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ON THE UNIFOKM CONVERGENCE OF FOURIER'S SERIES

Bij E . W. HOBSON.

[Received and Read January 10th, 1907.].

THE definition of an integral introduced by Lebesgue has led to
a notable increase in the scope of Fourier's series. A Fourier's series
corresponding to a function f(x) defined in the interval (—ir, -n) may be
said to exist, whenever the coefficients have a definite meaning, in-
dependency of any question as to the convergence of the series. A large
class of functions are integrable in accordance with Lebesgue's definition
which are not integrable in accordance with the definition of Riemann.
For such functions the Fourier's coefficients exist, if the integrals by
which they are expressed are interpreted as Lebesgue's integrals. In-
vestigations relating to this extended class of Fourier's series have been
carried out by Lebesgue.* Every summable limited function has a Lebesgue
integral, and also some summable functions which are not limited.
The latter integrals are always absolutely convergent, in the sense that
the absolute values of the functions are also infcegrable. I have elsewhere
shewn that the Lebesgue definition of such an integral is in agreement
with the older definitions in cases when those definitions are all applicable.
The only integrals which are not covered by Lebesgue's definition are
those which are non-absolutely convergent improper integrals. A series
in which the coefficients are expressed by such integrals, Lebesgue has
proposed to call " generalized Fourier's series." Very little is known
about such series, and they will not be referred to in the present com-
munication, which is concerned with the class of Fourier's series in which
the coefficients are expressed by Lebesgue integrals, the function employed
being either limited or unlimited. Many of the older investigations
connected with the theory of Fourier's series were directed to obtaining
sufficient conditions for the convergence of the series at a particular point.

* His investigations are contained in two memoirs : " Sur lea series trigonometriques," in
the Annales So. de V Ecolc Nor male, Ser. 3, Vol. xx. , 1903 ; and " Sur la convergence des series
de Fourier," Math. Annalen, Vol. LXIV., 1905 ; also in the work Legons sur les series trigonotne'triqttes,
1906.
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Later investigations were concerned with conditions that the series might
converge uniformly in a whole interval contained in the interval (—TT, IT).
The present communication is concerned with the latter question, the
function to be represented being taken to possess a Lebesgue integral,
but not necessarily a Riemann integral, in the interval (—ir, ir). A theorem
of a general character has been established in § 2, and the detailed results
are deduced from this theorem. It seems not unlikely that this theorem
might prove useful in other investigations of a similar character in which
the series are not trigonometrical ones, but involve other kinds of periodic
functions.

1. The following theorem relating to linear sets of points will be
required :—

Let G be a measurable set of points contained in an interval (a, b),
and let the set G be enclosed in the interiors of linear intervals forming
a finite, or enumerably infinite, set H of non-overlapping intervals, such
that m(H)—m(G) = y, where r\ is a positive number. If (c, d) be any
sub-interval whatever, contained in (a, b), and if Glt H1 be the parts of
G and of H contained in (c, d), then

miHJ—miGJ < r,.

The term " measurable " is here used in the sense defined by Lebesgue,
and the measure of a set G is denoted by m(G).

To prove the theorem, let us assume that, if possible,

m{H^—??i(G]) = y+a

where u is some positive number. Let the points of Gx be enclosed in
the interiors of non-overlapping intervals all contained in (c, d), and
forming a set H2, such that m{H^j < mCG -̂f-a ; this is possible, since
Gx is a measurable set. We have then m(HJ < m{H^—n. Now consider
the set of intervals H which consists, in (c, d), of the set H2, and in the
parts of (a, b) not interior to (c, d) of the same intervals that belong to
the set H.

We have then

m(H) = m{H)—vi(HJ+m(HJ < m(H)-n < m(G).

It has thus been shewn that the set G can be enclosed in a set H
of intervals, such that m{H) < m{G); but this is impossible, and hence
no such positive number as a can exist. Therefore m{Hi)—m{G^ ^ »/.
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2. Let f(x) be a summable function, either limited or unlimited,
denned for the interval (—IT, IT). In case f(x) be unlimited, it will be

assumed to be such that the absolutely convergent integral I f(x)dx
^ —w

exists in accordance with Lebesgue's definition. The Fourier's series
corresponding to f(x) then exists in the sense that the coefficients in
the series all have a definite meaning.

Now let the definition of f(x) be extended so as to apply to values
of x lying outside the interval (—ir, it). This extension we make by
taking f(x) to be a periodic function of x, of period 2-7T, except that fiir),
/(—7r) may have different values, in which case it is immaterial what
values we assign to /(27r),/(—2TT), f(Sir), /(—3TT),

The following general theorem will now be established :—

The function fix) being of the character above described, each of the
("0 52U

four integrals \ f ix-¥1z) \{z) mzdz, taken through any interval (a, /3)
j a cos

such that 0 ^ a < (3 <^ ^x, converges to the limit zero, as the integer
m is increased indefinitely, uniformly for all values of x contained in the
interval ( — ir, ir); the function xC?) being any function loith limited total
fluctuation (a variation bornee).

More generally, sin mz or cos mz may be replaced by <f>(?nz), where <p(z)
is any limited summable function of which the integral, taken through
any finite interval whatever, is less, in absolute magnitude, than some
fixed finite number independent of the particular interval.

First, it will be assumed that f(x) is a limited function. It is sufficient

to consider the case of the integral I f(x-\-Zz)x(z) sin mzdz; the proof
Jo

in the case of the other three integrals being precisely similar. Also
the substitution of <f>{mz) for sin mz makes no essential difference in
the proof.

Let U and L denote the upper and the lower limits of f\x-\-1z), for
all the values of x in the interval (—ir, IT), and for all values of z in the
interval (a, /3). Let the interval (L, U) be divided into^? portions

where c0 = L, cp= U, and cq—cq-\ < e, for every value of g.
Let the function f^x+iz) be defined as follows :—For those values

of x+2z for which c0 < / ( a ; + 2 ^ ) < Cj, let fl(x+<2.z) = c0; for those
values of x+2z for which cx ̂ .f(x-\-2,z) < c2, let /1(x+2z) = c1; and
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generally let f1(x-\-2z) = rg_i for those values of x+2z for which

cq.

For any particular value of x, it may, for example, happen that there are
no values of z such that co^.f{x-\-2z)<c1: in that case there are no
values of z, with the given value of x, for which /1(#+2,z) = c0.

We have

I P P3

I f(x+2z)x(z) sin mzdz—\ fx{x-\-2z) x(z) sin < e(/3-a)X

where x is the upper limit of \x(z)\ in the interval (a, /3); and this holds
for all values of x and of m.

The integral I f1(x-j-2z)x(^)sin7)izdz is equal to
Ja.

sin mzdz

where e,t is that set of points 2-at which cq <;/(#+2s) < c(/_i; this set
eq depending upon the value of x.

In the interval (—2-rr, 2-n) of the variable x, let Eq be that set of
points at each of which cq ^.f(x) < cq+\. Let the set Eq be enclosed
in a finite, or enumerably infinite, set Hq of non-overlapping intervals
such that m{Hq)—m{Eq) — r\. For any fixed value of x, the set eq con-
sists of that part of Eq which lies in the interval (x+2a, x+2/3) contained
in (—27r, 27r). In accordance with the theorem of § 1, the set of intervals
Fq which consists of that part of Hq which lies in (z+2a, x+2/3) is such
that vi{Fq)—m{e,) ^ 1/. It is to be observed that the number r\ is
independent of the value of x.

We have also

1 x(z) sin vizdz— 1
I Jea JF

<

Let now the intervals of Hq be arranged in diminishing order of
length, and let them be denoted by ylf y2» 73> If re+2a or £+2/3
be contained inside an interval of H,,, we divide that interval into two
parts with different indices, each ending at z+2a or z+2/3.

We may choose r so that m(Hq) — (yi+y2+---+yr) <C >;• Of the
intervals ylf y2, y3, ..., let those which fall in (x+2a, a;+2/3) be
y«!» y«..» y«3» ••• where Sx-K s2<is3 . . . ; and let st be the greatest of these
indices which does not exceed r. We have then y*t+1+ys^2~l~--- ^ ^ an(^
m{Fq) — (y»1+V*s+---+ys<) < >? ; or, denoting by Dq the finite set of
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intervals y$l, ys>, ..., y v we have m{Fr) — i?i(Dq)<ti. The number of
intervals in the set Dq cannot exceed the number r, which is independent
of the value of x.

We now have

s i n mzdz—\ x(z) s u l mzdz < IX-

The function x(z) being a function with limited total fluctuation in the
interval (a, /3), it may be expressed as the difference xi(z)~Xi(z) °i t w 0

functions Xi^)* Xa(2)> each of which is monotone throughout the interval
(a, ft.

The integral I x(^) s n i mzdz, taken through an interval fa, X), may by

means of the second mean-value theorem be expressed as

ff fA • ff< • fA

Xifa) \ sin mzdz-\-xivv \ sin mzdz—X2O01) 1 sin mzdz—X2W j sin vizdz

where £ £' are two numbers in the interval fa, X). We thus see that

v 4 - -
x(z) sin mzdz < — (X1+X2)

pi m

where xi> Xa a r e *^e upper limits of Xi(*)> XtM m (a» P)> ^ e interval fa, X>
being supposed to be contained in (a, (3).

We have now

x(z) sin mzdz

where t is the number of intervals in Dq, and cannot exceed the number >•.
Combining the inequalities which have been obtained, we find that

e(/3-a)X+ (2^+ ^ x'

where x ' = X1+X2 '> &u& ^ s holds for every value of x in (—TT, tr). Let
us now choose arbitrarily a positive number f; we can then choose e so
so that e(/3—a)x < K ' Having fixed e accordingly, and consequently the

numbers c0, cv ..., cq, we next choose v so that Zxi , ? 0
 c>/ < J i > t l i e

number /• is then fixed. We can now choose a value mx of in such that

$ x1,5.
for ??i
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It has now been shewn that, having given a positive number £,
arbitrarily small, a number ml can be so determined that

II / («+2s) x (z) sin mz dz <

for m > mlt and for all values of a; in the interval (—x, x). It has
therefore been shewn that, when f(x) is a limited summable function,

I f{x-\-2z)x(z) eiumzdz

converges to the limit zero, as m is indefinitely increased, uniformly for
all values of x in the interval (—x, x), and consequently also for all
values of x in any interval (a, b) contained in (—x, x).

Next, let f(x) be no longer limited, but still integrable in accordance
with Lebesgue's definition.

If £ be an arbitrarily small positive number, a positive number N
can be so determined that

the integral being taken over that set of points KN in the interval
(—2TT, 2TT), for each of which \f(x)\ > N. If kN be that part of KK

which lies in the interval (2:+2a, x+2/3), for any fixed value of x
belonging to the interval (—x, x), we have, a fortiori,

f \f(x)\dx<Ulx-

Let the function f2(x-\-2z) be defined by the specifications

f2(x+2z) = f(x + 2z), if |/(H-2«) | < N,
and f2(x + 2z) = 0, if \f(x + 2z)\ > N.

Thus /2(x+2^) vanishes at all the points of the set kN, and it is a limited
summable function.

We have now

I / (x + 1z) x (<?) sin m.z ̂ 2
Jo

f C3

= 1 / (x + 2-z) x (2) sin wwr ̂ 2 + / 2 (x+2^) x (^ sin mz dz.
Jky Ja

By the first part of the -theorem, we see that a value ml of m can be
determined so that 1 ™

\\ fa (x+2;?) x (z) sin mz dz
for m ^ mlt and for all values of x in (—x, x).
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Also 1 / (x+2s) x (z) sin mz dz
I J kfj

hence we have shewn that

sin mzdz

provided m ^ ?%, for all values of x in (—x, 7r). The theorem has
therefore been completely established.

3. Some particular cases of the general theorem established in § 2
will now bo considered.

(1) If we consider only the single point x = 0, we see that, for a = 0,
ft = £ T , and taking xO?) = 1> the integrals

Civ g in P*7 ,. sin
JO JQ

both converge to the limit zero as m is indefinitely increased. Changing
f(2z) into f(z), we see that, if m = 2rc,

/" (z) nz dz_V
J cos

converges to zero as n is indefinitely increased. The following theorem,
which has been proved by Lebesgue, is therefore obtained:—

If f(x) be any summable function, which, if unlimited, still possesses
a Lebesgue integral, the coefficients in the corresponding Fourier's series
converge to zero as the integer n is indefinitely increased.

(2) It is well known that the condition of convergence of a Fourier's
series at a point x where f(x) has an ordinary discontinuity, or is
continuous, is that

dz
sin z

should converge to zero, as the odd integer m is indefinitely increased.
Let /3 = ^7r, and let xO*) = cosec z, which is of limited fluctuation

in the interval (a, ^7r), if 0 < a. We see then that, if (a, b) be an
interval for x in which f(x) is limited, and be also such that f(a—0),
/ (6+0) are finite, then

/0c-o)] 5^£ dz

sin *

converges uniformly to zero in the interval (a, b) of x.
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For, by the theorem, the two integrals

(-* * / i r» N sin mz , ("*"" £, n x sin mz ,f(x+2z) —: dz, f{x—Zz)—. dz

o
 J sin * )a

 J sin *
converge uniformly to zero in (—ir, x) and therefore in (a, b); also

is less for all values of x in {a, b) than some fixed finite number, and
(•*» sin m-? dz converges to the limit zero. We therefore see that, in order
Ja sin* 5

that a Fourier's series may converge uniformly in an interval {a, b) con-
tained in (—7r, 7r), it is sufficient that the function be continuous in (a, b),
including the end-points, and that, for any arbitrarily small value of the
positive number a, the integral

f {fx + 2z)+f(x-2e)-2fix)\
Jo sin z

should converge to the limit zero, as m is indefinitely increased, uniformly
for all values of x in (a, b).

In this integral, the only functional values of f(x) that are involved
are those in the interval (a—a, b-\-a), provided the values of x in the
integrand are confined to those in the interval (a, b). It thus appears
that the question whether the Fourier's series converges uniformly in
(a, b) depends only upon the nature of the function in the interval
(a—a, b-\-a) which contains (a, b); and the number a is arbitrarily small.
We have therefore obtained the following theorem :—

If {a, b) be any interval contained in (—ir, ir), such that f(x) is
continuous in (a, b), including the end-points a and b, then the answer to
the question whether the Fourier's series converges uniformly in (a, b),
or not, depends only upon the nature of the function f(x) in an interval
(a', b') which includes {a, b) in its interior and exceeds it in length by
an arbitrarily small number. The function f(x) may be of any character
in the part of (—TT, IT) outside (a', 6'), subject only to its having a
Lebesgue integral in (— ir, ir).

This theorem contains, for the theory of uniform convergence, the
parallel to the theorem relating to the convergence of the series at a single
point, viz., that the convergence or non-convergence of the series at
a single point depends only on the nature of the function in an arbitrarily
small neighbourhood of that point; being independent of the nature of
the function outside that neighbourhood, subject only to the existence
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of the coefficients of the series. This latter theorem was proved by
Kiemann, for the case of functions satisfying his condition of integrability,
and has been proved by Lebesgue for the case of all summable functions
which are integrable in accordance with his definition of integrability.
This theorem of Lebesgue is the particular case of the theorem here
given, which arises when the interval (a, b) is reduced to a single point x.

(8) It is known that, if a function be of limited total fluctuation in
(—7r, 7r), then the corresponding Fourier's series is uniformly convergent
in any interval (a, b) which does not contain, either in its interior or at
its ends, any point of discontinuity of the function. By applying the
theorem obtained in (2), we now obtain the following theorem :—

The function f(x) being summable, and, if unlimited, also integrable,
in accordance with Lebesgue''s definition ; if (a1, b') be any interval
contained in (—ir, ir), such that f{x) is of limited total fluctuation in
(a', b'), then the Fourier's series corresponding to f(x) converges uniformly
in any interval (a, b), contained in (a', b'), and such that f(x) is con-
tinuous in (a, b), including the end-points.

(4) Let the function x(z) De defined by

x(0) = 0 and x(*) = =—>
*• z s i n z

for z > 0 ; also let a = 0, /3 = n < ^TT ; then we see that

sin mz dz
sin z

converges uniformly to zero, as m is indefinitely increased, in any interval
(a, b) in which f(x) is limited. It thus appears that, if

T [f(x+2z)+f(x-2z)-2f(x)]^^dz
Jo sin z

converges uniformly in (a, b), so also does

-2z) —2f(x) dz.

Therefore, the condition of uniform convergence of the series in an
interval (a, b), in which the function is continuous, including the end-
points a and b, is that

f [f(
• J o

x+2*)+/(z-2*)-2/(aO] ^^ dz
z

should converge uniformly to zero in the interval.
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The numb. • may be taken to be arbitrarily small; in fact, in
accordance wici. t theorem of § 2, if 0 < fix < /x, the integral

z)+f(x-2z)-2f(x)] Hifî f dz
z

converges to zero, as m is indefinitely increased, uniformly in (a, b).

4. We proceed to investigate sufficient conditions for the uniform
convergence of the Fourier's series in an interval (a, b) in which the
function f(x) is continuous.

Writing F(z) = f {x+1z)+f {x — 1z) — 2/(rr), we express the integral

F(z)
sin mz dz

o zI
r f2<r/»l f3ir/w r4ir/ni (>

in the form + + + ...+
L J o J 2ir/»t J3n-/w J2nr/«l

W/-\

where r is an integer such that 0 <! n < — .
vi m

We assume that (a, b) is contained in an interval (a', b') in which
f(x) is limited; if then we choose fi to be less than the smaller of the
numbers J(a—a'), £(b' — b), we see that F(z) is limited for all values of
z in (0, fx) and for all values of x in (a, b). We have now

F{z)
s^JI]£dz < m \ \F(z)\dz

I Jo z Jo
< 2?r X upper limit of \F(z) \ in the interval (0, — J.

Since a continuous function is uniformly continuous, the two functions
f(x-\-Zz)—f(x), f(x — Zz)—f(x) converge to zero, as z converges to zero,
uniformly for all values of x in {a, b).

It follows that i r 2 i r / O T
sin mzF{z) dz < *lm

10 Z

where rjm converges to zero, as m is indefinitely increased, and is in-
dependent of the value of x.

Next, we have

F{e) !iB_^f dz
2nr/m

J1L x upper limit of | F(z) \ in (*™, M

< q— X upper limit of | F(z) \ iii (0, fx) < tj'm
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where rj'm converges to zero, as in is indefinitely increased, independently
of the value of x.

The remaining part of the integral may be written in the form

r m

z-\
m

3TT
—in

+ 47T

m
2r-2x\ yV ar-lx\.

VI I \ VI I

sin mz dz,2r—! 2r-\
m VI

which is less, in absolute value, than

r
Jo
which is not greater than

* = r - l pr

»=1 Jo

m I

z+Zr—Zir
dzx

Now

VI
r\ F fz+%s+\ic\
I \ VI I

T? Z + 2S+1-7T
dz.

VI m

in m
T\ F /Z+2SV\

J , \ in I

hence
(z+2sir)(z+2s+lTr)

m ) m 0
Z-J-2S7T ^+2s-f I77

vi
1 2S(2.S+1)TT

We now see that the part of the integral to be estimated is, in absolute
value, less than

( y + -y + • • • + 2^Ti) A+£ x uPPer l i m i t of I ̂  WI i
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where A is the greatest of the numbers ,
for s = 1 ,2 ,3 , . . . , r — 1 .

The upper limit of \F(z)\ or \f(x+2z)+f(x-2z)-2f(x)\, for the
interval (0, /x) of z, and for all values of x in (a, b), depends upon /x, and
is a number 2M(/X), which may be made as small as we please by taking
ix sufficiently small.

Also

where CT is a number between 0 and 1 which converges to Mascheroni's
constant. Let Dm denote the greatest value of the fluctuation of f(x) in
a sub-interval of length ir/m contained in the interval (a—fx, b-\-fx), for
all possible positions of such sub-interval; then we have A ^ Dw.

It has now been proved that, for 0 < /x < %ir,

it

where 6 is such that 0 < 1, and such that n = 0 —
m m

We have now to find a sufficient condition that it be possible, with
a fixed, to determine a value m of m, corresponding to an arbitrarily
prescribed positive number £, such that

for m ^ in, and for all values of x in {a, b).
If fxx be a number such that 0 < ^ < fx, we can choose nx so small

that u{fxj < ££. The number ixx having been so chosen, we can now
choose a value mx of vi, such that

F(z) sin mz

for m > mlt and for all values of x in (a, b); this follows from the
uniform convergence of the integral to the limit zero.

We then have

r r, / v sin mz ,F (z) dz
Jo z

Cr+log ^ +log {^-
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the numbers rj'm, Dm, Qx now having the values which correspond to Mi
instead of fx. We can now choose m2 so that rjm < %g, for m ^ m2; also,
we can choose m^ so that r{m <C ££, for m ^ m^. Again, since Dm con-
verges to zero, as m is indefinitely increased, we can so determine m that

Dm jCr+log [fix —1 \ < i£, for m ^ m4. Let us now assume that
\ \ ml)

it is possible to so choose m5 that Dm log W/TT < ££, for m ^ 7%. Taking
m to be the greatest of the numbers m^, m2, m3, m4, m5, we now have

n, , sin mz ,F (z) dz
0 %

for m ^ m. Therefore, with the assumption made, that Dm log m/w
converges to zero, as m is indefinitely increased, it has been shewn that
the convergence of the Fourier's series in (a, b) is uniform.

The following theorem has accordingly been established :—

It is a sufficient condition for the uniform convergence of the Fourier's
series in an interval {a, b), that an interval {a', b') can be found which
encloses (a, b) in its interior, and is such that, if Fp denote the fluctuation
of f(x) in any sub-interval of length /3 contained in (a1, b'), jP^log/3 con-
verges to zero, uniformly for all such sub-intervals, as /3 is indefinitely
diminished.

The condition may also be stated in the form, that it is sufficient that
\f(%-\~fi)—f(z)\ log/3 converge uniformly to zero, as /3 is indefinitely
diminished, for all values of x, such that x and x-\-f$ are in the interval
(a1, b') which encloses (a, b).

This is seen by referring back to the foregoing proof, where the
difference of functional values at the ends of an interval /3 was replaced
by the fluctuation in that interval.

The condition is satisfied if \f(x±fi)—f(x)\ < C/31', where G and k
are positive numbers, for all values of /3 less than some fixed value j31}

for every value of x such that x, x+fi are in (a1, b'), the numbers G and
k being independent of x.

The particular cases of these theorems which arise when (a, b) is
reduced to a single point are known sufficient conditions of convergence
of the series at a single point, due to Lipschitz.

The function f(x) has throughout been assumed to be restricted in the
whole interval (—TT, IT), only so far that it is either a limited summable
function, or an unlimited summable function which possesses a Lebesgue
integral in (— it, ir).
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5. Sufficient conditions for the uniform convergence of the series in
an interval (a, b) may also be obtained in the following simple manner:—

If 0 < nx < ix, we have

iM 771/^\

0 z
sin mz dz sin mz dz — - sin mz dz

Let it now be assumed that, for every value of x in (a, b),

exists, and that r
Jo

F(z)

11 F(z)

dz converges to the limit zero, as /x, is in-

definitely diminished, uniformly for all values of x in (a, b).
We have then

p F(z)
)or

Jo

—— sin mz dz dz.

The number /x: can now be chosen so small that, if f be an arbitrarily
fixed positive number, the inequality

Jo z

is satisfied for this value of /xl9 and for every value of x in (a, b). The
number ^ having been so fixed, we can fix a value 7% of m such that

—— sin mz dz
z

for m ^5 mx, and for every value of x in {a, b). We have then

F(z) • ,—- sin mz dz

for m ^ mv and for every value of x in (a, 6).
The following theorem has therefore been established :—

It is a sufficient condition for the uniform convergence of the Fourier's
series in an interval (a, b) contained in an interval (a1, b') in which f {x)
is limited that __ __ _ _

dz

should exist for all values of x in (a, b), and converge to zero as fxt is
indefinitely diminished, uniformly for all values of x in {a, b). The
condition icill be satisfied if the two integrals

f(x+2e)-f(x) dz, f(x-2z)-f(x) dz

both exist and are uniformly convergent.
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In particular, the series is uniformly convergent in any interval (a, b)
in which one of the four derivatives, and therefore each of the other three
derivatives, is limited, the end-points a and b being included. A special
case is that in which f(x) has a limited differential coefficient throughout
(a, b), including a and b.

The condition is satisfied if \f(x±fi)—f(x)\ < C(ik, for all values of
x in (a, b), and for all values of fi less than some fixed number; where
C and k are fixed positive numbers independent of x. This condition is,
at least in form, slightly simpler than the similar condition given in § 4.
If {a, b) be reduced to a single point, it at once becomes the known,
condition of convergence at x, that \f(x + /3)—f(x) \ < C/31'.
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