 2~(—N——i—)2 conjugate sub-groups. The remaining
p—

types contain no substitutions which can be transformed into powers
of themselves, and hence, to find the sub-groups within which they
are self-conjugate, it is ouly necessary to find the substitutions per-
mutable with them., When the multipliers of the generating
substitution («'z, a’y, a”“*9z), so that rsz£0, it is seen at once
that thoe only substitntions with which the ecyclical sub-gronp is
permutable are those of the form

(az, by, cz) abc=1,
forming a group of order (p—1)%.  HKach of the $¥ (p—1)—1 types,
coming undor this head, is therefore sclf-conjugate in a group of

order (p—1)% and cach forms one of o set of G N—I . conjugate sub-
gronps. =1

The remaining type of eyclical snb-group avises from a substitution
of the form
(ar, ay, a™?z).

The conditions that this substitution should be permutable with

(ax4by+cz, an4+by+ez a’z+b"y+c'z)

cl = au = bu/ = 0,

are g

and the order of the sub-group so defined is p (p+1)(p—1)°. This

i . N
remaining type therefore forms one of a set of - ~— - " e
jugate su%)-g?oups. _ p(p+1)(p-1)
" 1t wenkd not be easy to determine; from the above enumeration of
the sets of conjngate groups of order p—1, the total mumnber of
substitntions contained in the main gronp whose orders are equal to
or factors of p—1, hut the number in question may be obtained
independently in tho following manner.

con-

The sub-group of ovder (p—1)* whose type is
(axy by, cz)  abe =1

1y self-conjugate within o gronp of order 6 (p—1)* obtained by com-
bining the gronp ilself with all those substitutions which permute
{ef Ly {z} among themselves. 10 forms therefore one of
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6(:7 % conjugate sub-groups. Any one of the (p—1)* substitu-
tions belonging to the originaul group which keeps three symbols
ouly fixed appears in that group only; but a substitution of the
form (ax, ay, cz) appears in each of the } (p+1) p conjugate groups
_ which keeps {z} and any pair of the symbols {2}, {y}, { fc+u}
k=12, ... p—1 fixed. Now,of the (p—1)*—1 substitutions in the
original group, other than identity, 3 (p—2) keep p+2 symbols
fixed. Hence the total number of substitutions in the main group
whose orders are equul to or factors of p—1 is

N —1) 1=8(p—9)+ S(p=2)
6 (p— 1)‘[(1” DY 1-3( 2)+—,',:p(p+1)]’

r N (p—2) 6
° S P Sy )

As a partial verification of the accurncy of the enumeration that has
now been completed of the number of substitutions of each different
ovder that are contained in the main group, it may be obsorved that
the sum of

JN (Pltp )1 the number of substitutions whose orders are
(P'+p+1)’ oqual to or factors of p*+p'+1,

+ TNPT ,  the number 'whose ovders ave equal to or factors
(p+1) of p"—1, witliout being factors of p—1,
4 N (p— _12) the number whose ordors are equal to or factors
p(p— )’ of p*—p, whilé different from p, p—1, or its
factors,
+ —r—N—l—-—, the numbor whose ordors ave p, and which are
#*(p—1) of the type (z+2, y, 2),
+ N;, the number whoso ovders are p, and which are
P of the type (x+y, y+2, 2),
LY P ] '
the number whose orders are egual
ML v TEsy !

to or factors of p—1,
<41, the identjcal substitution,

s N, s it should be.
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5. On the Sub-Groups of G which contain Substitutions of Order p.

Before going on to o general discussion of the various types of
sub-group contained in the group of substitutions considered, it will
be convenient to begin by obtaining certain results relative to sub-
groups whose order is divisible by p, as these will materially shorten
certain portions of the subsequent discussion.

Suppose first that a sub-group g of order m contains a substitu-

tion of the type (x+y, y+z 2).

If g contains the eyclical sub-group arising from this substitution
self-conjugately, m must be equal to or a factor of (p—1) p*. If this
is not the case, and if at the same time m is not divisible by p°, g
must contain either "; o @—27'1)-}—) conjugate sub-groups of order p.
In the latter case, each will be self-conjugate within a sub-group
formod by all substitutions of the type (p, 70)

1
{ }Tw-}-b?’ y+ [bn-}-.’z (- 1)] 2, nz} ,

and no two sub-groups of this type have a common substitution

except identity. Ience, in this cage, g will contain only o ml)p
substitutions other than those contained in the — < — sub-groups

(»-1p

of order (p—1) p; whilein the former case g contains only 2= sub-
‘ r

stitutions whose orders are different from p. It follows that in
either case g can contain no substitutions whose orders ave factors of
P'+p+1or p+1; and therefore that m is a factor of (p—1)*p. But
from thiy it iy easily seen thiat ¢ must contain the sub-group of order
» self-conjugutely. Hence, when the sub-group of order p is not
contained self-conjugately in y, m must be divisible by p*

Suppose next that the sub-group contains a substitution of the type

(&+y, y, 2).

If the eyclicul sub-group arising:from this substitution is contained
solf-conjugutely in g, thou m must be equal to or a factor of p* (p—1)1.
If this is not the case, g contains snbstitutions conjugate to the given
one. Any such substitution has among the p+1 symbols unchanged
by it at loust one in common with those unchanged by the given sub-
stitution ; for, if

faetby+e:t and  {aa+by+cs}
voL. XXvL.—No. 505, G
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are two of the unchanged symbols, then
{(a'b=ab’) y+ (a'c—ac’) 5}
is unchanged by both cyclical sub-groups.
If now the notation bo changed so that {z} is a common unchanged
.8ymbol for the two groups, while the first is generated by
(x+Ay+ Bz, y, 2),
which involves no loss of generality, three different cases may occur.
- Iirstly, all p+1 unclmﬁgcd symbols may be the same for the two
groups, so that the second is genevated by
(z+A'y+ Bz, y, 2).
The two then generato a group of order p’, given by all substitutions
which are of the type '
(z+ay+f3z y, 2);
and this, moveover, interchanges p® symbols transitively.

When this is not the case, the second cyclical sub-group must be
generated by a substitution of the form

/e
z =z,

&' +ay’ = z+ay,
@' +By = a+Py+z

z
“

il

or by one of the form z
&' +ay = 2+ ay,
'+ 0y = a+By+a+ay.
In the first of these alternative cases, the second substitution may

be written in the form
(®+yz y+38z 2),

where (f—a)y=—q, (B—a)d=1

The two substitutions then generate a sub-group of order p* or p%
according as 4 is or is not zero.

In the second alternative caso, the second substitution is

(ax+by, cw+dy, 2),

s L B

3—2a b______—-__ai o1
—e USite i ‘i

where o= ,

so that a+d=2.
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The two substitutions (x4 Ay+Bz, ¥, z)
and (ax+by, cx+dy, z), at+d =2, ad-bec=1,

then generate either the general linenr group in two homogeneous
variables of determinant unity, ov n gronp within which it is contained.
Hence, again, in this case, with a single exception, the ovder m of
the sub-group must be divisible by p*; while, in the exceptional case,
the sub-group ¢ must itself contain, as a sub-gronp, a group of order
p (p*—1), isomorphous with the general linear group in two homo-
gencous variables. This latter sub-group, keeping one symbol fixed,
interchanges the remainder in two transitive sets of p’—1 and p+1.
Returning now to the first case, and putting on one side those
groups which contain a sub-group of order p self-conjugately, it has
been seen that the order m of a group g, containing a substitution

of the type
(+y, y+z 2),

that is, a substitution of order p that keeps only onc symbol fixed,
must be divisible by p®.  The sub-group of ovder p* contained in g is
of the type that containg
‘ (m+y, Y42, z)
self-conjugately ; and this is given by all substitutions of the form
(c+ay+fz, y+az z).
The group therefore contains substitutions of the type
(®+z ¥, 2),

and, unless the eyclical sub-group avising from this is contained self-
conjugately (which cannot be the casc when a factor of p'+p+1 or
an odd factor of p+1 divides m), the preceding investigation again
applies here.

1t follows, therefore, that if a.snb-group coutaing, not sclf-conju-
gately, o sub-group of order p which keeps only one symbol fixed, its
order must he divisible cither by 2° or by p*(p*—1); for cither it
must contain two distinet types of sub-gronp of ovder p* ov it must
contain sub-gronps of orders p* and p (p*—1),

Snppose now that the sub-group ¢ coutains operations displacing
all the symbols.  Then, (i) if it contain a sub-group of type

(+ay+Bs, 3, 2)
which displaces the symbols in two transitive scts of p* and p41, it

must contain a snb-gronp conjngate to this, displacing the symbols

a2
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in two other sets. Hence g must be transitive in the p*+p+1
symbols. Also the conjugate sub-group of order p* must have one
undisplaced symbol in comnion with the given sub-group of order p?,
and, if, again changing the notation, this be taken for z, the two sub-
groups are of the forms

(ztay+pz y, 2)
and 7 =z
'+ 4y = a+ 4y,
&' +By =z+DBy+a (z+dy) + =
The latter contains the operation
(=2 y+z, 2),
and this, taken with the former sub-group, generates a sub-group of
order p*,
Again, (ii) if g contain a sub-group, order p’, of the type
(w+az, y+pB2 2), _
it will contain a conjugate sub-gronp with a different undisplaced
symbol. Now, the given sub-group may be written in the form
ax’ +by’ +cz’" = ax +by +cz +a'z,
o'z + b'y"+ ¢y =de+ b'y+c’z+ﬂ'z,

5 = .
5=z

and, therefore, the conjugate sub-gronp may be taken without loss
of gencrality in the form
(=, y+az, z+p2).
The two-conjugate sub-groups therefore contain the two substitutions
(@+s ¥y, 2 ),
Ca oy zta),

which, as has been seen, generate a sib-group of order p (p'—1), and
also the two substitutions

@ts 3 9,
(% y+m 2),

which generato a sub-group, order p?, of different type from

(@+az, y+p2 5).
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Hence ¢, containing two sub-groups of order p* of different types,
must contain sub-groups of order p° and its order must be divisible
by p* (p'—1). 1t is also again necessavily transitive in the p*+p+1
symbols.
Lastly, (iii) if ¢ contain the sub-group of order p (p*—1) arising
from
(z+y, w 2

and (a z+y, =2),

which displaces the symbols in two transitive sets of p*—1 and p+1,
keeping one fixed, it contains a conjugate sub-group, displacing the
symbols in two other sets, and it is thevefore transitive in all the
symbols.

The order of the group'is therefore at least (p*+p+1)p (p'—1).
Now, no operation displacing all the symbols is permutable with an
operation of order p, and hence the sub-group g would contain at
least (p*+p+1)(p+1) conjugate sub-groups of order p. But the
sub-group arising from

(@+y, y, 2,

(= ytaz, 2
contains only p+1 sub-groups of order p, and each of these is common
to p+1 of the p’+p+1 such conjugnte sub-groups. Hence each sub-
group of g which keeps one symbol fixed must contain further sub-
gtitutions of order p, beyond those contained in the sub-gronp of
order p (p'—1) of the above type.  Among the substitutions keeping
{z} fixed, there must therefore be, besides the simultaneous types
@+y, u 2),
(= aty, 2),
simultaneous types either of the form
(@+y, y 2),
(m+z’ ?/1 Z),
or of the form @+y, 2,
(2 y+z 2).

In vither case the ordor of the sub-group must be divisible by p*;
ginen, a8 in former cases, there will be two distinet types of sub-group
of order p*.
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The final vesult of this discussion of sub-groups containing opern-
tions of order p may be stated as follows :—

If o sub-group coutains substitutions displacing all the symbols
(7.c., substitutions whose orders divide p*+p+1), and if it also con-
tain substitutions of order p, the sub-group must be transitive in all
the p*+p+1 symbols, and its order must be divisible by p*

Tn the proof of this result it is fivst shown that, if the sub-group ¢
contain a cyclical sub-group of order p, not self-conjugate, it must
contain sub-groups of onc of the three typos,

() (@tay+pz oy, 2),
(i) (¢+az y+0z 2),

{(m'*'?/a Y Z)}
(i) : .
(o aty, 2

Now, if the substitutions of g do not all keep {z} fixed, there must,
when the sub-group contained in g is of types (ii) and (iii), be con-
jugate sub-groups, and then the reasoning already given shows that
g must be transitive, and of order divisible by 2% independently of
the additional supposition that it contains substitutions displacing
all the symbols. :

The same is true when g contains a sab-group of type (i), unless
the symbols {y}, {z}, {y+xz}, «=1,2, ... p=~1, form a single
transitive set of symbols for the group ¢. :

Hence the result may also be stated in the following form :—

If the substitutions of a sub-group g do not all keep some one
symbol fixed, and if the ovder of ¢ is divisible by p, then g must be
transitive in the complete set of p*+p +1 symbols, and its ovder must
be divisible by °, unless it interchanges the symbols in two transitive
sets of »* and p+1.

The most general group of this latber typo is evidently one of
order p* (p—1)* (p+1), whose substitutions aie of the type

(aw+by+ez, by+cs b'y+c'z),
a(@e’-b"c) =1,
which contains as a self-conjugate sub-gronp

(@+ay+pz, y, 2).

6. On the Transitive Sub-Groups of G.

I go on now to consider the sub-groups which contain cyclical sub-
groups of order p’+p+1.  Such sub-groups are necessarily transitive.
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Let g denote one of them, and let (p'4+p-+1)m be its order. Then,
if the cyclical sub-group of order p’+p+1 is contained self-
conjugately in g, it has been seen that m must be 3.

If not, g contains either (p*4p) m or (p'+p) —:7;1 operations dis-

placing all the symbols. In the former case there are only m sub-
stitutions left over, and therefore the sub-group of order m keeping
one symbol fixed is contained sclf-conjugately in g, and must
congist of the identical substitution only, so that m is 1.

If m is not unity, it mnst be divisible by 3, and the number of
substitutions in ¢ which do not displace all the symbols is

(2 4+p+1) m—1p (p+1) m.

Now, with the exception of identity, no substitution is permutable
with o substitution of order p*+p+1, so that ench of the remaining
operations, exccpt identity, forms one of a conjugate set, whose
number is & multiple of p’+p+1. It follows that

1—‘;71 =1 (mod. p’+p+1),

or m=3[l+>\(p’+p+1)],
where A is an integer.

Now, m is a factor of p* (p—1)* (p+1), and it has been seen that,
if m contains p as a factor, it must contain p*

Hence (i), if m is not a multiple of p,
3[1+A (P 4p+])]

is a factor of (p—1)'(p+1),

ey of 3[1+222 (7 4p+D) |

and thercfore of 3 (P—F-g -—A>,

which is impossible unless this Inst expression is zero.
Tn this case, then, | A= ]2-.:%,

and m = (p—1)"(p+1).

If (ii) m is a multiple of p* it follows at once that
A=p-1,

and m = 3p".
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Hence the only possible orders for groups containing substitutions

of order p’+p+1, not self-conjugately, are
P +p+1)(p—1) (p+1),

and (r*+p+1)3p°

It is immediately obvious that no sub-group of the latter order can
exist, For its sub-groups that keep one symbol fixed would be of
order 3p®, and these would necessarily contain groups of order p* as
self-conjugate sub-groups. DBut a group of order p® is self-conjugate
only within one of order p*(p—1)? and 3 is not a factor of p—1.

1f a transitive sub-group of order (p'+p+1)(p—1)* (p+1) exists,
its sub-group keeping one symbol fixed is of order (p—1)*(p+1).

Suppose that this sub-group contains m,, my, m,,, substitutions
keeping respectively just 1, 3, and p+2 symbols fixed. Now,
each substitution keeping » symbols fixed belongs to r different
sub-groups keeping one symbol fixed. Hence the total number of
different substitutions belonging to the p*+p+1 conjugate sub-groups
which each keep one symbol fixed is '

L+ (g +p+1) (mat 22 +I%-§)
Neither 3 nor p+2 can be a factor of p*+p+1, and therefore

'%" and % must be integers. Writing #, and #%,,, for them, and

n, for my,

(p'—l), (P+1) = 1+"l+3ns+ (P+2) 4y
and (P'+p+1)(p—1)* (p+1)—} (@' +p)(p—1)’ (p+1)
=14 (p+p+1) (0 + 15+ 1,,,),

the two sides of the latter equation representing two ways of
counting all the substitntions in the sub-groups which do not dis-
place all the symbols.  Combining these equations, there resulty

2+ (p+1) mpsa = 3p (p+1) (p—2),
whence  (p—1)ny= (p+ 1) [(p=D) (' +2) —m ],
(p—1) npy = 20, —p' (p—1).
Now, it is, on the other hand, easy to show that the sub-group can

contain no substitution that keeps p+2 symbols fixed.
Ior any such substitution

S, or (az, ay, (2),

cannat be contained sclf-conjugately, and o substitution 3 conjugats



1894.] Olass of Groups defined by Congruences. &9

to S and keeping {2z} fixed is necessarily of the form
(az+vyz, ay+v'z, P2),
go that §3! would be of oxder p, contrary to supposition.

Hence N2 = 03
and therefore n, = 3p’ (p—1).

But, if the greatest cyclical sub-group, whose order is a factor of
p'—1, contained in the sub-group considered, is of order

ptl E:—l, where p—1 is the greatest factor of p—1 dividing this
e T U
number, it contains (Bi'—l —1) p=1 substitutions that keep only one
T

12
gymbol fixed, and, together with its conjugnte sub-groups, it must
contain e (p—1)’ (p+1—gq,) such substitutions, where e is 1 or 1.
The total number of such substitutions contained in the sub-group is
the sum of a number of such terms as this, and is therefore divisible
by 1 (p—1)° . Hence the above found value for #, is impossible, and
o sub-group of the type supposed does not exist. The only sub-
groups, therefore, which contain substitutions of order p*+p+1 are
those already found of order 3 (p*+p+1).

Before going on to the intransitive sub-groups, there is one other
type of transitive sub-group, the possibility of which it is necessary
to. consider. There might be a sub-group g, of order (p'+p+1)m,
containing no substitutions of order p*+p—+1. Here, and in dealing
with the intransitive sub-groups, I make tho limitation, already
referred to in the introduction, that p*+p-+1 is the product of not
more than two prime factors, which will be represented by p, and p,.
If, now, g contains no substitutions of order p, p,, it must contain ep,m
and e’p,m conjugate sub-groups of orders p, and p, respectively, where
¢, € are either 1 or 1. If they are not both }, there would be a
number of substitntions in ¢, displacing all the symbols, greater than
tho order of the group, and this is impossible.

Hence, since all the substitutions of these {sub-groups are distinct,

tho group contnins L (p=1) pym+3 (p—1) pym
substitutions displacing all the symbols, leaving over
 (mpst ot

snbstitubions.
suppose, now, fivst that m is not divisible by p; and, if possible, let
b nubegroup contain o substitution S of the type
(—a, —y, 2).
I ¥ is transformed into S’ by any substitution which keeps {z}
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unchanged, §'S-' would be a substitution of order p. Hence the
sub-group cither contains no substitutions of this type, or else such a
substitution must he permutable with all the substitutions of the
sub-group which keep {z} unchanged. Now, it is substitutions of
the type S which transform substitutions of order p*—1 into their

own p* powers.

Hence, g must contain ab least 2p, p,m substitutions that keep one
gymbol only fixed, or clse that sub-group of ¢ which keeps {z} un-
changed must contain a substitution of type S self-conjugately. On
the former supposition the number of substitutions of g which keep
either one or noe symbols unchanged would exceed the order of g ;
and this is impossible. Passing to the latter supposition, the
general type of substitution which is permutable with § is

(e +by, ax+by, 'z), (ab —a'd) ¢’ =1,

and that sub-gronp of ¢ which keeps {z} unchanged must be con-
tained within this group. Now, this group is identical with the
general linear gronp in the homogencous vaviables, and therefore
any sub-group of it wlich contains distinet eyclical sub-groups whose
orders ave factors of p+ 1 must also contain substitutions of order p.
Hence that sub-gronp of ¢ which keeps one symbol unchanged must
contain a substitntion of order 3 self-conjugately. Tt will, therefore,
be a sub-group of dihedral type, and m will be of the form

th 12
Of the substitutions of this sub-group exclusive of identity,
ptl ——l) =l keep one symhol unchanged, and (ﬁ—l— + 1)}—9-—_—l -1
T 72 N T
keep p+1 symbols unchanged.

Henee the p, p, conjugate sub-groups contain

1 —1 , pp +1 p—1
1+ 2(21’*'_ __1>].___+.7_1.,a,([7____ +1]____1)
PP\, 7 p+I\L g 1

distinet substitutions.

Now, if ». +1 greater than 3, this quantity is greater than
il

s (Pt +p,) m;

and, if Pl equal to 3, L (['P—tl + 1]1)—_—1 —l) cannot be an
h rp+l N 1
integer, and thercfore in any case the second supposition is in-

adnissible.
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If, now, p is a factor of m, then 3p* must be a factor of m, and the
sub-group of g that keeps one symbol unchanged cannot contain the
group of order p® self-conjugately. It must therefore contain at least
p+1 conjugate sub-groups of order 3®. But this is the number that
is contained in the most general sub-group that keeps one symbol
unchanged, and it is easy to see that any sub-group containing these
p+1 groups of order z* is at least as extensive as this most general
sub-group. The sub-group ¢ would therofore, in this case, coincide
with the main group.

Hence, finally, no transitive sub-group of the type in question can
exist.

7. On the Intransitive Sub-Groups of G.

Among the intransitive sub-groups contained in the main group
there are two classes the discussion of which is practically involved
in.the known results obtained by former writers in connexion with
the general homogeneous integral group in two variables. These are
(i) the sub-groups contained in the sub-group of order

P(p=1)'(p+1)
which keeps one symbol fixed, and (ii) the sub-gronp contained in
the group of the same order which interchanges the symbols in two
transitive sets of p* and p+1.
It has already been seen incidentally that there is an intransitive
sub-group of order 6 (p—1)?* namely, (iii) the group of type

(v 2z @
(—=y, 2, 2)p, abe =1,
( az, by, c2)

which either leaves the three symbols {z}, {y}, {z} unchanged or
interchanges them among themselves.

I shall first show that any intransitive sub-group not belonging to
the first two classes is uecessuvily cither contained in o sub-group of
the type just given, or is a sub-group of tho transitive group of order
8(p'+p+1).

Supypose that N is the order of such a sub-group g, and » the order
of the highest sub-group contained at ouce in g and in one of
class (iii).  Then g must contain i:z conjugate sub-groups of order 2.

Now, two such conjugate sub-groups can only have substitutions
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in common if the symbols which they interchange are of the forms
=}, {3, {2}
and {m+Ay}, {:c+By}, {z};
so that the sub-groups contain conjugate substitutions
(w2, By, v2)

and  &'+Ay=a(r+4y), 2’+By'=pL(z+By), /=y
Moreover, the multipliers « and /3 cannot be equal for all the substi-
tutions of the two sub-groups, as in that case the sub-groups would
‘not be distinct. But, if « and 3 are nnequal, itis easy to verify that
the two substitutions just written will generate the sub-group formed
by all substitutions of the type

(az+by, «z+by, vz), (b’ —ab) y=1,
and the order of this sub-group is equal to or a multipleof p (p*—~1).
Now, by supposition, the substitutions of g do not all keop { 2} un-
changed. Hence (p. 86, bottom) the group, if not transitive in all the

p*+p+1 symbols, must interchange the symbols in two transitive
sets of p’ and p+1. But, by supposition, the latter is not the case,

and therefore, finally, the f:f conjugate sub-groups of order = con-
tained in ¢ have no common substitutions except identity, The
N (1-— }T) distinct substitutions thus accounted fqr must contuin all
the substitutions of ¢ whose orders are equal to or factors of p—1, as
otherwise there would be a second set of N (1 - 717) substitutions,

which with the previous set wonld give n number greater than the
order of the group. The remaining substitutions of the sub-group,
if any, must either displace all the symbols or must keep one symbol
unchanged ; and in the latter caso their orders must divide p’—l,
since the group can contain no substitutions of order p. If there ave
substitutions displacing all the symbols, their numbor must bo
eN(l— 1 ), where p, is o factor of p*+p+1, and € is either 1 or 3.
B
If there are substitutions which keep one symbol unchanged, and if

ptl
/N

a sct of nN (1——— Z_‘—l) substitutions, conjugate to this substitution,
ZI

2=1 i the highest order of any such substitution, there will be
s
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and to those of its powers which keep only one symbol unchanged,
where 18 1 or ¥ ; and, if this does not exhaust all the substitutions
of the group, there must be further sets similar to the last. Hence,
finally,
N=1+N(1- i) +eN (1— i} +2nN(1— —‘Il—)
n 7 pH1

where eis 0, 1, or 4, and each n i8 0, 1, or . This equation cannot
clearly be satisfied if e is unity. If e = }, there cannot be more than
one term under the sign of summation, and, if there is such a term,
n must be , so that either

N= 1+N(1—%)+—};N(1-—;—‘)+%N(1——§%{—1)
o0 N=1+N(1- %)+%N(1—--—1«).

D

The least possible values of 1— L y 1= 1 yand 1— are 3, ¥,
n

(.
o p+1
and 3, and therefore the first equation is impossible. The second
equation gives
belo1 1
TN 3, w’
and can only be satisfied by
N=3p, n=3.
Corresponding to this solution there are the intransitive sub-groups
of the sub-groups of order 3 (p*+p+1).
Finally, if ¢ =0, 5o that

N=1+N(1- -;17) +34N (1—5%),

there-can be only ome term agnin under the sign of summation
(the least value of 1—~ 59_;—1 is &), and » must be 3. Hence
= ~ L iav(1--
N=1+N (1 n ) +3N’(1 p+1)

. RIS SN S (.
o =t N—'n+2(p+1)'
and the only solution of this equation is

0 N.._OP'*'I

n = q, = &=

N

3
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The corresponding type of sub-gronp belongs to the first class, all of
its substitutions keeping one symbol unchanged.

The only other possibility is represented by the equation
N=1+N(1- 1 )
"

so that n =N,

and the sub-group ¢ is contained within the above considered sub-
group of order 8 (p—1)*.

The intransitive sub-groups of the sub-group of order 3 (p*+p+1),
which exist when p°+p+1 is not a prime, ave of simplo type and
need not be explicitly dealt with, so that it is now only necessary to
consider the various sub-groups of the three general types of in-
transitive sub-groups speciticd at the beginning of this section.
The first two types, though obviously not conjugate to each other
within the main group, are holohedrically isomorphous, and therefore,
when the various types of sub-group contained in the one have been
investigated, those contuined in the other may be immedintely
written down. This isomorphism may be estublished in the following
manner i—

Typoe (ii) contains the gronp of order p*,
(+ay+bz, vy, 2),

gelf-conjugately, and is generated by combining this group with the

group genemted by
(x, y+2z z ),

(‘L': Y, 3/+z ),
(ae, d'y, a~t*hz),
a a primitive root mod. p.

1f theso three substitutions are denoted by 4, B, 0, and if the

substitution
(e+ay+bz, vy, z)

is denoted by S,,, o simple culculation gives
Ab',,,,,xl" = S, st
BS,. B = S,
¢8,.0" = ‘S{ln"l, Pa—
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Type (i) contains the sub-group of which &, or
(e+az, y+bz, z)

is tho typo self-conjugately; and is gencrated by combining this
group with the group arvising from

A" or (—y, v, 5 ),
Bor (w y—u& z),

’ -r g -
C ov (a7, 'y, a”'z);

moreover, A8, A =8 e
B’Sl,l,bB’_l = ‘»-':H-b,a)
s, 01'=58

aa’ -1, ba-7r-t

Now, except as regards the symbols in terms of which they ave
written, 4°, I, C" ave identical with the inverses of A, B, C; and it
is well known that, among the varions ways in which a group can bhe
isomorphously connected with itself, that in which two inverse
operations ave taken as corresponding operations always occurs.
Henee an isomorphous correspondence is established between the two
types by taking A, B, C, S, as cmu'csp.(mding substitutions to
A, B, 0 and S;,. It is, therefore, only necessary to deal in detail
with one of the two types, and the first will be chosen, as lending
itself rather more readily to calculation. This may, for shortuess, be
referved to as the sub-gronp 11,

The order of the greatest possible sub-group of If which contains
no substitutions whose ovders are factors of p+1 is p* (p—1)*%.  Such
o sub-group, if it cxists, must, by Sylow’s theorem, contain cither a
single self-conjugate sub-group of order g%, or (p—1)* conjugate sub-
groups of this ovder, since (p—1)* contains no factor of the form
kp+1 except itsclf and unity. 'Now, every group of order p* is of wne
typo

yP (wtay+Bz, y+vyz 2),
and is obviously self-conjugate within the group of type
(ax+by+cz, by+c's, ¢'z),

whose order is p* (p—1)°. Hence II only contains p+1 conjugate
sub-groups of order p*, and therofore the sapposition that a sub-group
of IT of order p*(p—1)* contains (p—1)? conjugate sub-groups of
order p* is impossible. ' '

Hence any sub-group of I which containg no substitutions whose
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orders are p+1 or one of its factors must be contained as a sub-group
within a group of the type

(ax+by+cz, bax+d’z z).

Consider now sub-groups of H which contain substitutions whose
orders ave factors of p+1. If such a sub-group contains the operation

(z+z y, 2),
it must contain a conjugate substitution in which {y} is not an un-

changed symbol, and it must therefore contain the whole of the
self-conjugate sub-group

(@+az, y+P2 2).

Every sub-group of H containing substitutions whose orders are
factors of p+1 must therefore either contain this self-conjugate sub-
group of order p% or, containing none of the operations of this
sub-group, it must be a sub-group of one of the p* sub-groups of
H whose type is

(‘v+y» Y z)

( = a+y, z)
Yy, az)

(aw, a!

Moreover, if it contains the sub-group of order p% it must be
mevihedrically isomorphous with some sub-group of the group of
type just written, and, therefore, must be generated by some sub-
group of the group just written, combined with the group of order

P* given by :
(z+az, y+082, z).

Again, every sub-group of the group given by
(m + Y, Yy z )
(= at+y, =z)
i -r=]

(a2, oy, @)

contains as a self-conjugate sub-group those substitutions which
multiply z by unity ; and any such sub-group is a sub-group of the

gl'Oll‘p
{@+%'y, O}
( = z+y, 2)

of which all possible types of sub-group are known.
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Hence, by starting from the known sub-groups of this last sub-
group, all the sub-groups of H which contain substitutions that keep
only one symbol fixed may be constructed. They will consist
(i) of these sub-groups themselves, (ii) of those obtained by comni:
bining them with substitutions of the form

(aw, By, v2),

and (iii) of those obtained by combining the sub-groups of type (ii)
with the group
(e+uz, y+bz =).

To every type of sub-group of IT thus obtained will correspond an
isomorphous sub-group of

(@+by+ez, by+cz, Uyt (r;'z);

which may or may not be conjugate within the main group to the
sub-group of H with which it corresponds.

The other intransitive sub-groups that require consideration are,
as has been seen, the sub-groups of a group I, of type

( Yy %, w)
) ("'?/, € 2 ) ’
(az, by, c2)

and they must contain substitutions of order 3, since the sub-group
,{(-y, z, -z)}
(ax, by, c2)

Now the sub-group (aw, by, ¢2), wbo=1,

‘is contained within H.

-is contained self-conjugately within 7, and is-generated by the two-
permutable operations of ovder p—1,

(a7'z, ay, 2) and (a'a, y, a2).

Everyi possible sub-group of this Abelian group may now be wuritten
down, and combined either with

(:’/1 2 ),
(_:'/: :U, z)?

or with the former of these two substitutions alone.
VOL. XXvL.—N0. 506. u



98 Prof. W. Burnside on a [Dec, 18,

The sub-groups thus obtained will evidently not be all distinct
from I; but in this way all possible sub-groups of I are obtained.

T'he actual enumeration of all possible types of intransitive sab-
group would be excessively laborious, and it is doubtful whether it
would serve any useful purpose; but the preceding analysis supplios
the means for determining directly whether a sub-group of any given
type actnally exists or not.

8. Oase II. p=1 (mod. 3).

I now go on to the case in which p =1 (mod. 3), in which the

congruence
#=1 (mod. p)

will lave three different real roots. These will be denoted by
1,6, 6.
The homogeneous group of determinant unity
(ax+by+cz, aw+dy+c, @’z + by +c"'z)
is no longer holohedrically isomorphous to the non-homogeneous group
.’U’E ;ftm+b/t+o.u! ’.’/' = a“l/+b1/+cu)
ao‘z+b"y+c a’z+b"y+z

for the three different homogeneous substitutions
[0 (aw+by+cz), 6 (dz+by+cs), 0 (a"e+b"y+d"2) ], r=1,23,
correspond to one and the same non-homogeheous substitution,

The sub-group (0=, 07y, 62), r=1,23,

of the homogencous group, being permutable with every one of its
substitutions, is a self-conjugate sub-group, and the homogeneous
group is meuheducal]y isomorphous to the non-homogeneous group,
in such a way that to the identical substitution of the latter corre-
sponds the above self-conjugate sub- -group of order 3 of the formor,
The ]1omogeneous group, moreover, contains no sub-group which is
holohedrieally isomorphous to the non- homogencous group. Foy, if
it did, of the three substitutions

(2, 0y, 0%,
(e, 6y, z),
e, vy, 62),
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one only would belong to the sub-group; but the two latter ave
obtained from the former by transforming it by (y, 2, 2) and (s, =, v).

It would, however, he most inconvenient to use the non-homo-
geneous forms throughout the following discussions, and there will
be no difficulty or confusion in still using the homogencous form with
the understanding that the substitutions

[B" (aaﬂ-b;l/-l—c)z), 0" (c'z+b'y+cz), 0" (a"z+ b"y+c"z)], r=1,23,
are not to be regarded as distinct.
This is the same as regarding the three sets of multipliers
Ay Ay Ay OA, OGN, BNy BN, 62N, O°A,
as equivalent; or,in other words, the three characteristic congruences

fA) =0, f(OA) =0, f(BA)=0

as cquivalent.

1t may be shown at once, precisely a8 in the former case, that any
two substitutions which hnve equivalent characteristic congruences
with unequal roots are conjugate to each other, and the reduction of
any substitution to a typical form may be carried out exactly asin
the former case.

1f, now, the charncteristic congruence has for its roots A, A?, A",
where A is a primitive root of

Ap’+h+1__ = 0’

which again will always be the case for some suitably chosen substi-
tution, this substitution in its typical form will be

E=N, =M, =N,
and its order m will be the least integer for which
A== A = AP,
In this case 3 is the only common factor of p—1 and p*+p+1, and
therefore the order of this substitution is 4 (p*+p+1). The order,

then, of every substitution whose characteristic congruence is irre-
ducible is 3 (p’+p+1) or a factor of this number.

If, uguih, p is a primitive root of the congruence

"""’—1_1 = 07
H 2
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there must be substitntions, whose characteristic congruences have
an irreducible quadratic factor, of the type

’

F=pé n=pnm, F=p00
The order = of such a substitution is the least integer for which
" f— P»p _— —u(pd)
¥

1
and this is 1 (p*—1). Tvery snbstitution, then, whose characteristic
congruence contains an irreducible quadratic factor has for its order
1 (p'—1) or a factor of this number.

Of the remaining types
(i) o' == ar, ¥ = a'y, 2 =a g
(ii) 2’ = aw, Y = ay, 7 =a?,
(iii) o
(iv) a’ ==, y=y+z =3,

l

-2

o, 1y = ay, 2'=a(y+2),

(v) 2’ ==, Y =yte, F=z+y,

where the coefficicnts ave real, the orders may be determined at onco
by inspection. Thns in (i) the order is equ'al to or a factor of p—1;
in (i1) equal to or a factor of } (p—1); in (iii) equa,l to or a factor
of Ip (p—1); in (iv) and (v) eqnwl to p.

Ienee the order of every substitution contained in the g oup muist
ba equal to or a factor of one of the numbers § (p*+p+1), 3 (p*—1),
9 (p—1), p, p—1, while, on the other hand, the group contains
substitutions whose orders nve actually equal to each one of these
numbers.  Also cvery substitution whose order is a factor of
V(P 4p+1) must be a power of a snbstitntion whose ovder is
1 (p*+p+1), and a similar property holds.'fot' a snbstitntion whose
order is a factor of L (p*—1) other than p—1 or ity factors.

The number of cyclical sub-groups of each type and their distri-
bution in conjugate sets may now be investigated.

Ovder % (PP +p+1).  lJxactly ag in the corresponding order of the
former ease, it may Dbe shown that a substitution S of order
3 (77 +p+1) is permutable only with its own powers, and thercefore

) . N . .
forms one of @ scb of ——"— —_ conjugate substitutions, where N
FOrprl) -

is the order of the main group:
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Now, the only powers of S which have equivalent multipliers with
S are S” and §*, and hence to cach set of Sub%titutions such as

N

t (g L)
conjugate substitutions. @ +ptD)

There are, therefore, in all %i-gﬂ—%—p +D-1 N such substitutions,
pP+p+l

whose orders are } (p* +p+1) ot one of its fmctms, and these form

8, 8™, 87, there corresponds such another set of

_Ti—?i-—l conjugate cyclical sub-groups of order j L(p'+p+1), eaclrof
b

which must therefore be contained self-con jugately in a sub-group of
order p + p+1

Order % (p*—1). Jxactly as in the corresponding order of the
previous case, it may again be shown here that there are ip 'ZV )
_conjugate cyclical sub-groups of order } (p*—1), cach bemg sclf-
conjugate in a group of order £ (p’—1); and that these sub-groups

contain in all —22 __ different substitutions whose orders are equal

2(p+1)
to or factors of } (p*—1) without at the same time being f‘mctom of
3 (p—-1).

Order § ('—p). By similar reasoning to that used in the former

>,czmse, it may be shown that there are ;}?(Elnv:i)’ conjugate cyclical
. sub-groups of order § (p’—p), so that each is contained self-conju-
gately in a sub-group of order }p (p—1)*; also that these sub-groups
contain _%7——1—5 N different substitutions, whose orders are neither
p nor % (p—1) nor one of its factors.

Orvder p. - For cyclical sab-groups of ordev jL avising from a sab-
stitution of the form
(m+z’ Y, 5)7

it may be shown by a slight modification of the former method of
proof that the main group conmtainy a single conjugate set of

m sub-grogps, so0 that each such sub-group is self-conjugate

in a group of order & (p—1)*p". 7These conjugate cyclical sub-groups
JN -
p'(p—1)

contuain in all different substitutions of ovder p.
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For cyclical sub-groups arising from a substitution of the form

(@+y, y+s, 2),
it will be found again, as before, that there is n single conjugate set
of —3N__ '
(p—1)p’
in a sub-group of order }(p—1)p’, while the whole set contain

in the main group, so that each is self-conjugate

3-1,\—7 different su.stitutions of ordér p.
7

Order p—1. It 18 no longer the casc here that every substitution
whose order is o factor of p—1 is the power of substitution whose
ovderis p—1. If, a being n primitive root mod. p, a, a’, «*"~" are the
multipliets of a snhstitntion, it is still & necessary condition in order
that the order of the substitution may be p—1 that the highest
common factor of » anil s shonld be relatively prime to p—1. But
this condition is not now suflicient, for, if the difference of » and » is

a multiple of 3, the order of the substitution is only ]L:——} , and it is

ensy to see that the substitution iy not the third power of a substitu-
tion of order p—1.

It is not diffien]t to modify the vesult of the previous case for the
number of conjugnte sets of cyclical sub-groups of order p—1, so as
to obtain the numbers of conjugate gety in this case of cyclical sub-
groups of orders p—1 and p—;_l, but the result is rather complicated,

and it will be replaced here by a determination of the numher of
conjugate sets of substitutions, and the number in cach set.

Vor this purpose, consider the congruence
By =1 (mod. p).

1t has (p—1)? different solutions; in three of which a, 8, ¥ are equal
to cach other, while in 3 (p—~4) of the remainder two only of the
three quantities a, B, y ave equal.  There are, therefore,

(p—l)"-f% (p—4)—3

solutions in which the thvee quantitics ave unequal, and thevefore,
allowing for the six permutations of a, fI, y among themselves, theve

e (p=1)'—3 (p—4)—3
e
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distinct sets of unequal multipliers of substitutions whose orders are
factors of p—1 in the homogeneous group. Of these the set 1, 6, 6% is
the only one which is equivalent to itself; «,8, v ; 6a, 68, 0y; 0%, 673,
6%y, being, as before defined, three equivalent sets of multipliers. The
number of equivalent sets of unequal multiplicrs, 7.e., the number
of sets of unequal multipliers, in the non-homogeneous group is
therefore

Ly ((=m3=0=8_y)
o 14 @=D=D),

Allowing for permutations among «, B, v, the 3 (p—4) solutions of
the above congruence in which two of the three quantities are equal

give p—4 sets of multipliers in the homogeneous group, and E;—‘L

sets of multipliers in the non-homogeneous group. To each of these
sets of multipliers corresponds a single conjugate set of substitutions.

Now, a substitution
(z, Oy, 62)

18 permutable with the group arising from
(az, by, e2), abe=1,
(g, =z =)
(=5 m o),

which generate in the homogeneous group a sub-group of order
6 (p—1)%, to which corresponds a sub-group of ovder 2 (p—1)* in
the non-homogencous group. - There is, thorefore, a conjugate set of

é-(»N iy substitutions with multiplicrs 1, 0, 6% Kvery other sub-

p—

stitution with 3 uncequal multipliers is permutable only with the group
(fm',. by, c¢z), abc = 1;

and therefore gives vise to n conjugate set of - N 1;5 substitutions

in the non-homogencous group. (-1

Tinally, o substitution (ex, ay, a%z)

is permutable in the homogeneous group, as in the former case, with
a sub-group of ovder p (p+1)(p—1)% andis therefore in the non-
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__.__1‘1_____

ip (p+1)(p—1)
Hence the total number of substltutlons in the group whose ozderq
are equal to or factors of p—1 is

N _ Np-8), Np-4

2-1 " 6(p=D) ' p(p+IG-D"
On adding together the numbers of substitutions of the different
types that have thus been obtained with an additional unity for the
identical substitution the sum will be found to be N, as it should be.

It is not necessary to go again through the discussion of sub-groups
containing substitutions of order p.

The result, exactly as in the former.case, is that a sub-group, con-
taining opemtions of order p, and neither contained in the sub‘-gloup
of order $p* (p—1)* (p+1) which keeps one symbol fixed, nor in the
isomorphous sub- gloup which interchanges the p*+p+1 symbols in
two transitive sets of p and p 41, must be transitive, while its order
_must be divisible by .

Now, it has been seen that every cyclical sub-group of order
1 (p +p+1) is contained self-conjugately in a sub- -group, of order
p'+p+1.  This sub-group is not, however, transitive in all the
symbols, but interchanges them: transitively in sets of 1 (p*+p+1)
each. Suppose now that a transitive: sub-group g ex1sts of order
1 (p*+p +1) m, containing cyclical sub-gloups of order 3 (p’+p+1).
Smce the sub-group is transitive, m must be divisible by 3, and the
group must contain either

F@+p+)=1}m or {3(p'+p+1)—1}im

substitutions displa,cing all the symbols, leaving over either. m or
m {2 (p+p+1)+1} 1} substitutions.

'[‘hc first supposition is clearly impossible, and the Jatter gives, as
in the former case,

homogeneous group one of a set of substitutions.

léi =1, mod}(F+p+1).

This again leads, according as m is or is not divisible by p, either to
m = Jp*

or m= (p—1)'(p+1),

and it may be again shown here that neither of the corresponding
types of group exists.
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The former reasoning may also be repeated to show that there can
be no transitive sub-group which contains substitutions of the orders
» and p, where p, p; are the two different prime factors of
3(p’+p+1), this number being supposed not to be a prime, without
containing substitutions of the order p, py; so that, finally, the group
containg in this case no transitive sub-groups. The possibility occurs
in this case of an intransitive sub-group containing substitutions of
order 3 (p'+p+1), but a consideration of the sets in which such a
substitution would displace the symbols immediately shows that no
such type can exist with the exception of the above mentioned sub-
groups of order p’+p-+1. The previous reasoning applies to all other
types of intransitive sub-group without modification, and leads to the
saume result, viz., that every intransitive sub-group, other than those
whose orders are equal to or factors of p’+p+1,is contained either
in the sub-group of order 1p*(p—1)*(p+1) that keeps one symbol
fixed, or in the isomorphous group that displaces the symbols in two
transitive sets of p* and p+1, or, finally, in thé sub-group of order
2 (p—1)’, arising from

[(y’ z %), (=¥ @, 'z), (az, by, cz)].
It may be noticed that tL. intransitive sub-group of the homo-
geneous group which keeps one symbol fixed contains a sub-group
of order 4p° (p—1)% (p+1), viz,,

(aw+by+cz, dx+by+cz c¢"z), (ab—ad)'=1, =]l

which, is- holohedrically 1somorphous with the corresponding- sub-
gxoup of the non- -homogeneous group.

9. On the Group G for p =2 and p =3.

When p = 2, the order of the main group is 168. The ouly
simple group of this order is the known group of the modular equation
for transformation of the .seventh order of elliptic functions; so that
this case does not require separate discussion.

It may be noticed that the sub-group of order p° or 8 in this case
contains substitutions of order p* or 4, whereas in all other cases the
substitutions of the.sub-groups of order p® ave all of order p.

When p = 3, the order of the main group is 5616 or 13.3% 2%, A
consideration of the multipliers of a substitution of order 13 shows,
as before, that every cyclical sub-group of this. order is contained
self-conjugately in a sub-group of order 39. If, now, there were any
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other sub-groups containing substitutions of order 13, and therefore
of order 13m, either m or "-g— must, by Sylow’s theorem, be congruent

to unity mod. 13. But the only factors of 3°. 2* which are congruent
to unity mod. 13 are 3* and 3*. 2. Now sub-groups of orders 13.3*
and 13, 3%. 2%, if they existed, would be transitive in 13 symbols, and
would at the same time contain 12.3° and 12.3%. 2* substitutions
respectively of order 13; but this is impossible. The only transitive
sub-groups, therefore, are those of orders 13 and 39.

The intransitive sub-groups, finally, will come under the same
three hends as in the two general cases already discussed.

Thursday, January 10th, 1895.
Major MACMAHON, R.A,, F.R.S., President, in the Chair.

Mr., Ernest Frederick John Love, M.A., Queen’s College, Carlton,
Melbourne, Victoria, was elected a member, and Mr. J. H. Hooker
was admitted into the Socicty. :

The Chairman gave n short obituary nccount of Mr. A. Cowper
Ranymed’s work and connexion with the Society.

The following contmunieations were made :—

On Fundamental Systems for Algebraic Functions: Mr. H. F.
Baker.

On the Txpansion of Tunctions : Mr, 1. T. Dixon.

Some Propertics of a Generalized Brocnrd Circle: Mr. J.
Griffiths.

Xleetrical Distribution on I'wo lutevsecting Spheres : Mr. H. M.
Macdouald. ‘

The Dynamics of a Top: Prof. Greenhill..

"The following presents were reeeived :—

““ Calendar of Queen’s Collego, Cork,”” 1894-5; Cork, 1894.

¢ Journal of the Institute of Actuaries,” Vol. xxxr., Pt. 5 ; October, 1894.

¢ Bulletin of the American Mathenatical Society,’’ 2nd Scrlen Vol. 1., No. 3;
New York, 1894,

Issaly, M. PAbDhé.—¢ Optique G m)mctnquc, pamphlet, 8vo; Bordeaux.

¢ Berichte iiber dic Verhandlungen der Koniglich Siichsischen Gescllschaft der
Wissenschaften zn Leipzig,’” 1., 1894,
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¢¢ Memoirs and Proceedings of the Munchester Literary and Philosophical Sooiety,’*
Vol. vur., No. 4.

¢ Bulletin des Sciences Mathématiques,’ Tome xviir., December, 1894 ; Paris.

¢ Bullotin de 1a Société Mathématique de France,” Tome xx1r., No. 9.

‘¢ Rendiconti del Circolo Matematico di Palermo,”” Tomo vir., Fusc, 6 ; Nov.-
Dec., 1894.

¢ Atti della Reule Accademia dei Lincei—Rendiconti,’”” 2 Sem., Vol. 11, Fasc.
10; Roma, 1894,

¢ Educational Timos,”’ January, 1895.

*¢ Annals of Mathematics,’’ Vol, 1x., No, 1 ; November, 1894, Virginia.

¢ Indian Engineoring,’’ Vol. xvr., Nos. 21-24 ; Nov, 24-Dec. 15, 1894.

A bound volume of letters from Prof. De Morgan and his son G. C. De Morgan,
to A. C. Ranyard, bearing upon the foundation of The London Mathematical
Sooiety, and a letter from Mrs. De Morgan.

Tracts by Professor De Morgan :—
i, ¢ On the Mode of using the Signs + and — in Plane Geometry.”
ii. (i. continued) * and on the Interprotation of the Equation of a Curve,”
iii, ¢‘ On the word *Apifuds."”
iv., ¢ On a Property of Mr. Gompertz's Law of Mortality.'’
v. ** Remark on Horner's Method of Solving Equations.’
vi, ¢ Contents of the Correspondence of Scientific Men of the Seventeenth
Century."’
vii. ‘*On Ancient and Modern Usage in Reckoning.”
viii, ¢ On the Difficulty of Correct Description of Books."’
ix. *“Oun the Progress of the Doctrine of the Earth’s Motion, between the:
times of Copernicus and Galileo."’
x. ‘‘On the Early History of Infinitesimals in England.”

These two volumes were left by will, by Mr, Ranyard, for the acceptance of the
Council.

On Fundamental Systems for Algebraic Functions. By H. T.
Bakgr. Read January 10th, 1895, Received, in abbreviated
form, 18th February, 1895,

In u note which has appearved in the Math. Annal., Vol. xrv,, p. 118,
it is vorified that certain forms for Riemann’s integrals, given by
Herr Hensel for integrals of the fivst kind, and deduced by him
algebruically from quite fundamental cousiderations, can be very
briefly obtained on the basis of Riemaun’s theory. But o desive to
dispense with the homogeneous variables used by Hewr Hensel has
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