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Small Oscillations to any Degree of Approximation.
By E. J. ROUTH, F.R.S.

[Head June Uth, 1874.]

In discussing the small oscillations of a dynamical system, we are
usually content to reject the squares of all small quantities. It is clear,
however, that in many cases the terms of the higher orders may rise in
importance, and may even alter the period of the principal oscillation.
It is proposed to investigate an easy method of, determining the oscil-
lation of a heavy body moving in any manner with one independent
motion to any degree of approximation. This we shall do, first, for any
small oscillation in two dimensions; and, secondly, for an oscillation in
three dimensions about a fixed point.

Let P be the instantaneous centre of rotation at the time tt AP its
path in space, A'P in the body. Then the
motion may be constructed by making the
curve A'P, fixed in the body, roll without slid-
ing on the curve AP fixed in space. Let
AP = A'P = 8. Let Q be the centre of gravity
of the body GP = r. Let ^ be the angle GP
makes with the vertical,. n the angle it makes
with the normal, to the curves AP, A'P at P.
Let 0 be the angle any straight ]ine fixed in the
body makes with a straight line fixed in space,
«c the radius of gyration of the body about the
centre of gravity.

Taking moments in the usual way about the instantaneous centre of
rotation considered as a moving point, the equation of motion is

£ ? + rz sin n ( ^ ) = gr sin *.

The method of proceeding is as follows :—To solvo the equation, we
must expand each coefficient by Taylor's theorem in powers of 0, which
is to bo so chosen as to vanish in the position of equilibrium. To do
this we require the successive differentials of the coefficients to any
order expressed in terms of the initial values only of \p, n, and r. We
find by inspection of the figure

Ie = l-Z cos n

dn _ /cos 11 __ 1 \
dd~Z\ r 7/'
dr
dd = z sin ft,
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- = - + - , * = - ,
z p p " dd'

where p is the radius of curvature of A'P, and p of AP at P, and are
both supposed to be given functions of s. All that is necessary is to
difierentiate each coefficient in the differential equation, and to substi-
tute in the result from these equations the values of - ^ , -jr, —, as

au do av
they enter. In equilibrium, G-P is vertical; hence the initial value of
^ is zero. Let the initial or equilibrium values of n and r be a and h.
These equations we shall refer to as " the subsidiary equations."

To solve the equation to the first order.—We have

(*•+*•) # = * '«*»*•

We have only to calculate r sin \f/ to the first power of 61,

r sin \p = — (r sin »//) 0
da

= j sin n sin ^ + r cos \p ( J Y zd

— {r cos \}/ — z cos ($—ri) \ 6.

Hence the equation of motion is
d?d , z cos a — h Q _ A

dtl + /^ + /2 ~

To solve the equation to the second ordey.—We have just found

-r-n (r sin \b) = r cos >/* — z cos (\js—n).
do

We must differentiate this, and retain only the terms which do not
vanish when \f* = 0. Wo get

d l . n .
a f . i % 2 \ z t sin 2a. sin a

Hence the equation of motion to the second order is

\lc2 + lvs + 2hz sin a0{ — + hz sin a ((— )
at \dt I

d-
, T x a , » C z . sin 2a sin a ) 03

= —(z cos a—h) gB + gz' ] z cos a -=- H — \ —.

C rfs h p ) 2

This is the same as - - -f- a20 = — Z»2 [ — j + c02,

i a z cos a—h
where a* = —-^—JJ- g,

j-> _ hz sin a
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a— . n '

z , sin 2a sin a

Supposing a not to vanish, we find

6 = A sin (at+B) + c-^? Aa + C-±^LV cos 2(a*+B),
iiOi Oft

so that the first approximation is substantially correct unless a be
small, i.e. unless the equilibrium be nearly neutral. The effect of the
small terms is to make the extent of the oscillation on the lower side
of the position of equilibrium greater than that on the upper side.

To solve the equation to the third order.—We have now to differentiate
again the expressions obtained in the last approximation. The process
is very easy, but the result is long. If we suppose that w = 0 in the
position of equilibrium, the equation takes the form

where e8,/,/ ' are functions of h, p, p obtained by the above process.
It is obvious that one effect of these additional terms is to alter the
period of the oscillation. The principal term is now

6 = Asin(a'/

When other forces besides gravity act on the body, the problem may
be treated in the same way. Thus, suppose the body acted on by a
central force which passes through the centre of gravity and some
point fixed in space. A very Blight modification of the subsidiary
equations already written down will enable us to determine the oscil-
lations to any order.

When the oscillation takes place in three dimensions about a fixed
point with only one independent motion, we may represent the geo-
metrical constraints by supposing the body to be attached to a cone
without inertia which is constrained to roll on another cone fixed in
space. These cones are the surfaces generated in the body and in
space by the instantaneous axis. The problem is now reduced to the
following simpler form:

To determine to any degree of approximation the oscillations of a heavy
conical body on a fixed rough conical surface, the vertices heing coincident.

Let I be the moment of inertia of the cone about the instantaneous
axis, O the angular velocity of the body, N the moment of the forces
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about the instantaneous axis

Vis Viva, we have
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is. Then, by differentiating the equation of
/7O /7T

Let the vertex 0 of the cones be the centre of a sphere of unit
radius. Let the instantaneous axis cut this sphere in A, the line join-
ing 0 to the centre of gravity cut it in G, and the vertical OV cut it in
V. Let 00 , OC be axes of right circular oones osculating the given
cones along the instantaneous axis. Let OA' be the generating line of
the moving cone which will coincide with OB and be the instantaneous
axis at time t+dt. Let the arcs CA, C'A be p, p. Let the angle AOA'

i. J i.i_ >i n J n sin (p+p') da
be d8 i then we easily find O = -—v r . ••, -jr.

sin p sin p at
Let 7t be the distance of the centre of gravity
from the vertex. Let the arcs GA = r,
VA = z, zGAC = w, ZVA0 = ^. Then we
have N = —gh sin r sin z sin («—<//).
In equilibrium this vanishes when n = \p.

To form the equation of motion to any de-
gree of approximation, we must expand this
in powers of 8 by Taylor's theorem. To ac-
complish this, we must, as before, find -r-, -=-,

as as
&c, in terms of r, n, &c, so that each differ-
ential coefficient may be expressed only in
terms of the initial values of the quantities.

These subsidiary equations are easily seen to bedr .
— = sin n,
as

dn

dz .
— = sin
as

dn , .— = cot r cos n — cot
(t8

-^ = cot z cos
ds

+ cot p\r

where CA=p, CA=p'.
To solve the equation to the first order.—The equation is

T sin (p+p) d?8 , . . . f ,v
1 -:—i—-.—l, -rr:=—gh sin r sin z sin (n—w).

sinp snip dtl

To expand the right side in powers of s, we differentiate it and substi-
tute from the above subsidiary equations for all differential coefficients
as they arise. In equilibrium n — \b'} hence, as we have to substitute
for all the letters their initial values, we need only differentiate the
last term. We get therefore
N = — gh sinr sinz cos(n— ^) j (cot r -cotz) cosn-(cotp + cotp')} «.
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Hence I - r | = — gh ] sin (z—r) cos n Bra p, S l n (* —Bin r sin « { s;
dr (. sin (p+p) )

therefore, if L be the length of the equivalent pendulum,
I • / \ sin p sin p

xr = sin (z—r) cos n ——7 £ — sin r sin 0.
7iL sin (p+p)

Jfyr the next approximation, let us suppose the rolling body to be a
right cone on the summit of another right cone. "We then require to
include the cubes of small quantities. By an easy process of differen-
tiation we find the equation becomes

— ~ — — sin2P sin z sin(p'+g) , p Bin p sin (p' + z) £
gh dt2 s in(p+/ / ) ' sin2 z sin2 p' sin {p+p') ' 6 '

where P = sin p sina(p'+z) + sin p sin8 p — 3 sin (p'+z) cos p sin p' sin z.

The effect of this latter term on the period of the principal term may
be easily found.

Inversion, with special reference to the Inversion of an Anchor Ring
or Torus. By H. M. TAYLOR, M.A.

[Read April 9th, 1874]

We premise that a straight line inverts into a circle passing through
the pole, and vice versa; that a circle inverts into a circle, the two
circles being subcontrary sections of a cone of the second degree pass-
ing through the pole; and that the angles between lines and surfaces
at their points of intersection are the same as the angles between the
inverse lines and surfaces at the inverse points.

A normal is a straight line cutting a curve or a surface at right
angles ; it will therefore invert into a circle through the pole cutting
the inverse curve or surface at the inverse point at right angles. Such
a circle we will call a normal circle.

We will now prove that, if two normals at
any two points of a surface intersect and be
equal, the normals at the inverse points of
the inverse surface also will intersect and
be equal.

Let S be the pole, and let PN, QN, the normals to a surface at
P, Q, bo equal and intersect in N.

If we draw a circle to touch PN at P and pass through S, this will
cut SN in a point L such that NL. NS = NPa; and because NP, NQ
are equal, the circlo touching QN at Q and passing through S will pass


