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ON THE BSINGULARITIES OF FUNCTIONS DEFINED BY
TAYLOR’S SERIES (Remarks in addition to a former Paper)

By G. H. Harpy.

[Received and Read January 10th, 1907.)

1. The following note is a result of some remarks made to me
by Prof. Bromwich. Its object is to indicate some extensions and further
applications of the method which I used in my paper ‘“A Method &ec.”
(Proceedings, Vol. 8, pp. 881-9). This method is an adaptation of an
idea due originally to Hadamard (Journal de Math., 1898), who used it
to establish certain general conclusions since made more precise by
Le Roy.* In my paper I introduced certain loop integrals which enable
us to obtain information in some respects more general and in others
more precise than that given by the line integrals of the two writers
just quoted.

2. Consider the series
f @) = agbyta,byz+agby2®+...
where a, is defined as in my former paper, and
F(x) = by+b,z+ b2+ ...

is a function of 2z, possibly many-valued, but having a branch (the
principal branch) which is regular all over the plane with the exception
of z=1 and z = ®, and one-valued inside the domain T formed by
slitting the plane along the line (1, @). - Thus F'(z) might be

(1—2x)7%, =z 'log(l—2), Fla,b,ec, ).
Then, using the notation and arguments of my former paper, but writing
for shortness B@) = (log 0~ (w—1)F~12r~ p(u),

we obtain the equation

_ 1 ' : .
unless a+ 3 is an integer %, in which case
(1a) fl@) = (2‘7): L & () F(z1) log (u—1) du.

* Annales de la Faculté des Sciences de Teulouse, 1900.
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In particular, if a=B =9y =1, so that ®(u) = ¢() is regular in
a domain including (0, 1) in ifs interior,

(1b) f@) = % L o) F(zu) log (w—1)du.

This expression gives the analytic continuation of f(z) all over the
region T bounded by a slit along (1, @). The branch of f(z) thus
defined is called the principal branch.

By taking as our fundamental contour C, not a loop including the
line (0, 1), but a loop including some other standard path from 0 to 1,
we can replace T' by another region 7" bounded by a different slit from
1 to @. We infer that the only finite singularity of the principal
branch of f(z) is  =1: or, as we may say, x =1 s the only finite
principal singularity of f ().

The argument is easily extended to meet the case in which F(z) has
any number of singular points. We define a uniform principal branch
of f(z) by appropriate slits from its singular points to ®, and we infer
that a corresponding principal branch of f(x) exists, and that ¢he only
principal singularities of f(x) are those of F ().

We have now to consider the subsidiary singular points of f(xz),
t.e. those singular points which are not singular for the principal
branch. Let us suppose first that F(x) has a simple pole at = = 1.
This is equivalent to taking

F(ru) = 1/(1—au).

Le Roy considers this case in some detail. Applying to his funda-
mental line-integral Hermite’'s methods of dealing with ntégrales o
coupures, he proceeds to calculate the increment of F(x) when x moves
m times round z = 1, and gives the result

i 1 2(1),

z z
This result is true only if ®(u) is one-valued for circuits round » =1,
i.e., if a+B3 is an integer. It then follows at once by applying the
transformation of my former paper to the integral (la).: we deduce that,

if f(z) is the principal branch of f(z),
= (—)F 1 1
T+ -2 (3) g (5 —1)

is regular near z = 1. In the more general case the increment is

T )+ ()]

x
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where the suffices denote different values of . The difference is most
easily grasped by considering such a case as
1l+1

fl@) = ’1‘{108 (1-—:1:)} =3 (1+1}+ -+ ) n+1°

This point does not, however, affect the general conclusions which can be
drawn. For, in any case, it follows that the only subsidiary singularities

of f(x) are given by 2=0, z=1/¢

where £ is a singularity of ®. Hence the singularities of f(z) are 1, @
(principal) and 0, 1/€ (subsidiary), £ being now any singularity of ¢.

When F has a variety of simple poles z = X, the singularities of f
are X, © and 0, X/§. The same conclusion holds when F has multiple
poles or essential singularities near which it is one-valued. The treat-
ment of such cases (as Le Roy shows) introduces no new difficulties of
principle. When, however, F(z) is many-valued (say at z = 1), the
‘“increment”’ cannot be so expressed in so simple a form. In fact, as
I shall show shortly, we can define another function g¢(x) such that
f@)+g@) is one-valued near z = 1, but the complete determination of
the singular points of g(z) is, in general, a problem just as difficult as
the original problem. And similarly if (as we may do) we calculate
directly from Le Roy’s line-integral .the increment of f(z) corresponding
to a circuit round z = 1.

Le Roy, curiously enough, passes over this difficulty in silence, merely
remarking that the result proved in the simpler case is true in general.
I do not myself see how to effect the extension directly; but we can
deduce the required result from Hadamard’s “multiplication theorem,”
that the only singular points of Za,b,z" are 0, a3 where « is a singular
point of Za,z" and B one of Zb,z" (0, of course, can only be a subsidiary
singularity). We thus obtain Le Roy’s theorem that the only singular

points of f(z) are X, ®; 0, X/E*

* It should be noted that the point z = 1 may be
for the other branches of f(z) a singularity of a kind

quite different from what it is for the principal branch. '

For example, if 0 /(-\ 1
a=f=y=1 3

and @ (4) = exp {1[v/{2—u)+1]},

the principal branch of f(2) has an ordinary logarithmic singularity at z = 1. The point z = ¢
is a subsidiary singularity. If we encircle first 1 and then § (as in the figure), we return to
1 with a value of f(z) which has an exponentially essential singularity there. A discussion of
the difficulties which are involved in the extemsion of Hadamard’s theorem to subgidiary sing-
ularities will be found in a recent paper by O. Faber (Jahresbm icht der Deutschen Math }Ver., 1907,
Bd. xvI., p. 285).
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8. The preceding discussion does not contain anything really novel.
I have included it because (1) the use of loop integrals instead of line
integrals enables us to reach somewhat more general conclusions (the
reduction of a loop to & line integral being only possible when the con-
stants a, B3, ... satisfy certain quite irrelevant inequalities) ; (2) there are
several points which Le Roy passes over rather hastily ; and (8) some
preliminary discussion is needed in order to make intelligible the later
sections of this note and the longer paper which follows.

4. I now proceed to consider the application of the method of my
former paper to the case in which F(z) is many-valued. The typical
case 1s that in which F(z) = (1—z)~° where ¢ is not an integer.

We introduce the contour C' of my former paper, and either the
contour C, shown in Fig. 1 or the contour C, shown in Fig. 2.

i ////////

In either case the subject of integration is one-valued and regular
within the area bounded by the the three loops (and shaded). Also

j is regular near z = 1. Hence (Fig. 1)
P

=l

. 1 du
wnd 1% G tatBe b PO T
is regular near x = 1. When 6 = 1, we can calculate the last integral
in finite terms ; and so we arrive at the results of my former paper.
It may be observed that the initial and final values near the origin
of the factors (logw)*~!, (u—1)*~' are not the same as in the original
integral. It is easy to see that

f@)+g@)

is regular where

_ ¢8me-pmi 1\t L e W e due
gl@) = 27 sin (a+08) 7 Sg, (log u) (1—) (u—1)°
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Here the initial and final values of (1—u)?~! are each unity, and

(log l) el P e(u—l)loglog 1/u
u

= exp(a—1) I:log \/{ (log %—)24-92} +¢ tan™! {9/ (108 ’l) :]’

the inverse tangent being initially and finally very small ; also (zu—1)
is exp{dlog (tu—1)}, log (xzu—1) being real at the point of C, for which
zu > 1.
Similarly, from Fig 2, we obtain
eGPy 1\=! W p(uw)du
9@ = 2.8in (a+B) = Lg (log 7) (1w (xre—1)° °
It is convenient to take the first or second form of g(z) according as
R(z[?)=0: we can then suppose C; (or Cy to be a loop closely sur-
rounding the line (0, 1/z).
If F(z) =y (x)/(1—=z)’, { being regular near & = 1, we have only
to include an additional term v (zw) under the sign of integration in
either form of ¢(z).

5. Suppose, e.g., that a = 1. We may write the above equations in

e e =K1w"j'r, (1—‘1")3-14’(1&‘) T

T T (w—1)°

(or a similar equation with K, I'), the contour now being a loop sur-
rounding (0, 1), and the choice being determined by the relative situation
of the points 0, 1, z.

Then, if |z| > 1, we can expand ¢ (z) in the form

Kz_‘l 2 %
z‘“

where c, is the coefficient of £ in the expansion of
1—£6F ¢ (@)
and dn = j W (u) du

(u—1)°

‘We thus define the nature of the singularity of f(x), but not as before in
finite terms, the result being that

fertamx ()

is regular near z = 1. For example, if ¢ and » are each identically
unity, we obtain a relation of this kind connecting two hypergeometric
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series. Relations of this kind are of common occurrence in the theory of
many-valued functions defined by Taylor’s series.

But one must conclude that relations as simple as those found in my
former paper for series such as

x?t zﬂ.

y e,
(y+n) 1441y
do not exist for series such as

2:6((3+1) . (64n—1) a"
1.2...n (y+n)*

(or even series as simple as the ordinary hypergeometric series). All that
can be done is to investigate relations such as those indicated in this
paragraph, which will in general involve a second transcendent of at least
equal complexity ; or to obtain asymptotic formule valid near z = 1.
This is much easier: for example, we can prove that

s L', 4n) L'(Sg4n)...L@S+n) - z" _
L(e,4+1) Lleg4n) ... T(e4n) (142 (yg+n)2 ... (vu+n)™

F'l426—2e—2
= ((1-t,x)1+:s-§:e_—zna) (1.+_’7=)’

where lim n, = 0 for any manner of approach of z to x =1. In so far
as modes of approach from wethin the circle of convergence are concerned
this follows as. a mere corollary from Pringsheim’s generalisations of
Appell’s theorem (dcta Math., t. xxvir., p. 1). To show that it is valid
all round the singular point, some method depending on & formula giving
the analytic continuation of the function is of course essential. A
modification of the method of my former paper leads readily to the
result, which I need only mention at present.

6. The method of my former paper is capable of interesting extensions
in a different direction. Let us consider the more general contour integral

‘N 1 . du
L Py g L‘I’(“) oy @

where - («) is regular in & domain including (0, 1) in its interior. For
sufficiently small values of «,

. f(‘z)= za"xn

1

Where == 5 s @+ P

L@‘(u) NACILE
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The contour integral gives the analytical continuation of the series over
the domain bounded by a certain cut. This cut contains those values of

x given by z=1w O<u<<l).

By varying the path from O to 1 included in the loop we vary the cut.
The singular points of f(z) can only be found among points excluded from
the domain of regularity of f(z) by all possible positions of the cut—as,
eg.,z=1, z = ®, when ¥y (u) = u.

Suppose, to take a definite case,

V) = uw(l—u).

When the path from O to 1 is along the real axis the cut begins at + @,
goes along the real axis to z = 4, and returns to + .
If w=re¥ 1/u(l—u) = £41in, where

£= cos 6—7 cos 20 ‘ . sin 6 —» sin 260

T r(1—2rcos 47’ T T 1 —2rcos 0+ °

Thus = 0 (i.) if » is real’ and (ii.) if »cos @ = %, ¢.e., when the path

=

from O to 1 crosses the line R (x) = 4. When thisis so, { = 4 cos’ 8 < 4.
Hence the cut always passes from o to «, passing between O and 4,
i.e., all possible positions of the cut exclude the point x = 4. For example,
if the path from O to 1 is the semicircle deseribed on (0, 1) as diameter,
the cut is the line R (z) = 2. Again, if we take the path from 0 to 1 to

be as shown in the figure (the two curved portions being congruent) the

s 7

cut is a curve from 4 to o described twice in opposite directions, and
nowhere meeting the real axis except at 4. Thus z =4 is the only
prineipal singular point.
Suppose z is real and a little less than 4. The roots of

: l—2u(1—u) =0
are -  cu=}+iy{@—a)/dz};
‘as .« approaches 4 these poles of the subject of integration approach %
from opposite sides, nipping the loop C between them. Introducing a
contour C’' which encloses the poles, we obtain

_ 2 T . |
L“-_ jC'+ m {@[%+Z~/{(4—:L’)/4:L’}]—@[%—24/{(4—21)/42:}] [

We thus determine the behaviour of f(z) near z = 4.
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Suppose, e.9., a =1, ¢ = 1. Then

1 - _ ' _TB+n T y+n)
—_ —\B— 142 l+ﬂ
i So(l ) w du T (B+y+2n)

Thus the only principal singular points of

_ » L@+ Tiy+n) .
F@ =2 @1 ¥

are z =4, ®. Near z =4, f(z) behaves like

T 1

sin B &/{-’13(4—1)} {(_éf‘iX)ﬂ-l(%+7}X)y—1_(_%_,l;X)s-1 (‘l‘-’iX)"“},

where X =4/{(4—z)/4z}. We may verify the result by supposing
B =y =1, when we must use the degenerate integral

1 S log (u—1)

Py 1—zu(l—u)

We find for the irregular part

S
V{z (4—z)} z
As a matter of fact

f@=1+3 ( 1 +55 §(4> +--‘ﬁm“ﬂ“¢(£&)-

In this (and in the more general case above) 4, ®, 0 are the only sing-
ularities, the last being subsidiary.

Another interesting set of series is given by supposing
_ 1
Y (u) = w log (u)

If B=1, ¢ =1, this gives rise to the series

I (n4a) "
(,'L+y)n+a.

The nature of the cross cuts may be seen to be much the same as in the
last example: the one finite principal singularity is in this case z =e.
As z approaches ¢ the contour C is nipped by two poles which both
approach the point w = 1/e. The expression of the irregular part involves
‘two transcendental functions, viz., two roots of
14zulog u =0,

or u* = ¢, where £ = ¢ ', These functions have been (to a limited
extent) studied by Eisenstein and Seidel.



1907.] THE SINGULARITIES OF FUNCTIONS DEFINED BY TAYLOR’S SERIES. 205

Further examples are given by

\P(u) = um(l_,u)n, u" (log %)nv 1/ (1 +u)’ ﬁ;:

7. Every admissible form of v («) (§ 6, beginning) gives rise to a
family of series as extensive as that considered in my former paper. The
preceding examples will sufficiently show the course of the argument in
- each case. I have purposely chosen an example—y(x) = « (1—u)—in
which the details of the analysis differ from those necessary in the
simplest case, viz., V- (¥) = u. The whole method is obviously capable of
numerous generalisations which it is difficult and hardly worth while to
attempt to classify. It is better to allow the generalisations to be
suggested by the particular classes of series with which they enable us
to deal.



