
z

linktype.iaa.uni-jena.de/atomic

Motivation
● A number of annotation tools have been developed in linguistics in 

the past (e.g., Synpathy, RSTTool, MMAX2, etc.), usually within 
research projects, for a specific research question, or a specific 
annotation type (e.g., syntactic annotations, coreference chains)

● Development is often discontinued after the respective research 
project duration, which decreases the tools' usability over time

● In order to achieve a higher degree of re-usability and 
sustainability of tools, they must be extensible, generic, and 
compatible with other software

➔ Extensibility ensures that new functionality (e.g., editors) can 
be added to an existing tool, so that it can be employed for use 
cases not envisioned by its original creators
➔ Genericity allows for use of the tool for annotation types 
beyond its original scope, as well as across linguistic theories
➔ Compatibility secures the re-usability of a tool's output, as well 
as the ability to re-use other (legacy) tools' output as input 

Atomic
● We are developing Atomic (Druskat et al., 2014; open source under 

the Apache License, Version 2.0) as both a standalone multi-level 
annotation tool and an adaptable tooling platform around the core 
specifications of extensibility, genericity, and compatibility

Atomic: An annotation platform to meet the 
demands of current and future research

37. Jahrestagung der Deutschen Gesellschaft für Sprachwissenschaft - Sektion CL, Leipzig, 03.-06. März 2015

Extensibility
● Atomic is built on top of the Eclipse Rich Client Platform (RCP, 

McAffer et al., 2010), a well-established open-source Java 
application platform which operates on sets of plugins

● Atomic itself is a set of plugins, integrating with the Eclipse RCP
● Atomic provides extension points (currently for editors and NLP 

components) and a Java API
● Third parties can easily extend Atomic by creating new plugins, 

and connecting them with Atomic via the provided extension 
points (Eclipse plugin creation is well-documented, and 
additionally a large number of tutorials are available)

● Using these extension mechanisms you can easily write or 
wrap, e.g., a dependency parser, a morphological analyser, a 
syntax editor, or an editor for the annotation of historical 
corpora, and integrate it into Atomic

● Eclipse is tried and tested technology and is supported by a 
large community, making it a sustainable base for an 
extensible annotation tool

● Atomic can furthermore make use of the wide range of already 
existing third-party plugins, e.g.:

● XML, TeX and R editors
● version control system interfaces (SVN, Git, etc.: Using a 
version control system enables collaborative annotation as 
well as providing change management for corpora)
● distributed real-time collaboration, etc.

References
● Druskat, S., L. Bierkandt, V. Gast, C. Rzymski & F. Zipser (2014). Atomic: an open-source 

software platform for multi-level corpus annotation. In J. Ruppenhofer & G. Faaß (eds.): 
Proceedings of the 12th edition of the KONVENS conference, October 2014 (pp. 228–234).

● McAffer, J., J.-M. Lemieux & C. Aniszczyk (2010). Eclipse Rich Client Platform. 2nd edn. 
Addison-Wesley, Boston.

● Zipser F. & L. Romary (2010). A model oriented approach to the mapping of annotation 
formats using standards. In: Proceedings of the Workshop on Language Resource and 
Language Technology Standards, LREC 2010. Malta.

● Zipser F., A. Zeldes, J. Ritz, L. Romary & U. Leser (2011). Pepper: Handling a multiverse of 
formats. 33. Jahrestagung der Deutschen Gesellschaft für Sprachwissenschaft. Göttingen, 
23.- 25. Februar 2011.

Stephan Druskat1,2, Volker Gast2
1Humboldt-Universität zu Berlin, Institut für deutsche Sprache und Linguistik

2Friedrich-Schiller-Universität Jena, Institut für Anglistik und Amerikanistik

Generic data model
● Atomic works on instances of Salt (Zipser & Romary, 2010), a 
graph-based, theory-neutral, and semantic-free metamodel for 
linguistic data

● In Salt, nearly all conceivable kinds of linguistic structures can be 
modelled as nodes and edges: Tokens, spans, hierarchies and 
primary texts are represented as nodes, which can be connected 
by an unlimited number of edges to permit the creation of very 
diverse types of structures

● The data abstraction via Salt and the inclusion of a generic, graph-
based editor working on Salt document graphs enable Atomic to 
handle potentially all types of annotations

Compatibility with other tools
● In order to establish compatibility with other software, Atomic 
includes the Pepper universal format conversion framework (Zipser 
et al., 2011)

● Pepper follows an intermediate model approach, with the Salt 
meta-model as the intermediate model, and importers and 
exporters for different formats

● Atomic virtually hooks into the Pepper conversion workflow, in that 
it works on the intermediate model

● Pepper provides Atomic with compatibility to formats such as 
EXMARaLDA, TigerXML, tiger2, PAULA, MMAX2, TCF, the ANNIS 
format, and many more, from which and into which Atomic can 
import and export

Outlook
● Following feedback and optimization iterations, we plan to 

enhance Atomic's compatibility by consolidating and 
completing the integration of the latest Pepper import and 
export modules, as well as upgrading to the latest API

● Furthermore, and in order to increase the platform's 
extensibility, we plan to open Atomic's native annotation 
language AtomicAL (cf. Druskat et al., 2014) for extensions 
(“dialects”) that can be used with new editor types

● Additionally, we will implement further (prototypical) editors for 
specific annotation types to address a larger portion of the 
linguistic community


