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(ii.) Four lines in space can be regarded as two pairs in three ways.
If the common normals of the two pairs are themselves normal in
two of the ways, they are so in the third. This statement of the case
was suggested by Mr. Richmond.

(iii.) Two rectangular pentagons can be normal to each other; that
is, each side of the one can be normal to a side of the other.

There are in the configuration ten rectangular hexagons, five
systems of four lines of the kind just mentioned, and six pairs of
mutually normal rectangular pentagons.

Point-Qroups in a Plane, and their effect in determining Algehraie
Ourves. By F . S. MACAULAY, D .SO. Read and received
June 9th, 1898.

• I. INTRODUCTION.

The following is a continuation of my former paper on " Point-
Groups in relation to Curves " in Vol. xxvi. of tho Proceedings, p. 519.
It deals especially with the reduction of point-gi'oups which supply a
known number of conditions for an algebraic curve of any order.

The effect of a group of N points in determining an algebraic curve
of order n (called hereafter a C,t) need not depend on N and n alone.
It may, and often does, happen that the N points do not supply N
independent conditions for a Gm but only a smaller number N—ru.
In any case, if the point-group N is given, the number r,, has a definite
positive* (integral or zero) value. The extreme case is that in
which all the N points lie on a straight line; and we then have
rn = N—(n + l) if w ^ N—l, and rH = 0 if n^ N—l.

For the case in which the N points form the complete intersection of
two curves, the values of ru for all values of n have long been known.
Thus, if N consists of the complete intersection of a Ct and 0m, and if
n is less than Z + m, but not less than I or m,' then

rH =

* In this paper the curves are subject to no other conditions than those of passing

in which
no value of
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by Cayley's theorem ; and the value of r,, for any value of n may be
written in the form

[% (l + m-n-1) (l+m-n-2)]-[% (m-n-1) (m-n—2)]

each pair of square brackets indicating that the product enclosed is
only to be retained so long as its individual factors are positive.

But the case in which N is the complete intersection of two curves
is only a very special one. It is easy to give other examples. In
general, if two point-groups N, N' together make up the complete
intersection of two curves Gh C,,,, having no common factor, and if for
N there are values of rn which do not vanish, then for N' there are
corresponding values of r,',. which do not vanish, where w+n '= l+m—3.

We name the number rfl the n-ic excess of the point-group N. It is
the number of points which lie on each and every Cn drawn through
N—r,t of the N points, provided these N—rn points are so chosen that
their n-ic excess is zero. Such a choice is evidently always possible,*
although it may also be possible to choose N—rn of the N points
whose w-ic excess is not zero.

Corresponding to rM there is a complementary number qn, viz., the
degree of freedom of a Cn through N, which we name the n-ic defect
of the point-group N.\ This is the number of general points in the

• Such a selection may be made with certainty by choosing the N—rn points one
at a time, each new one being so chosen that a Cn through all those previously
chosen does not necessarily pass through it. In this way we must arrive at iV—r,,
points and no more, since the «-ic excess of JVis »•„, neither more nor less.

t [Note added October \Zth.—The terminology of the theory of point-groups is
extensive. This is owing partly to the number of descriptive terms required to
distinguish various kinds of point-groups and their special characteristics, and partly
to the fact that there are several essentially different ways of approaching the sub-
ject. One branch of the subject has been confined almost entirely to Germany,
another to Italy, but the branch to which the present paper belongs—that in which
the point-groups themselves are subjected to direct operation—has been developed
both by English and Continental mathematicians.

The term regular (regolurc) has been applied by Professor G. Castelnuovo to a
system of curves in reference to a given point-group when the point-group
possexses no excess for the general curve of the system. By a slight inversion we
xnay nay that a point-group is regular with respect to a general curve of order »
when rn = 0. Point-groups which are regular with respect to all general algebraio
curves which can be drawn through them I call general point-groups, thereby
implying only that they are general in their effect in determining algebraic curves.

A convenient English term for point-groups which are not general in the above
sense ifl desirable. The term constructional (instead of point -group of special form,
used in my former paper) seems not inappropriate, Binco Buch point-groups can be
constructed as the partial (or total) intersection of algebraic curves. The old use
of the term special was applied to a point-group on a base-curve Cm for which
It—r <p—1 (p being the deficiency of Cm, 11 the number of points, and »• the multi-
plicity, of the point-group). The modern use of special is, however, applied to any
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plane through which a Gu can be drawn which already passes through
the N points. Hence, since the N points supply exactly N—rn condi-
tions for a Glt, and the qn points, being general, qn more conditions, we

or tf-r. + fr + l =*(» + *) (» + 2) (1)
Hence also r,,.1—rn=:n + l — (qn—qn.1) (2)

The effect of a point-group N with respect to algebraic curves of
all orders is not known unless all the excesses, or all the defects, ar©
known. As we shall find it convenient to regard the subject chiefly
from the point of view of the defects, we may suppose at once that
the defects q are all given. If qn = 0, one, and only one, 0,, can be
drawn through N. If no On can be drawn through N, we assign the
value —1 to qn, the reason for which will be given later (p. 677'). I t
follows that qn and rf, have definite values for all values of n, which
always satisfy formula (1) above. I t is also shown later that, if all
the defects are given, the value of the number N can be deduced.

We may say then that a point-group is fully characterized if all the
defects, or all the excesses, are given ; and that the point-group has
a partially or completely assigned characterization according as some
or all of the defects, or excesses, are assigned. Two of the most
general questions that suggest themselves are: — (i.) What is,
and what is not, a possible characterization for a point-group ?
(ii.) What is the quickest method of arriving at or constructing a
point-group with an assigned characterization ? These and other
questions are answered in the following paper.

The above remarks refer to groups of points which coincide at most in
pairs. In the first sections of the paper I have dealt only with ordinary
point-groups of this type; but in the footnotes on " Multiple Points,"*

point-group for which R—r ^ p—1, that is, to any point-group on Cm which lies
on an adjoined Cm_3. (Cf. Professor Charlotte Angas Scott,'' Intersections of Plane
Curves," Bulletin of the American Mathematical Society, 2nd series, Vol. iv., March,
1898, p. 267). MiRs Scott suggests the convenient term intraspecial in place of the
old term special. The connexion between inlraupecial and constructional is expressed
as follows :—" An intraspecial point-group on a Um to which is added an (i —1)-
poiut at each t-fold point of Cm is a constructional point-base through which a
Cm-3 can be drawn."

For the meaning of the terms i-point and point-base, see note on " Multiple
Points. I . , " below.]

* [Multiple Points. I.—It is well known that the number of conditions supplied
to a curve by an t-fold point is i»(t + l), and that those conditions, when
combined with others, may quite possibly not be independent. I t is very con-
venient in the geometrical thorny (if puiut-groups to replace, if possible, these

2 x 2 '
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and in the last section of the paper, I have shown how the whole
question is capable of generalization.

II. SUMMARY AND DEDUCTIONS.

We use the letter p to denote the difference of two successive
defects. T*nti8 p,, = gn—gn-iv If PJ is the first p which does not vanish,
we have gj + l—p» and g p +l = Pi+Pn.i+.-.+pP(p £ 0- The differ-
ences of the p's, or second differences of the defects, are denoted by 8,
so that 8, = pj, 8p = pp—pp.i.

(i.) Writing the general equation of a On, referred to two coordinate
axes Ox, Oy, in the form

where up is a homogeneous function of x, y of order p, with p + 1
coefficients, and substituting the coordinates of each of the N points
in On = 0, we have a set of N linear equations for the coefficients of
0H. These equations have always a solution, whether a On can be

i» (»+1) conditions by those of passage through t̂ (i +1) points. {Cf. pp. 608, 509
of the Proceeding*, Vol. xxvi.). The theorem which renders such an interchange of
conditions practicable is as follows:—"Given a curve Cn, with any number and
kind of multiple points, it is always possible to find a curve Cn. («' being either
equal to or greater than »») whose coefficients differ only to an infinitely small
extent from those of Cn, and such that corresponding to each and every i-fold
point A of Cn the curve &„• passes through \i (»+1) points chosen arbitrarily and
generally about and infinitely near to A." All that is necessary then to effect the
change required is to place at each i-fold point (»>1) a general set of -J»(» + l)
points on an infinitely small scale, and to consider in the place of any curve Cn,
with the given multiple points, a proximate curve (?„-, which passes through all
the sets of \i (»+ 1) points, and of which Cn is the limit.

Such a set or cluster of $» (i +1) points may itself be called a point of order i ; we
shall therefore call it an i-point, reserving the term i-fold point for a multiple point
of order i on a curve. Thus i-point and i-fold point are practical equivalents ; but
the one refers to an element of a point-group, and the other to an element of a
curve. It should be noticed that an ordinary point is a point of order 1, that is, a
1-point. An i-point is equivalent to $i (»+ 1) simple points. The degree iV of a
point-group, that is, the total numlier of simple points to which it is equivalent, is;
given by N =• |2» (»+ 1), the summation extending to all the points of the group,
inoluding those for which »' = 1.

"We also give tho name point-base (meaning "base of points" = gruppo base,
Castelnuovo) to a point-group made up of points of assigned orders. In Section vx.
we generalize the meaning of this term, and distinguish, the point-base here defined
by the added epithet simple. We shall then, hereafter, only use the term point-
group in the restricted sense of a group of points which are all of order 1. This is
the sense in which it is used throughout the text. The term point-base must be
distinguished from base-point; the latter, however, we shall have no need to use.

The chief importance of this method of dealing with multiple points is that any
two turves drawn through an i-point must each have there an i-fold point, and in-
tersect there again in an (» — l)-point. Consequently, in the reduction of a point-
baso, each Btep leads to a reduction throughout in the orders of the points, while tho
new points introduced are all of order 1.—October 13<A.]
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drawn through N or not. If the N points lie on a Gn> the general
solution of the N equations simply determines a certain number of the
coefficients of Gn in terms of the rest, which are left arbitrary. The
number so determined is N—rn ; and the number left arbitrary is
qn+l, since a Gn through N has still a degree of freedom qn. If N
does not lie on a Cn the solution requires all the coefficients to vanish,
and the number determined is N—rn = \(n + \) (n+2), and the
number left arbitrary is qn + 1 = 0. Hence we say that the n-ic defect
of a point-group N which does not lie on a 0n is always — 1 .

Returning to the case in which a Cn can be drawn through N, the
number of arbitrary coefficients in uo+ul +... + up (p «S n) is gp+l , by
the same reasoning as before ; and the number in wo-f-w, + ... + tip.\ is
3P-I + 1- Hence the number of arbitrary coefficients in up is qp—qp.\,
i.e., pp. The number pp has therefore a precise analytical interpreta-
tion ; and, consequently, the properties mentioned below can easily be
interpreted analytically. It follows that one limitation to the value
of pp is given by pp <Sp + l, since up contains onlyp + 1 coefficients in
all; but it will be seen later that this limitation disappears when we
regard the p's from a slightly different point of view.

(ii.) In order that a point-group N may be a possible one it is necessary
and sufficient that the values of the p's, after ceasing to be zeros, should
consist of continually increasing positive integers, subject to the limitations
pp<p+l and N+qp+l^%(p + l)(p + 2).

Both limitations disappear when we regard the number N and the
orders of the curves as being given by the values of the p's. A still
simpler way of enunciating the theorem is :—

A point-group is possible if the second differences of the defects, after
once ceasing to be zeros, are positive integers, not including zero; othenoise
a point-group is impossible.

It follows from this theorem that if only a (7, can be drawn through
N for which the excess of N is not zero, then must qt+r, ^ I. For, in
such a case, we have

ffi-i = —li rui = 0 ;

therefore pt = qt—q^ = qt +1 ;

and ri—rui-l + 2-(qul-q,), by (2), p. 675;

therefore pUl = l + 2—rh

and p!ti—p,—\ = I—q,—JV>0.
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If 2 J + ^ > Z , and qi^O, N must have excess for more than a Gt

through N.*

(iii.) If 8p = pp—pp., = 1, and p>pp.l>0, then any GP through N
must contain a fixed constituent curve of order p—pp-\-

Not only the order p—pp.\ of the fixed curve, but the number of
points N' on it, is known, and also the full characterization of N' and
that of the remainder W of the N points.

Thus a point-group N, fully characterized, can be separated into as
many constituent point-groups as there are sets of one or more
successive 8's equal to 1, each set being preceded and succeeded by
one or more 8's greater than 1, together with a remainder.

The points of each constituent (including the remainder when it is
not a general point-group) must have a certain number of inter-
connexions among themselves ; but, so far as the characterization of
N affects the result, there will not be any connexions between any
two of the constituents. Each constituent has its own characterization,
and, when its construction has been found, can be placed in any
position, without reference to the positions of the other constituents.
The sum thus obtained forms the most general point-group N with
the assigned characterization. This property of the independence of
the constituents, which is not easily apparent by intuition, is here
emphasized, since it evidently results in a considerable simplification.!

(iv.) Two theorems suffice for the quickest reduction of a point-
group. The first is the theorem mentioned in (iii.), which, in terms
of the second differences of the defects, may be expressed as follows:—

(a) If Ba = 1, then

(8,, 82, ..., 8a, ..., 86) = &,«,, ...,8(1_1) + (l8l+*8+-+8«, 8a+1, 8a+2, ..., 56).

The other theorem is

03) (1«, 86 + l, 86+1 + l, ..., 8C+1) + (8C, 8..,, ..., 8.) = I&8, a+SS),

where I (I, m) denotes the complete intersection of a d and Gm.
The notation is explained in the next section; but the following

remarks will perhaps be intelligible. The characterization of N is
fully represented by the numbers

..., 0, 0, 8lt 82, ..., 8a, ..., 8»_i, 8t, 1, 1, 1, ..., ad inf.

* In the Bame way it can bo proved that if q( ̂  0, rn-2> 0, I<n - 2, then qi-i + l
cannot be zero unless qi+i + 1 > 2 (qi + 1), and rn.\ cannot be zero unless r,,.3 ^ 2>-,,_2.

t This property does not appear to hold in general for a point-ba6e.
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Any 8, or any set of successive equal 8's, preceded and succeeded
by 8's of higher value is a minimum ; and any minimum which
reaches its lowest possible value 1 may be called a breaking-point.
Theorem (a) exhibits the result after breaking. If there is no
breaking-point, theoi'em (ft) shows that from N we can derive a
point-group N' such that the 8's of N' are simply the 8's of N each
diminished by 1, in reversed order. It is thus evident that all the
minima reach breaking-point, some time or other, before the reduction
of N has been completed. If the 8's never decrease until the greatest
value is reached, and after that never increase, there will be no
minimum, and no breaking-point during the whole reduction.

The second differences of the excesses of N are simply 81—1,
83—1, ..., 8a—1, ..., 8j—1, arid exhibit the same properties as the
second differences of the defects ; but the breaking-point is at the
value 0 instead of 1.

(v.) If a Ci is the lowest curve through a point-group N, and a £7n_3

the highest curve for which the excess of N does not vanish, then the
number of the independent interconnexions of the N points, due to the
characterization, is

0 > U 3 — P l + 2 — 1 ) + ••• +P»-2 (Pn-Pn-I — I ) *

If N breaks up into constituents, i.e., if, for one or more values of p
between I and n, pp—pp.\—1 = 0, then there are zero terms in the
above series, which divide the whole into shorter series. These give

* This result can be compared with the formula (̂  + l ) r given by Brill and
Nother as the number of conditional equations for the existence of a point- group
OR on a Cn. (Cf. Benoist's translation of Olebsch, Leqons sur la Oe'ometrie,'Vol. in . ,
pp. 53 ff.) In the notation adopted above this formula would be written
(?n-3+ 1) »*«-3. The validity of the formula (17 + 1) r really rests, however, on the
hypothesis that the point-group G'R has excess only for a C . 3 adjoined to Cn,
which requires, as we have 6een in (ii.) above, q + r^.n — 3. If we suppose the
excess of the point-group JV to be similarly restricted, the number of ita inter-
connexions reduces to

p»-3(p»-l — pn-2— 1) = (?

= (e
so that, on this supposition, the two results agree. If q + »•>« — 3, the formula
(q + 1) r is not in general valid.

I t is easy to show that on a non-hyperelliptic curve in which n > p > 1 the
condition q + r ^ n—3 is necessarily satisfied. For, by the Riemann-Roch equations,
q + r=p—l — (S — 2r), and, by Bertini's addition to Clifford's theorem, E—2r>0.
Hence q + r^p— 2 ; and n^p+l; therefore n-q—>*>3, i.e., q + r >n — 3.
(Cf. Miss F . Hardcastle, p. 133 of this volume of the Proceedings, and references
there given.)
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the numbers of the interconnexions of the points of the several
constituents, the first series corresponding to what haB been called
the remainder. As already remarked, the different constituents are
unconnected with each other.

There is no reason why a certain number of the points should not
coincide in pairs. A point-pair determines a direction, and is expres-
sible in terms of three parameters, viz., the direction and two co-
ordinates. If there are D point-pairs, the 2N coordinates of the N
points thus reduce to 2N—D parameters, and the formula of the
theorem then gives the number of independent conditional equations
satisfied by these 2N—D parameters. A On through N will in
general have fixed tangents at the point-pairs; but one additional
condition applied to Gn at any point-pair will cause it to have there
a double point, leaving the directions of its tangents free. It is not so
clear as to what interpretation should be put upon the formula if
some of the N points coincide in threes or more.

III. PRELIMINARY THEOREMS AND NOTATION.

(i.) The n-ic excess rn of any point-group N diminishes as n increases,
until it becomes zero.

For a On can be drawn through any N—ru—l of the N points
without passing through (all) the remainder, and a straight line Gx

can be drawn through any one of the N points without passing
through any more. Hence a On+i, viz., Cn Cu can be drawn through
any N—rn of the N points without passing through (all) the remain-
der; not so a On (Note, p. 674). Hence rn¥l<rn.

(ii.) (a) If a Gp through N is necessarily degenerate, then one con-
stituent of Op must be fixed.

Choose any qp general points in the plane. Then there is one and
only one Op through the N+qp points. Suppose that this Op breaks
up into CP' Cp», and let N' of the N points and q of the qp points lie
on Cy, and the remaining N" of the N points and q" of the qp points
lie on O^. Then, since the q'+q" points are general, q must be the
jp'-ic defect of N\ and q" the p"-\G defect of N". Hence, if neither
q' nor q" is zero, a G^ can be drawn through N' and any q of the
q'+q" points, and a Cy» through N" and the remaining q" of the
q' + q" points; and this C>. and Op» would make up a second Gp



.1898.] and their affect in determining Algebraic Curves. 681

through the N+qp points; whioh is. impossible.* Hence q' or $"ia
zero; let q be zero; then qp is the jp"-io defect of N". Hence, in

whatever new position we choose qp general points, the 0p through
them and the N points will consist of the Cj,t through the N" + qp

points, and a fixed Gp, through the N' points (whose p'-ic defect is zero).
Also any curve lower than a Op through N must have the same

fixed constituent 0?.
(ft) If a 0n_a is the highest curve for which the excess of N does not

vanish, then a proper 0n can be drawn through N.
For, if 0n is necessarily degenerate, it must have a fixed constituent

CB». Also a On-i can be drawn through all. the N points except one
(chosen on Cn.) without passing through the last, since rn_i = 0.
This 0n.\ cannot have Gn> for a constituent, for, if it ..had, it would
pass through the last point. Also a (7, can be drawn through the
last point in any arbitrary direction. Then 0n.i Cx is a Gn through N,
not having Qn. for a constituent. Hence a proper 0n can be drawn
through N.

It may be that a Gn.i through N is necessarily degenerate, or that
there is no Cn_i through N\ but a O'n-\ can be drawn through any
N— 1 of the N points.

(iii.) "We express the orders of curves in terms of I, m, n,py the
first three being generally fixed, and the last, p, having any value.
A Oi is the lowest curve through N, and a> OB_3 the highest curve for
which N has excess ; and we suppose, in general, that .Wlies on a On.t.
A 0m is the lowest curve through N which has not any fixed con-
stituent, and is not fixed as a whole. We always have I < m. < n.

If the suffixes of q, r, p, 5 are expressed in terms of Z, m, », p, they
are to be understood as having explicit reference to the orders of
curves; thus qp is the p-ic defect of Nt and pp = qp—qp-u dp — PP—Pp-i-

* [Multiple Points. IT.—This reasoning fails in a special case when we are deal-
ing with a point-base N. This happens when the constituents of the second Cp are
a simple rearrangement of those of the first, so that the Cp itself is not changed.
One constituent of Cp, say Cp>, may be assumed to be a proper curve. If then
q' >. 2, we could interchange 1 of the q' points with 1 of the q" points, thus obtain-
ing a second set of q points, and a second Cp>, which is certainly not a constituent
of the original Cp ; in this case therefore the theorem will hold, as also when ?'— 0.
But if q = 1, it might happen that any second Cp>, was necessarily a constituent of
the original Gp. In this case every proper constituent of the general Cp through 2V
must have detect 0 or 1, and the qp constituents with defect 1 must belong to a
fixed pencil of curves. The conclusion is that, xohen a Cp through a point-base If
is necessarily degenerate, either (i.) one constituent of Cp is fixed, and may break up into
several parts, while the remaining constituent is a proper curve with defect qp; or (ii.) Cp
breaks up into qp constituents belonging to a fixed pencil of curves, and the remaining con-
stituents of Cp, if any, are fixed absolutely.—October 13</t.]
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But if the suffixes are 1, 2, 3, ..., a, a + 1, ..., 6, ..., they refer only
implicitly to the orders of curves; qa is not the a-ic defect of N, but
we still have pa — qa—qa-U K = pn—po-i-

The symbol (pv p8, ..., p0) represents a point-group whose successive
p's are pv ps, ..., po, every p before pl being zero, and p6+1 being equal to
pb + l when b^a. "We suppose also tha tp^O, and po>po.1 + l ; for,
if not, we can simply leave out the p's at the beginning and end until
these inequalities are established.

The following properties of the point-group N — (p,, p9, ..., p0) will
be easily seen by supposing it to be the same as (p,, pJfl, ..., p,,), so
that p! = pi, p, = p,+1, ..., pa = pn = » + l (since r,, = rn_! = 0), and
a — n—l+1.

(a) pa is the difference of the defects of N for a (pa—l)-ic and
0».-2)-io.

(/3) The highest curve for which N has excess is a (p0—3)-ic.
(y) The lowest curve through N is & (pa—a)-ic, remembered as the

last p diminished by the number of the p's.
(5) The number of the p's exceeds by 2 the number of the different

orders of curves through N for which N has excess.
(e) The number N is given by

pn_1 = %pn(pn—1),

(£) Thus the values of the p's in the point-group N = (plf pj, ...,po)
express the whole effect of N in the determination of algebraic curves
of all orders. The only restrictions on the values of the p's are
)0<p,<p,. . . <pa, andp6+1 = p»-f 1 if b2 a.

The point-groups (p,, p2) and (pj), as indicated in (3), are general,
having zero excess for curves of any order which can be drawn through
them. This is easily verified. The number N in (pu p2) is
2P1 (ft—1)—Pi. and in (p,) = (p,, p, + l) is ^ (p , - l ) .

I t may also be verified that the point-group (1, 2, ..., a, pb, p4+i)
consists of £pft+i (p»+i—1) —(1 + 2 + ... +a+p6) general points on a
(Pi+i—a—2)-ic [c/. (y) and («) above]. Similarly (1, 2, ..., a, p6), or
(1, 2, ..., a, pb, p6+l) , consists of |p» (p6—1)— \a (o + l) general points
on a (pb—a—l)-ic. The point-group (1, 2, ..., a) is a zero one.

Expressed in terms of the second differences of the defects
(PuPi, —, Pa, ..., Pb) becomes (Su 5,, ..., 3a, ..., 8b) ; and it is easy to
change from one expression to the other (c\ = p,, 5fl = po—pn_i). All
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the 3's before 5, are zeros, and all the 3's after 36 are units,* while
<$! > 0, Sb > 1. The only restriction on the values of the 2's is that they
are all positive integers, not including zero.

The lowest curve through (Slt S%, ..., <S4) is of order I == pb—b, or

The point-group (1, 2, ..., a, pb, p6+i, ..., pc), when expressed in £'s,
is written in the form (1°, §b, 86+i> ..., Sc) ; 56 = pb—a.

IV. REDUCTION OF POINT-GROUPS.

THEOREM I.—A point-group (pv p2, ...,pa-uPa~ 1) caTO always be found
coresidual to a given point-group N — (pu pa, ..., pa) on a (po—l)-i'c.

For (px, p3,..., pn) substitute (p,, pul,..., pn) ; then p,, = w+1. The
highest curve for which N has excess is a CB_a; therefore N lies on
a proper Gn [(/3), p. 681]. Take this
Cn as base-curve. We suppose
that a £ 3, otherwise the point-
group AT" is a general one (p. 682) ;
hence n—2 £ Z. Let a Cf,,_2 be
drawn through N. This will cut
Gn again in a finite point-group Nv

since CH is a proper curve. Also,
since the excess of N for a C,,_a is Base-curve Cn.

not zero, Nx must, by a known
theorem, lie on a Cn_3. Let a Gn.3 through Nx cut On again in a
finite point-group N'.f

Then ^ , N' are coresidual on Cn, and have identically the same
sets of residuals. Also we know that the multiplicity of a series of
point-groups on Gn cut out by curves of order p through .N" is qp

when p <n, and qp—\(p—n + l)(p—n+2) when p2n. The same
series is cut out by curves of order p — 1 through N', and the
multiplicity is q'p_i or q'p.\—%(p—n)(p—n+l) according as p<n
or p £ n. Equating these values,

9P-I = 9J> when p<nt and q'p.x — q,— (p—n + l) when pZn.

• The full expression for (Si 82, •-., 8j) is (0, S,, 8a, ..., 84, 1*), where 1" stands
for 1 repeated ad inf.

t Cf. Proceedings, Vol. xxvi., p. 625. The N points might necessarily comprise
all the N' points. This would be the case if, and only if, N consisted of n points
on a straight line, and N—n remaining points having no excess for a C,,_3. The
N' points would then be identical with the N—n points, but the reasoning would
not be affected.
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The first of these equations holds not only when p^l, but also
when p<l, for then g^.1 = qp = —1. Both equations hold when
p = n— 1.

Taking differences, we have ...

Pp.i — pp when p < n, and . p'p_l = pp—l =p when p £ n.

The successive values of p are therefore

• ••i 0, ph pui, —, p,,-i, n, n + 1, n + 2, ...,

or ..., 0, pn p9, ..., pa.lf p a - l , pa, pa + l, pa+2, ...;

hence #" = (pIf p2, ..., p0 .„ p a - l ) ,

which proves the theorem.
If p o - l = p a _ i + l, theh2^'=(p,,p,,...,po.,); and,if pa—1 >p._i + l,

we can repeat the process on N\ thus obtaining the point-group
0>i» PH •••» Pa-u Pa—2). After pa—p0.i—l steps in the reduction we
arrive at the point-group (p,, pa, ..., pa_i). In this we leave out all
p's at the end, if there are any, which exceed the preceding by 1, and
continue the reduction. We ultimately arrive at the general point-
group (p1( pa), which is a zero point-group if px = 1 and p, = 2.

This proves that the point-group N = GvPs*... , po) w a possible one,
if 0<p 1 <p s <. . .<p f l »

It also follows that the point-group N is impossible if p l + i^p6>0.
For, if the point-group is possible, the process of reduction is valid.
But if p6+is£p»>0, then atsome stage we arrive at a point-group
for which p4 is the difference of the defects for curves of order pb—2
and pb—1, and p6+i the difference of the defects for curves of order

• [Multiple Pointt. III.—In the reduction of a point-group which is general of its
kind (that is, of the kind which has the assigned characterization), the distinguish-
ing feature is that all the derired point-groups are general of their kind. I t is this
that leads to a determinate (not unique) construction for such point-groups. For
point-bases the process of reduction is still valid, and so also is the reverse process
of construction ; but the derived point-bases may not be general of their kind (the
kind which possesses a known characterization and consists of points of known
order). In such a case the construction is not determined by the reduction alone.
Thus if If, in the figure, is a point-base, then for any »-point belonging to JVwe
have an (i — l)-point belonging to Nv The orders of the points of iV, are all known,
and also the characterization (Theorem III . ) . But from JVi we have to construct
iV" by passing a C,,.j and Gn through it, having t-fold points at the (» —1)-points
of iV,. Such curves could certainly be drawn through the general point-base of the
kind of Nx if the (« — 2)-ic defect of Nx is equal to or greater than 2», the sum of
the OTders of all the points of N for which »>1 . There is also the condition, in
order that the construction maybe valid, that the Cn should be a proper curve, or at
least should not have any fixed constituent. We return to this again in Note V.,
p. 688. The question of the generality or speciality of these derived point-bases is
not correctly stated in Vol. xxvi., p. 541, § 30.—October 13<A.]
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pb — 1 and pb. The corresponding differences of the excesses are then
0 and pb + l — pb+i>0, by (2), p. 675. Hence the excesses of the
derived point-group for curves of order pb—2 and pb— 1 are equal,
but not zero, which is impossible, by (i.), p. 680.

GENERAL THEOREMS IN REDUCTION.

THEOREM II.—If pa—pa_x = 1, then the point-group

N — (p,, ...-, pa,....,pb)

necessarily breaks up into the two independent point-groups

(Pi» Ps» •••» Po-0 and (1, 2, 3, ..., pa.u pa, po+1, ..., pb).*

If Pi = 1, p3 = 2, ..., pa_! = a—I, then .(ft, /JJ( ..., po_i) is a zero
point-group, and the theorem is nugatory. We shall therefore
assume the contrary.

Let (p, , . . . , pa, ..., pb) be the same as (ph ..., pp, ..., pn), where
Pi—Ph Pa — Pp, Pp—pP-i = l, pb = p,, = n + l . W e have
since a 2 2.

Then a (7̂ , through N must have a fixed
factor; for, if not, a proper Gp can be drawn
through N [(«), p. 680], which is different
from Oh since p>l. Taking this Cp as C p - 8 / \<7»"1

base-curve, we can find on it a point-group
N' = N—2p coresidual to N, as shown in
the figure ;f and, by the same reasoning as
in the last"theorem, we have Bau.<mw Cp.

therefore p'p.8 = p p . u p p . 2 — p p — \ \

• [Multiple Points. IV.—It is almost certain that this theorem, except as regards
the independence of the constituents, holds in general for a point-base ; but it is to
be observed :—(i.) that the theorem does not determine in what manner the points of
various orders are distributed among the two constituent point-bases, but only the
totality of simple points in each ; (ii.) that the assigning of orders to the points of iV
may causo iV to break up further than would be required by the characterization
alone ; and (iii.) that there are limits to the possible values of the orders, combined
with the numbers and the characterization, of the points, of which very little is at
present known.

It would in many casps be feasible to effect such a distribution of the points of K
among N' and N" that no t-point should belong in part to one and in part to the
other; but, if this were not possible, the theorem would not thereby be invalidated.
—October Uth.]

t A Cp-i can be drawn through JV, for p—l^l; and JVi lies on a Cps, since 2V
has excess for a Cp.\. If JVdoes not lie on a Cp_a, then N' does not lie on a Cp-i,1 i 1
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therefore - " PP-3 = Pp-2>0>

which is impossible (p. 684).

Then let 0p = Cp-0t>>>, where Gp- is fixed and G^. has no fixed con-
stituent ; and let N' be the number of the N points which lie on Gp.>
and N" the remainder which lie on Cy/.

All curves lower than a Gp through N must have the fixed factor
Ojf. Consequently, qp) qp.u qp.2, ..., which are the defects of N'+N"
for curves of order _p, p — 1, p—2, ..., must be the defects of N" for
curves of order p'\ p"—l,p"—2,.... Hence the successive differences
of the defects of N" are

Pl> Ps> •• •» Pa-U Pa'

But pa—pa-i = 1; and a Cy», to which pa corresponds, has no fixed
constituent, by hypothesis; therefore all the p's of N"frompa.\ increase
by units. Hence w" — /"„ „ „ \

This determines the full characterization of N", and the number N".
Also, since po-i corresponds to a Cy»_i, we have

p"—l = po.i—1 = pp.i—1, and p = p-p" = p—pP.v

The fixed constituent of 0p is therefore of order p—pp. \.
Again the excess of N" for a (pfl-i—2)-ic, that is, a Qp,/_8, is zero

[(/8), p. 682]. Therefore the excess of N'+N" for a 0p_2 is entirely
contributed by N'. The same must be true for all curves higher than
a 0p.i, whether degenerate, as in the case of a 0p.2, 0p.lt Gp, or not.
But the defects of N'+N" for curves of order p—2, p— 1, ..., n are

2p-2> 2 p - l j 9p> • • •» 2 » >

therefore the defects of N' for curves of the same orders are

qp.* + N", q^ + N", qp+N'\ ..., qn + N",

and the differences of these are

PP-U Pp, •••* Pn, o r p o . i , p a , . . . , p 6 .

And the differences of successive defects of N' before pa_i are

1, 2, 3, . . . .Po^-2, p,,.!—1,

since any curve lower than a 0p through N' has the fixed constituent
Cy. Hence \r' _ f\ o v „ n „ \
. ' •" = (A, A o, ..., po_i, p0, pa+i, ..., p6).
This determines the full characterization of N'. And it can be seen
that any two point-groups having the characterizations found for N'
and N", when placed in any positions relatively to one another, make
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up a composite point-group with the same characterization as that of

N = ( f t , p i , . . . , p a , ••-, pb)-

Expressed in terms of the second differences of the defects the
theorem is, since pn = 3t-f 82 +.;..-I-3a:—

If 8a = 1, then the point-group N = (Slt S%, ..., Ba, ..., Sb) breaks up
int0 (a a a )
Here we may suppose that $a+\, n̂*2> •••> $t> a r e a ^ greater than 1.
The point-group (du £s, ..., £„_!) may, of course, break up further.

The lowest curve through N =• (8U ..., §n, ...,$b) is a Ct, where
I = 2 (5 — 1) ; and this is a proper curve if £„ £2, ..., <$„ are all equal
to 1 and Sn+U 8,,+2, ..., 8b all greater than 1. It follows from what
is proved in the next theorem that the lowest curve through N
without any fixed constituent is a Gmy where m = a + 2 (8 — 1) if 8a is
equal to 1 and £„+„ ..., Sb are all greater than 1, and in = % (8—1) = I
if 8,, ..., 8a, ..., 8b are all greater than 1. If 8,, = 1, the fixed curve
common to Gi, CitU ..., 0m_i is the lowest curve through

and is therefore of order

THEOREM III.—If 8b, 84+i, ..., 8C are all positive integers, not including
zero, then

(1", 86+l, 8 ^ + 1, ..., SC + 1) + (8O 8C_,, ..., 8,) = I{%8, a + S8),

I (I, m) denoting the complete intersection of a Gt and Gm.

This can be deduced from the following theorem {Proc. Loud. Math.
Soc, Vol. xxvi., p. 526) :—

If a Ci and Gm can be drawn through a point-group N, cutting again
in a finite point-group N' (N-t-N' = Ivi), then

square brackets indicating, as before, that tluo product enclosed is to
be retained only if its individual factors are positive. This theorem
is true for all values of p from 0 to l + m— 3, taking gp + l = 0 if N
does not lie on a Gp.

In applying the theorem we take

N = (1-, 84 + l, 8tfl + l, ..., 8, + l) = (8,, 8<+1, ..., 8,,, ...,
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and assume for the moment that a proper Gt and Gm can be drawn
through N, where I = 2,h,m = a + %8; the assumption being justified
at the end. We then have

8j_i = 0, 8, = 8itl = ... = S,,,.! = 1,

8,rt = 8ft.+ 1, ...., 8,, = 8e+l, 8,,+1 = 5n+, = ... = 1.

Taking differences in the above theorem, we have

qUm~p-2 — qUm.pr3 = ^-1"«*p+ [l~P~ *] + [m—p- 1],

or pUm-p-2 =P + l-pP+[l—p—l] + [w—p—1].

Let 2? diminish from Z+m—3 to 1, BO that l+m—p—2 increases
from 1 to l + in—3. Then

from ^ = l+m — 3 to ra, Pi+m-p-a = 2>+l —pP;

„ f = n „ m—1, P/+m-p-2 = P + l - p i , ;

„ p = m—1 „ Z—1, p'i+m-p-2 = " i — P P ;

„ | j = Z - l „ 1, Pum-p-2 = 2 + m—p-1—ft,.

Again taking differences, subtracting each equation from the next
succeeding, we have

from p = Z + m - 3 to n + 1, 8,\„,_,., = 8 , - 1 = 0, 0, 0, ..., 0 ;

„ p = w ,, w, §/+„,_,_! = Sp—1 = Sc, Sc_,, ..., Sfr;

„ pz=m—1 „ Z, 8/<.8I.J)_1 = 8P = 1 , 1 , . . . , 1 ;

„ p = Z - l „ 2, 8;+M.p., = 8^+1 = 1,1 , . . . , 1 .

Hence the successive values of 8', for ascending orders of curves, are

. . . , 0 , 0,8c, Sc.,, . . . , 8 4 > 1 , 1, 1, ...;

tlieroforo N'= (8C, 8C.,, ..., 86).*

* [Multiple Points. V.—We have given only that form of the theorem which 18
adapted for the quickest reduction of a giveu point-group. The general theorem is

(...5«, ...,5i, .... 5c) + («c-l , -.., h, ..-, «,« + !, •••)

= / ( / + 2 6 ^ 1 , ^ + 25=7) (A)

Here, in order to bo perfectly general, wo do not suppose the suffixes ... a ... b ... e
to bo consecutive positive integers. The 8's of N' — (Be —1, ..., 84, ..., 8« + l, ...),
taken in reversed order, are formed from the 5's of JV= (...5,,, ..., So, ...,8c), in
direct order, thoso up to 8,, being increased by 1, thence up to 84 being unchanged,
and thence up to the last 8/: being diminished by 1 ; / i s the number of the 8's of JV"
which are increased, i.e., the number of the 8's in ... 8,,, and g is the numbor of the
8'H of N which are not diminished, i.e., the number of tho 8's in ... 8,1, ..., 84. Tho
8's may have any values which make both N and N' possiblo; i.e., in the case of
point-groups, any number of the S's at the beginning of both N and N' may be
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Hence also we see that it is possible to draw proper curves of order
28 and a + 28 through N — (1°, 86 + 1 , ..., 8C+1); for two proper curves
of such order can certainly be drawn through N' = (8O 8c_i, ...,8*),

zeros, but after once ceasing to be zeros they must be positive integers, excluding
zero.

The specially important case in which / = 0 gives

(...8* 8.) +(8 . -1 8«, . . . )= 7(2 CT, ^ + 2 5^1), (B)

where g is the number of the S's in JV which remain unchanged in JV'.

Taking g equal to the whole number of the S's in JV, we have

(8, 5f) + (5o .... 8 , ) - / ( s T = T , 25) (C)

If the two curves of order 2 (8— 1), 25 touch at all the points where they meet, and
if JVis the point-group formed by all the points of contact (each counted once only),
then JV' coincides with JV; hence the series 5,, ..., 8C is unaltered when reversed.
The general case, as may be seen from (A), is almost as simple. In order that a
point-group JV may be such that two curves can touch at all the JV points, without
further intersection, then either JV = (Sit 82, ..., 8.2, Si), as above, or

(6,, .... 8n_i, 5n, ..., Sa,Sa.i + l,...,Sl + l), or (5, 5fl,8u + l «i + 1),

or one of the two last reversed. It is very remarkable that we can apparently
assume any characterization for N, provided it comes under one of these forms and
gives the correct value of the number JV, without increasing the total number of
independent interconnexions of the JV points, that is, without increasing the
specialization of JV.

{For, let <?„, Cn> (« •$ n") be two curves which cut altogether in two point-groups
JV, JV' having any the same characterization, and let k be the number of independ-
ent interconnexions of either point-group due to this characterization. The number
of points which can be chosen at will on a given Cu which form part of a point-
group on C,, with the same characterization as JV is JV+r,,— k (Proc. loud. Math.
Soc, Vol. xxvi., p. 529). If therefore a C»> can be drawn through JV which
touches any Cn through JV at N+rn—k of the N points, it will touch it at the re-
mainder. But a CH> cau be drawn through JV touching C,, at JV—£(*» —l)(/i —2) of
the N points. Hence the number of conditions that a Cn> can bo drawn touching
Cn at all the JV points is

"^1 l)(H-2) = JV-A- + q,t + 1 - 3 M . '

Hence, since the degree of freedom of Cn accounts for q,, of the conditions, it follows
that JV—k—'in + 1 is the number of conditions to be satisfied by the JV points; and
to this wo can now add the k conditions due to the characterization. Thus the total
number is Ar— 3M + 1, which remains unaltered, whatever the assumed characteriza-
tion may be.}

The properties expressed by (A), (B), (C) hold equally for point-groups and
point-bases; and (B), (0) have applications especially to the latter. What is re-
quired to complete the theory in regard to point-bases is, first, to determine the limits
of possibility of the S's as depending on the assigned orders of the points, and,
second, to show how to deal with specialized derived point-bases when they cannot
be excluded, us in the case of any nine 2-points which lie on a proper sextic.

Whether we are given the characterization of u point-group, or of a point-base,
we know the order 2 (5 — 1) of the lowest curve which passes through it. Also in
the case of a point-group we know the order of the lowest curve without fixed con-
stituents which passes through i t ; but we do not know it at present with any
certainty for a given point-base. Hence for a point-base we have to use (B) in the
place of the theorem in the text; and we can only apply (B) by way of trial, for we
do not know the lowest value of g which will make the dorived point-base X'
possible.

We give now an example of a point-base which does not contain any points of

VOL. XXIX.-—NO. 655. 2 Y
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since JV' has no excess for a curve of order 28 — 2 [cf. (/?), p. 682, and
(/3), p. 68L] ; and these determine 2V, and pass through it.

We add an example of the reduction of a point-group. Take the

order 1. Very few such examples of a constructional kind are known, the best
known being that of the nine 2-points on a proper sextic. Constructional point-
bases which include 1-points can be obtained in any number by the methods we
have described ; not so those which do not include 1-points. (Cf. Cayley, Proc. Land.
Math. Soc, Vol. in. , p. 197 ; Collected Works, Vol. vn., p. 254.) Consider the
point-base JV formed by Im 2-points, situated at the lin points in which a C\ and Cm
intersect, these Im points being all finitely separated. We know the form of the
equation of the general algebraic curve through the point-base, viz.,

"= 0 ;

and we can thence deduce the characterization. The result is

(i.) JV = (3, 3, ... repeated I times) = (3l), if I = m;

(ii.) JV = ( I " - ' , 2m" ' , 32 J-",2m- ') , if I < m, 11 > m;

(iii.) JV- (I"1"', 2', I"1"2', 2'), if 21 <j »>•

Suppose now that all that ia given with respect to N is its characterization, viz.
that in (i.), (ii.), or (iii.), and the fact that JV"is made up of /»» separate 2-points.
(The degree JV = 3lm ) We shall consider first the application of (B) to case (ii.).
The lowest curve through JV is of order 2 (5—1) = 21; call it Cn. (If JV is cou-
etructed as originally supposed, G-a = Cf.) If JV were a point-group, the lowest
curve without fixed constituents through it would be of order «j—1+21 = l + m.
But, as regards the point-base, this is too low a limit; for, since the two curves
must intersect in 4lm points at the least, the curve without fixed constituents must •
be at least of order 2m. Assume then, by way of trial, that a C2»i without fixed
constituents can be drawn through JV, i.e., that the value of g in (B) is 2 (m — l).
Then the first 2 (m — l) of the 5's in JVare to remain unchanged in JV', and the rest
are to be diminished each by 1. Thus (B) gives

(I""1, tm-\ -i"-m, 2m~') + (I"1"1, 2u-'n, 2m"') = 1(21, 2m).

Hence JV' = ( 1 " " ' , 22'- '", 2'""') = (I1""', 21) = 1(1, m).

Now it is possible to draw through JV' = / ( / , m) two curves C%, Cim which have
double points at all the points of JV', and which have no common constituent. The
point-base JV can therefore be reduced in a single step to an unspecialized point-
group JV' => / ( / , m) ; and the construction thus found for JV is the one originally
supposed.

This JV' = / ( / , HI) is the smallest derived of JV. The next smallest JV" ia obtained
by drawing a Cy and C2m + i through JV. For this, (B) gives

(I1'"', 2'"-', Z»-m, 2"-') + (I1""', 22 ' -""1 , 3, 2""') = 1(21, 2m + 1).

It can bo proved th.it this JV" = ( l " " ' , 2 2 '~ ' " ' \ 3, 2""') must be specialized. For
JV" is u point-group containing Im + 21 points, and, if general of its kind, lies on a
proper Cui and a proper Cm + \. But through iV'a curve C-u can be drawn, having
double points at Im of the JV" points. This C-a and the proper Cj + i therefore cut in

2lm + 21 = 21 («»+ 1) > 21(1+ 1) points, since I < m.

Hence Cj must have the proper Ci+\ for a constituent. Thus

Cn = Cj+i Cl_i.

But again, since C-a has double points at each of the Im points, <7(_i must pass
through the Im points; and Ci.\ has only ^—1 points in all in common with the
proper (?i + 1. Thus P—l&lm, and li>lm, which is not true. Thus JV" must be
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point-group, expressed in terms of the second differences of the
defects, N= (4, 4, 6, 1, 1, 5, 1, 3, 7, 2). Working upwards to the
defects, we find that this is a group of 404 points whose defects fo
curves of order 23 to 33 are - 1 , 3, 11, 25,40,56, 77, 99,124,156, 190.

N = (4, 4, 6) + (I18, 5) + (I22, 3, 7, 2) (Theorem II.).

(a) (i.) (4, 4, 6) + (5, 3, 3) =1 (11 ,11 ) (Theorem III .) ;

(ii.) (5, 3, 3 )+ (2, 2, 4) = 1(8, 8)

(iii.) (2, 2, 4)+ (3, 1,1) = 1(5 ,5)

(iv.) (3, 1, 1) = (3, 4) in first differences

= 3 general points (p. 682).

This gives us the construction of the point-group (4, 4, 6). The
number of its points is l l 2 - 8 2 + 5 2 -3 = 79.

(/?) (I10, 5) = (1, 2, ... 16, 21) in first differences

= 74 general points on a CA (p. 682).

(y) (i.) (P2, 3, 7, 2)'+ (1,6, 2) = 1(9,31) (Theorem III.);

(ii.) (1, 6, 2) = (1, 7, 9) in first differences

= 28 general points on a C6 (p. 682).

Thus (I22, 3, 7, 2) is constructed by drawing a C9 and Csl through
28 general points on a Oe to cut again in 9 x 31—28 = 251 points.

specialized; in fact, Ci+i cannot be a proper curve If the construction found above
for iV" is the only solution, N" consists of the lin points in which Ci, €,„ cut, and
I point-pairs on a straight line, viz., at the points where any straight lino cuts Ci.
This straight lino is an /-fold tangent to Com + i-

This reasoning suggests the inference that the smallest derived point-base N' of
a given point-base N is tho one which is the moat likely to be general of its kind.
Hence the importance of discovering the order of the lowest curve without any fixed
constituent which passes through a given point-baso.

Talcing case (i.), JS = (3'), the lowest curve through JVis a C-n , as before. If ,
assume, by way of trial, that Ca has no fixed constituent, (B) gives (taking g — 0)

i*v\ i /o'i r/07 o/\
\O ) + {£ ) == 1 \idlt II).

Here N1 = (2J) •= / ( / , T) satisfies the premised conditions, and is general of its kind.
The C2t through iVis not a proper curve, but has the requisite property that it does
not possess any fixed constituent.

Taking case (iii.), 2V= (1"'" ' , 2l, l'""2i, 2'), we see that iVbreaks up, by Theorem I I . ,

into (I"-1 , 2') + (I2"*"', 2') = I (I, m)+I(l, 2m).
The two constituents of iV, I (I, m) and / ( / , 2m), are not independent of one another,
nor is the second general of its kind. If the first is general of its kind, the second
must consist of point-pairs having the same situation as the single points uf the first.
This gives a correct analysis of N.—October 13//;.]

2 Y 2

we
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V. NUMBER OF INTERCONNEXIONS OP A POINT-GROUP.

The number of the independent interconnexions of the points of the
point~group (p,, p2, ..., (>„), due to the characterization, is

P\ (Pi-Pi— l)+Pa(fJ4-P8-1) + ---+P«-2(p<.—P«-i-l)-

To find the number of independent interconnexions of the points of

N = (pu P2. •••»?«) = (p/, pui, ~>,P»)

we go back to Theorem I. Suppose that k is the required number of
interconnexions of N, and k' that of N'. We find the value of k—k'
by obtaining and equating two
different expressions for the least
number of parameters in terms of
which the base-curve Cn, and the
positions of all the points of IV" and
N' upon Cni can be expressed.

Taking any two coordinate axes,
the least number of parameters in
terms of which the positions of the Base-curve Cn.
N points in the plane can be ex-
pressed is 2N—k, since k is the number of independent interconnex-
ions of the JV points. These 2N—k parameters determine the N
points ; qn more parameters, and not less, will determine the Cu, since
q,t is the defect of N for a CH; and /,,.$ more parameters, and not less,
will determine N\ This last result follows from the fact that r'n_3 is
the multiplicity of N' on On* Thus one of the required expressions
is 2N— & + g,, + r',_3; and the other is 2N'—k' + q'n + rn_s, obtained by
starting with .N". Equating these, and noticing that N+qn — N'+q'n,
we have

k-k' = (^ - r , , . 3 ) - ( iV ' -< .3)

= 9»-3~9»-3, from (1), p. 675,

= 2»J-2 — 2 H - 3 = P.i-2 = Pa-i'

Hence, in changing from the point -group (p,, ...,pn) to
(p,, . . . ,po-i, pa—1), k is diminished by pa_2. After p0— pn_i — 1 such
steps (p,, . . . ,pn) is reduced to (pu . . . ,pn- i) , and k is diminished by
Pa-2 (Pa — pa-i — 1)- But, when (pls . . . ,po) has been reduced to the

* A concise statement of the Rieinann-Roch theorem is that the multiplicity of
any poinl-group on a curve Cn is equal to the (» — 3)-te excess of the point-gruuji.
{Proceedings, Vol. xxvi., p . 523.)
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general point-group (p1? p3), k is diminished to zero. Hence

Also, since h—h' = p,,_2, and N—N' = pn — 1,

therefore ( # - fc) - (N'—h') = pn - Pa _2 - 1 5 1;

therefore N-k>N'-kf> ... £ 0.

It can be easily proved that

VI. RATIONAL TRANSFORMATION OF POINT-BASES^

In rational transformation the Avhole system of curves of order n
which satisfy given conditions transforms into the whole system of
curves of another order ri satisfying another set of conditions. If the
original conditions are simply those of passage through a given point-
base, the transformed conditions are also, so long as n remains fixed,
simply those of passage through another point-base. But, as the orders
n of the original curves increase by units, the orders ri of the trans-
formed curves increase in arithmetical progression, while also the
orders of their multiple points may some increase in arithmetical pro-
gression, and others remain constant. As n varies, the orders of the
points of the transformed point-base also vary.

Rational transformation thus leads to a generalized view of the
questions treated above. Instead of investigating the properties in
respect to excess and defect of a simple point-base, whose points are
all of fixed orders, we have to consider these same properties for a

* [Multiple Points. VI.—In the application of this result to point-bases each
t-point is to be regarded as a single point. But the reasoning by which the result is
obtained fails in the majoritj' of cases, since the proof depends on the use of a slow
process of reduction, which would generally cause the derived point-bases to be
specialized. The proof can, however, be extended to any reduction of a point-group.
Thus it appears that one condition (and probably not the only one) for the correct-
ness of the result, when applied to a given point-base iV, is that it should be possible
to reduce iVby means of a series of unspecialized point-bases ; and, for this purpose,
as we have seen (Note V., p. 691), the most rapid reduction Beems the most likely of
any to prove effective.

It seems probable that the result holds for a point-base N so long as it does not
exceed twice the number of the points of order 1 contained in N. Further it
appears that the correct result, if different from, is less than that found above.
Thus in case (i.) of the example in Note V. the value of k, given by the formula
2p«_2 (pa—Pa-\ —1)» is just three times the correct value; and in cases (ii.) and (iii.)
the formula gives a value which is more than three times too great.—October \'&th.~\

t See footnotes on "Multiple Points" for the meaning of point-bate, nnd the
applicability to point-baees of the results proved for point-groups.
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generalized point-base, including some points of fixed, and others of
variable, order. The orders of the curves drawn through the point-
base increase with constant difference v, while the orders of the
points of the base increase correspondingly, but each with its own
constant difference «, which varies for different points, and may, in
particular, be zero.

In this generalized view the virtual number of the conditions
supplied for a Cn is Nn — £2i(z + l ) , while the actual number is
•Nn—I'm rn being the n-ic excess. The n-ic defect, qn, is still the
degree of freedom of a Cn which satisfies the Nn conditions. Instead
of formula (1), p. 675, we have

Nn-rn+qn = f (n + 1)

It is evident that all the defects are invariants in rational trans-
formation, since the number of general points through which a Cn,
satisfying the Nn conditions, can be drawn is equal to the number of
general points through which the transformed Cn>, satisfying the
transformed N'n, conditions, can be drawn, and vice versd. The in-
variance of the excesses is not so evident; but this can be easily
shown by proving it to hold for any quadric transformation. Thus
3«> fm Pn, h, -̂ n—2 (n +1) (w + 2) are all invariants, while Nn and n
are not. Here pn = ?„—g,,_v, 8,, = pn—Pn-v 5 a n d we may further put
»"» = ru.v—rn, c,, = (rn.v— <rn.

The invariant JVn—\ (n + 1) (w + 2) involves three others, viz.,
p* — 2t3, 3v—St, and nv—'S.u. In a simple point-base v = 1, and all
the «'s vanish; hence v*—Si3 = 1, and 3v—2t = 3 ; and a generalized
point-base derived by rational transformation from a simple one
must satisfy these equations. Conversely, if the equations hold for
a generalized point-base, it can be rationally transformed into a
simple one; for the equations v2—2»2=1, 3v —2«=3 show that a
net of curves Gv can be described with multiple points of order i,...
at the points of the point-base. This net rationally transforms the
point-base into a simple one; for Cv transforms to Cv, consequently
v = 1, and all the <"s vanish.

I do not know whether generalized point-bases with similar pro-
perties of excess and defect, but having other values than 1 and 3 for
v2—2i! and 3v—2«, are possible, or not. Assuming them to be possible,
the curves Cv) if they exist, still transform into the curves C,, but can-
not themselves be used for rational transformation. The numbers 1,3
are perhaps the lowest possible values of >'2—2«!, 3v — 2t respectively ;
and, this being so, the curves Gv certainly exist. If *s—2U2 were
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negative, it would appear that there must be a superior limit to the
order n of a curve which could satisfy the Nn conditions.

If we write •* for the deficiency of Cy, we have 8,, — cn = v9—2»s =
constant number of ordinary points in which two curves Gv intersect,
and Pn + Vn + TT—1 = nv—%it = number of ordinary points in which Cn

and Cv intersect. Reasoning from analogy we should expect 0 to be
the least possible value of «„, corresponding to the breaking-point
(p. 679), and vs—2tJ to be the least possible value of 8n.

The Oonformal Representation of a Pentagon on a Half Plane.
By Miss M. E. BA it WELL. Read June 9bh, 1898. Received,
in revised form, September 15th, 1898.

1. The conformal representation of a rectilinear polygon on a
half plane was first attempted by Schwarz and Chris toff el, who
arrived independently at the same result. They have shown that
the area of the w-plane included by a polygon, whose sides do not
cross, can be conformally represented by the northern half of the
z-plane, the boundary of the polygon corresponding to the axis of
real quantities on the a-plane.

The necessary transformation is

w =

where a, 6, ..., I are the points on the real axis of z corresponding to
the angular points of the polygon taken in order, and all lying in
the finite part of the z-plane.

av, flir, ..., A.7T are the internal angles of the polygon at the respec-
tive points. The constant M' is determined by fixing the origin in
the M>-plane. Any three of the real quantities a, ..., I may be chosen
arbitrarily, and the remainder must be determined in terms of these
three, and the constants of the polygon a . /3 ... A. The case of the
quadrilateral is given in Forsyth's Theory of Functions, p. 546.
There is one unknown quantity besides M to be determined, and the
solution involves Gauss' hypergeometric functions.


