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ON A CLASS OF ANALYTIC FUNCTIONS

By G. H. Harov.

[Received May 17th, 1905.—Read June 8th, 1906.—Received in revised form*
August 3rd, 1905.)

L
1. The distinction between integral functions whose increase is
regular (fonctions & croissance réguliere) and those whose increase is
irregular was first explicitly formulated by M. Borel.t According to him

a function is @ croissance régulidre if

lim log log M (r)
r=m log »

is determinate, M (r) denoting the greatest value of the modulus of the

function on a circle of radius 7. A function is then & crotssance irré-

guliére if we can determine two constants a, B8 (a <<B) such that for an

infinity of values of » tending to infinity

M@n<er,
and for a similar infinity of valuc 3 of »
M@ > e

The numerous extensions which have been given lately to the theory of
integral functions render it necessary to give a greater degree of precision
to this definition. We shall say that f(z) is a function whose increase is
irregular if we can determine 8, y, (8, <17,) so that for two infinities of
values of » tending to infinity M (r) < "' and M (r) > €"**) respectively,
where Vi) = A;r*(log,r)* ... (log,-1 7)*-' (log, ).

and Va(r) = Agr(og, ) ... (log,—; )>- (log, 7)**,

log, 7, logy 7, ... denoting as usual logr, loglog7, .... It is evident that
this definition applies only to functions of finite order (genre), but it is
easy to frame similar definitions for functions of higher or ter, the general
principle being obvious.

* The contents of the paper have been considerably altered in revision, and the title has
been changed.
1 Legons sur les fonctions entiéres, pp. 107 et seq.
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In this paper I propose to consider certain classes of series of the
general type

1 ' S O g
W) El gin A L

where A is any quantity which is not real and rational * The peculiar
interest of these functions lies in the fact that for the same set of values
of the numbers c, the series may

(i.) be convergent for all values of =, and represent an integral
function whose increase 18 either regular or irregular ;

(ii.) have a finite circle of convergence which is a critical line for
the function represented by the series ;

(iii.) diverge for all values of z.

All these peculiarities, for example, present themselves for different values
of A in the case in which ¢, = 1/v!, to which I shall devote particular
attention.

I wish to point out that the series (1) is not an instance of a series
artificially constructed in order to provide an illustration of certain
theoretical possibilities. On the contrary, the series
xll

9 —_—
@ v! sin vAT

presents itself naturally and inevitably when we attempt to determine the
behaviour of the function represented by the simple definite integral

r e du
b
0o Utz

and 1s therefore (In some cases) an instance of a fonction a crovssance
srréguliere quite unlike those devised by M. Borel.*

(3)

2. There is another point of view from which the series (1) may be
regarded. Let us suppose that

(4) f@) = Z¢,a",

and that A has such a value that (1) is convergent for at any rate some
values of z. The function defined by (1) is then the most obvious solu-

* The series is obviously meaningless if A is real and rational.
t Loc. cit.
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tion of the difference equation
(5) F(ze*)— F (xe*") = 2if(2),

an equation which is fundamentally the same as the classical difference
equation

(6) ®(z+a)—P@) = ¢ @),

to which it may easily be reduced by means of the substitutions

[a=de i B = 2 (),

1
w \ 25f {0V} = ¢'(w), 2\ = a.

The Series £ —22—.

v=1 8IN VAT
8. I shall now consider directly what is the nature of the function
defined by the series (1) in those cases in which it has a radius of con-

vergence other than zero. I shall suppose for simplicity that
(8) . |cv| > |cv+1l

for all values of v, and that lim ¢! is determinate.

4. () If X\ is complex and equal to A;47As,
9) | sin A7 | = e 12l (14-¢),

where e is small when » is lairge. The radius of convergence of (1) is
then pe"'™!, p being the radius of convergence of (4). This case

possesses no particular feature of interest.

(ii.) If X is real, we may without loss of generality suppose it posttive,
irrational, and less than unity. The region of convergence will then
depend upon the arithmetical nature of A. The radius of convergence of
(1) is certainly not greater than p. I shall prove first that, if X is an
algebrarc number, the radius of convergence of (1) is equal to p.

For suppose that A is algebraic and of degree m, <.e., the root of an
irveducible equation

(10) z"+a,z" ... Fan= 0,

where a,, ..., an are integers. Then, by a well known property of
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algebraic numbers,*

a1 Iy,

i —A > l,ul.-rl’

v

where K, is a constant (depending only on m) for all integral values of
& and v. Hence

(12) | u=wA| > Kpv™™,
from which it obviously follows that
(18) | cosec AT | < Knp™

for all values of v. Hence the radius of convergence of (1) is not less
than that of Z¢,1™2", i.e., than p, and therefore it is equal to p. In
particular, if p = o, the series (1) represents an integral function of z.

In the second place, values of A can be found such that the radius of
convergence of (1) is any quantity R, where

(14) 0K R<p

In order to prove this and the further results which we shall establish
later on, we must consider certain properties of simple continued
fractions.t

5. Let us suppose that A is expressed as a simple continued fraction

1 1 1

(15 ,
) G+ o+ at .

and that p,/g, " = 0, 1, ...) are the successive convergents, while

(16) -0 an_1 pn__a
% 1 N @ 2 autl

and let us denote the complete quotient

1 1
@ys1+ iz + ...

by a,. Let m be any positive integer such that

an a,+

(18) g <m<gy+1.

* Borel, Legons, 1., p. 27. This inequality is employed in a very similar manner by H. J. S.
Smith, ** On some Discontinuous Series considered by Riemann,’”’ Mess. of Math., Vol. xi.,

pp- 1-11.
+ The purpoese of §§ 5, 6 is simply to establish the equations (30) and (31) at the end of § 6.
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We can form successively the equations
[ m=kq,+m, o<k <a, 0Lm<yg),
my=kequatm O< bK<, 0 m<g,,
(19) {
my—2 = kv—l q2+”l‘v—l

0
m,_y = k,q,+m, (0

and iy one way only. Then

< kv—l < Qy,
<

0< vl<q2)y
k<a, 0

m, < qy),

(20) m= 2 kyqu-ss1+m,.

=1
Now

— Qy—s 1Pv—a+l+Pv 8 (— )—'+l
qv'~5 x - Yv—s r + — Mv—-s
H Go-ss1 Ay—s41 Qv—a+l+Qv—a =P ntg v—s+1qv—s+l+q| —x
since Po—sQuost1—Joms Pross1 = (—1)"7**L
Hence
(21) mA = L,+m,A+4(—)" Sn,
where
(22) Im = 2 kspv-u+l,
§=1

which is integral, and

v (_)a—l ks

(28) Sp= 2 — .
821 Qy—g+] qv—a+1+9v—a

In what follows I shall suppose v odd. The work in the case in which v
18 even is strictly analogous. And I shall write

@r+1 = @rQrt+gea1;
$0 that

(23/) Sm—_— Ev (—)s_lkn.

s=1 (Jv-s42

In the first place we can prove that, if %, is the last k& which does not
vanish, S, has the sign of (—)"~, .e., the sign of its last term. In fact
the last term is numerically greater than the sum of all preceding terms
of opposite sign, that is to say,

kr > kr—l + ]\‘r—% _1_

qv—r+2 Gu—r+38 ([. r+5

(24)

Suppose, for example, that r is even. ''he most unfavourable case is
obviously that in which

kr = 1, kr—l = Qy-r+2, kr-:l = Gy—r+as sy k[ = a,,
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and all the other %’s vanish. This case cannot actually occur. For, if it
could, we should have

m=—my, = a,qy+a-3qp-2+ ...+ -ria@u-riatqo-rs1,

i.e., = q,+1. But, even if it could, the inequality (24) would still be valid.
For we should have
Qv+17\ = Im_Sm = pv+l—Sm-

Now, as v 18 odd, Doir < @us1 A

Hence S» < 0; i.e., S, has the sign of (—)""'. 4 fortior: this is true in

any case which can actually occur. Moreover, since at least one k¥ must
 differ from the value assigned to it in the most unfavourable case, the
excess of the left-hand side of (24) over the right-hand side must be at least

(@5) 1,
Qv+

and therefore the modulus of S, must be at least equal to the same
quantity.

If, on the other hand, 7 is odd, the most unfavourable case is given by
taklng k, = 1, kr—l = Qyersy -0y k2 = Wy
m—my = @y_1¢y-1tFay-3¢v—_3t... +a'v—-r+2q|c—r+2+q;a—r+l ,
i.e., = ¢, But then we should have

qvA = pv—Sﬂn

and, a8 p, > ¢, A, Sn. would be positive, from which we can draw the same
conclusions. Thus an inferior limit for | S, | is given by the quantity (25).

We shall also require a superior limit for |S,|. If S, is positive, it is
certainly less than S,, deduced from S, by taking

kl = a,, ki = 05 ks = Qy-9 sy kv = a,

m—m, = aqu+av—2qv—2+-'-+a1ql =qvy1— G = QV+1_1°

Then @oiiA = In—Sa+A,
1
and, as @A =P+ —
qv+2
and I = pys,
(26) S = A— L ,
qv+2

which is less than A, and nearly equal to A when v is large.
Now S. can be equal to Sn if, and only if, m = ¢,41—1, m, = 0. In
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this case S, << \; in all other cases
(26') Sp <A—

qv+1

since at least one k¥ must differ from the value assigned to it in the
formation of Sp.

If, on the other hand, S, is negative, it is numerically less than — S,
deduced from S, by taking

k=0, kx=a,_, k=0 .. k =0,
m—-—m, = av—lqv—l+av—9qr—8+-~~+a‘2q2 - qr_ql = qr—,.

Then g N = In— S, +ag\,
and, as @A =p,— —,1—
qv+l
and I;,l =pv_ly
(27) —8, = 1—aA— L
qv+1
c . _ 1
which is less than l—a A = ¥’

and nearly equal to it when v is large.
To sum up, we have obtained the following limits for S,, :—

1) I S > 0,
28) ] o5, <=L
gv+1 qv+1
(i) If S. <O,
28") L <8 < 1—an— L.
qv+1 qv+1
6. Now
(29) | sin mA7 | = | sin (M, A—Sm) 7 | .
There are two cases to consider :
(@) Suppose m, = 0. Then
| sin mAw | = | sin Sp | > K
qv+l

where K is a constant.
(b) Suppose 1 < m, < ap—1. If Sa> 0, it is clear that
MmA—8n < (@g— DA <1—A. '

. 1
On the other hand, MA=8pn = A—8, > —.

v+l

* One exception to the second of these inequalities was noted above. Ib this exceptional
case the inequality Sm <A will be sufficient for our purpose.
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If S,. <0, mA\—S,> A, and, on the other hand,

moA—8n < (@—1) \—Sa < 1—AX.
And n all cases .

(80) | sin mAx | > qEI (@ <m < q,41)-
vt
On the other hand, |sin g,41 A7 | = sin qu ,
v+2
so that for large values of »
(81) | sin gy A | = ZLF),
Qv+

where ¢, is small when v is large. The two formule (80) and (81) will
form the basis of the succeeding argument.

7. We return now to the series (1). In all that follows I shall suppose

that h<p<a<...;

so that for large values of v

ay, 4w 9v+1/9-
are large and alas,  gigs
nearly equal to unity.

Suppose first that the radius of convergence of Z¢,z”is finite; we
may without loss of generality suppose it equal to unity. And let
ER=1/a< 1.

It is easy to see thaf, it we are given any sequence of ascending
integers @), such that lim @,,,/@, = o, we can find a continued fraction

such that . :

u lim ¢,/Q, = 1.
We can therefore find a value of A such that
32) lim g,41/a®™ = 1.

The radius of convergence of the series

q
(33) 3 %l
sin g, A7
is the same as that of 2 gui169, 2",

and is evidently R.

The remainder of the series (1) is £ u,, where

v=1

-1
o1 C "

u, = —_—
YT 41 siDRAT
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Now Ji,| < Ky, | e, 2% |[(1—| z|),

and 8o the radius of convergence of the series Tu, is at least R. Hence
the radius of convergence of (1) is R.

In this case the circle |z | = R is a coupure for the function
_ c,z"
(84) Fz) =2 8in vA
For F(zet™)~F (ze*™) = 2if (),

where f(z) = Zc,z". There is at least one singularity of F(z) of the
type z = Re¥, and it is plain that, if % is any integer,

z = Rei@+%am

is also a singularity; and these points are everywhere dense on the
circle |z | = R.

If-.p is infinite, we can still without loss of generality suppose
R =1/a < 1, and we can determine A so that

Hm (c,,vq,,ﬂ)‘/'l» = a.

The argument is then substantially the same. And it is obvious that by
supposing ¢,+1 a function of ¢, whose increase is sufliciently rapid, we
can in any case ensure that the series (1) shall be divergent for all
values of = other than zero.

8. In order to justify the assertions made in § 1. it remains only to
prove that, when f(z) is an integral function, values of A can be found
for which F(z) is an integral function and its increase irregular.

I shall consider, for simplicity, the particular case in which ¢, = 1/v!,
which enables us to illustrate adequately the different cases which may
oceur. :

In the first place, the increase of F(z) may be regular. Suppose, for
example, that A is an algebraic number of degree m. By a well known
theorem M(r) is greater than the modulus of the greatest term in the
geries (1), and so certainly > Ke'r-b*

On the other hand, the terms of (1) are less than those of the series

,,.v
n
K 2 14 'V—,

" n
* Since, by Stirling's theorem, ol

n! VvV 2n

SER. 2. VOL. 3. No. 910 RANY

(1+e) when nis laryge.
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(by § 4), and 8o M@) < Ker™.
Thus, if M@) = '™,
r—4logr+K < V() < r+mlogr+K,

and therefore the increase of F(z) is regular.

9. I propose now to find inferior and superior limits for M (») when
r =gq,, and to deduce that F(zr) may be an integral function whose in-
crease is irregular. I shall writs u, for the general term of the series (1),
and U, for -l
T owR*
0
Assuming for the moment that F(z) is an integral function, an
infertor limit to M (r) is given by the fact that M(r) is greater than the
modulus of the numerically greatest term in the series. Selecting the
q,-th term, we find that

(36) MO) > q.n190/9.)
Again, since |z"/n!| is greatest when n = gq,,
_1 q,
(87) S w, <1’qf’ L,
1 q.!

and, if the ¢,’s are so chosen that
(38) im g,u/g, = @,

this 1s certainly small in comparison with (36).
On the other hand, if u > v,
T
(39) |U.| <Eq,, Z; = Unp

!
e

T
say. Now Ul"j."“ <Kq“+' AN o <K<_9_) gt

v, v q v+1 q»+1 qv+l vie
by an easy application of Stirling’s theorem, and so, by (88),
(40) < Kq3+2q"5" bel,

v+l

[f the ¢,’s are such that
b,

(41) lim ¢;,,/q}

the quantity on the right hand of (89) will be exceedingly small.
Similarly we can prove that U, .1/U,,, is exceedingly small for
any pu > v. From this fact, in con]unctxon with (89) and (87), it follows

* In the notation of §7, ' . w 0 4 1
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that the series is convergent for z = ¢, and that the modulus of its sun

is less than ‘
2 qy

et qv!.
The series (1) therefore represents an integral function F(z), and we
have the inequalities

q'lu 2 q']..
42) Qorr =5 <M(r)<Kq,“_L‘,
q.- q,:
But, si = o &
ut, since ¢, = r, E ~ Torr
Hence
(43) v 'EA——-’_‘<MT <I{‘2 —-——_er_’
e v o7y ® %1 v orr

for r = g,, provided the conditions (38) and (41) are satisfied.
Now let us suppose that when v is odd

b~ ¢ (p>92,
and when v is even v ~ ¢ (a < 3).
Then when » = ¢, and v is odd
M) < Kr7-3¢,
and when 7 = ¢, and » is even
M@) > Krdesriosrs,

Hence the increase of F(z) is irregular.

10. In & precisely similar manner we could, by taking
¢, = 1/ or ¢ = 1T(Brv+1),

construct functions F(z) such that, for an infinity of values of », M(»)
is (roughly) of order ¢ and, for another infinity of values of », M () is
(roughly) of order o P log s

We can also find functions of emfinite order which possess similar
peculiarities. For example, by taking
¢, =log2.log3 ... logv,
we can define a function whose maximum modulus is of the order of
el
for one infinity of values of 7, and of order

6"' logr

26 2
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for another. And the whole of the preceding analysis might be made
considerably more precise, as we have generally left a considerable margin
in our inequalities.

The preceding method, however, does not (as might at first sight
be expected) enable us, for a given set of coefficients c,, such as ¢, = 1/v!,
to determine A so that the increase of F(x) shall be arbitrarily great.
For, since we must for convergence have ¢,.: < ¢!, |w,,_| is never, when.
r = q., of order substantially greater than ¢"'*".

II.

11. It might well be thought that functions such as those which
I have considered in the first part of this paper were merely examples
of an artificial character constructed in order to illustrate theoretical
possibilities. ~This is far from being the case, as I shall proceed to
show.

Let us consider the function

e _yh

~— e ua—l
M Fral) = | T

x being a complex variable whose variation is restricted by a cut along
the negative real axis, A and @ being any real or complex quantities
subject to certain restrictions which will be defined later, and «* and «*~!
having their principal values. This function includes as particular cases a
number of well known functions. For instance,

du,

(i) if A=a =1, and we suppose for a moment that z is real
and positive,
-0 ® ¢ __\Wnm—1_mn
@ F@ = e[ do=—clie) = ¢ {32

T n.n! —y—-—log;’c},

this expansion defining the behaviour of F, ,(z) for all values of .

(i) If A=1, «a =3, and =z = £? is real and positive,

" e 2/ "
= -3 _”_Ef_
w{aie ?r(n+§)}’

after some transformations which will easily be supplied. This ex-
pansion again defines the behaviour of F; 4(z) for all values of z.

G. F. Meyer’s edition (1871) of Dirichlet’s Lectures on Definite Integrals, § 98, p. 286 ;
Arendt’s edition (1904), p. 208.
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Gii) If A=3, a =13, and = = £? as before,
evdo _ 2 ( 5” sin £t j cos g,-‘t
= == —dt—
Fy (@) = 25 ey Rl cos ¢ LT sin £ )

From this we can deduce, by some simple tr'ansformatlons,

_ 2coszf, 3 =)z
) Fia0) = —2= {* VeI 1) (2n+1)'}
2 sin \/z (

a formula which again defines the behaviour of F; ;(x) for all values of z.

12. Let us now consider for what values of A and a the general
integral is convergent.

(i.) If N is complex, we may without loss of generality suppose

its real part positive, since the transformation of the integral by the

substitution » = Tl,- gives
F, J(2) = ":':' -A1-a (%)
If A = u+1iv, %* has its principal value, and so
| e"“ | —_ e——u"cos(-logu)’

and it is easy to see that tk , integral is divergent.

@(ii.) If X is purely tmag. nary, the integral is convergent if

0<E@<1,

and may be expanded in the form

(6) Fy o(z) = E ( )u wore —_——du = 7z®! %——-—Em—v-——-
' 0 o utz o 2! sin (@ad+nw)r’

where z°~! has its princlpa.l value. This series represents an integral
function of z*

@iii.) If A is real, we may suppose A > O after what precedes.
The case of A = 0 is trivial, F,, .(x) reducing to a constant multiple
of z*7L.

(iv.) We need, therefore, only consider the case in which X is real
and positive. In this case the integral is convergent, if R(a) > 0, for
all values of z save real and negative or zero values, and it represents
a hron~h nf ¢ fopction of z whose only singularities wre 0 and o .+

« pirichlet (Arendt), p. 209. The transformation really dates from Cauchy's * Mémoire
sur les Intégrales Définies > (Euvres, t. 1., p. 377).

1 Although the integral ceases to converge when z is real and negative, it is easy to see that
no finite negative value of z is really a singularity.
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13. I shall now consider the integral
(i P r—peea

the contour of integration being the imaginary axis in the plane of
t = £+1n, and P denoting the principal value.* Since

|T(—in) | = e 7| 5|t y/27(1+¢,),

the integral is convergent, provided the imaginary part of @ is nunerically
less than .

By a simple application of Cauchy’s theorem we obtain the formula

(7 PJ .I'(—t)c‘“‘dt = 2mi(e™® " —}).
This may also be put in the forms

(8 Pj I'Gpendy = 2 (e"_"—“}),
)] PJ T (i) u=""dy = 27 (e* —3).

If « = re®, we must, in (9), have | A0 | < 3=. The formul® (7) and (9)
are particular and slightly exeeptional cases of the formule

r I'(—teddtt = 2mie™t" (x> 0),

J' r (’i'l + s—:l) wNndy = Qrui~le ",

where A and s—1 are real and positive.

P
14. Now multiply (9) by %—] , where 0 < R(#) < 1, and integrate

fromw « =0 to u= . Since

‘% -] —Al
J 'ua Ain du — 'cu_,__‘\_,-n ™
o &+u sin (@—Aiy) '

° I (—t) becomes ivfinite for ¢ = 0 like —1/¢. I have considered the theory of * priucipul
values " iu great detail in threc papers in these Proceedings (Vol. xxxiv., p. 16 Vol. xxxav.,
p. #5: and Vol. xxxv., p. 81).

+ This formula is due to Mellin, A+1a Sce. Fennicw, Vol. xxix., 4, p. 41.
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where z2~1-*" has its principal value, we find*

, 22! apl.  T@nz=rn

10 2F, o(2) = z¢' P j e

(10) ne(@) snar T° —w SiD@—Aig) 7

This is our fundamental equation. It has been proved on the assumptions
that A >0, —r <am.z <7, and 0 < R(a) < 1.

15. Another easy application of Cauchy’s theorem shows that

= Lz ' 1 rt L=z
(11) Pj d P —wi Sin (@4 E) 7

_eginl@a—Atp) 7w 1

at

= 2w {3} cosec ar— lim Sg},

R=wo
where Sy denotes the sum of the residues of the subject of integration
for which the real part of £ is positive and |¢| less than B, and R
tends to infinity in such a way that the circle | ¢ | = R never passes at less
than a certain fixed distance from any pole of the subject of integration.
Hence
(12) F, o(x) = m2*7! (cosec ar— lim Sg).

R=»

15. Let us suppose first that A is rationa!; and we may without loss
of generality suppose it integral. For, if X =a/B, « and B being
integral, we find on transforming the integral which expresses F o(r) by
the substitution » = wf, and splitting up 1/(wf+=z) into partial fractions,
that F.j «(z) may be expressed as the sum of a finite number of functions
of the type A Fo ap ().

We may remark further that the formule of § 14 were proved on the
assumption 0 < R(a) <1. The case in which E(a) =1 will be con-
sidered later. Those cases in which R(a) > 1 may be reduced to these
two cases by means of the formula

(18) Fy olx) = —}\- r (‘—z—;—l> —zF) 41().

We shall therefore at present confine ourselves to the case in which A is

an integer and 0 < R(e) < 1.

16. There can be no double poles of the subject of integration in (11),
for this would require 0 < a <1 and p = a+Ag for integral values of p

* The inversion of the order of integratiou is easily justified.
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and g, which is manifestly impossible. Hence we find that

(=) 'z _1__ _\n _h=a) ..
m!sin(a+)\1n)w+)\7rz( ) T( Y )" ’

(14) Sp=2

and the two series are clearly convergent separately when prolonged to
intimty. Hence
) (_)mzkn

—_— -1
(1) Fro@) = w2 2 e

13 ap(_ntl—a)\ ,
533 orr (-2
Here —7 <am.z <, and z*~! has its principal value. It can easily
be verified that, if A = %, a = #, this equation reduces to (8) of § 11.

17. It is easy to see that, if a = 1—e+i0 (0 3= 0), each of the two
sides of (15) is continuous for e = 0. Hence (15) holds for a = 1440

If o = 0, this is still true, but we can no longer simply substitute the
limiting value of @ in the right-hand side. We find after a little reduec-
tion that

— [OS ads _l_ P () P\
(16) Fy1@)=—logz.e + )\,2( ) I‘( A)z
B S o bkl i (WIS SR §
X2 (7 =5 p>’

the dash over the sign of summation denoting that it extends to all values
of n except multiples of A.

If, eg., A =1,

< £ 1 1
a7 (@) =——e‘loga:-—%2)—! (y—l—-;—...—;).
Comparing this with (17), we are led to the conclusion that
@ i _1- £ _ [} (_)ﬂ.—l xn
(18) %:(1-*_ 2+"'+p)p!_e;’|2 n.n!

which is easily verified with the help of the well-known identity*

PC,—3 PCyt 2 7Cy—... = 1+ %+...+%.

18. We may now proceed to consider the much more interesting case
in which X is irrational. Before doing so we may summarize our con-
clusions as regards the rational case as follows :—

(i.) If A is positive and rational, and the real part of a positive,

¢ Chrystal's digebra, Vol. o, p. 19, Ex. 18.
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the function F), 4 (z), which is partially represented by the integral (1),
has two singular points, viz., 0 and @, and no others.

(ii.) If the z-plane is cut along the negative real axis, then in the
rest of the plane F, o(2) = 2°71G,(z) + G (@),
where G and G, are integral functions, and z°~! and z* have their
principal values, except in the special case in which A = a/8 and af
is a positive integer, when the expansion contains logarithmic terms.
In this equation F, ,(z) is of course the principal branch of the
function partially represented by the integral (1).

We may observe further that, if £ is positive and 7 small, the values
of Fia(—E+1in) and F, .(—£€—in) differ by a quantity whose limit for

=018 Zvr'ie“‘xf“‘l,
o e—u"nu—l
and the value of PJ du
0 u—§

is the arithmetic mean of these two values; and, finally, that every branch
of the function tends to zero when z approaches infinity by any path
which does not wind an infinite number of times round the origin.

19. When A is irrations! the condition for double poles is as before
p = a+Aq, and this is in geners . impossible : it is always impossible, for
example, if @ is complex or real a d rational, and in any case cannot occur
for more than one pair of values of p and g.* We shall therefore exclude
this possibility ; the modifications necessary if it shonld occur present no

difficulty.

Using Cauchy’s theorem precisely as before, we find
19) Fy 0@ = lim {mae? & —=272"
(19) F, ola) = i {ﬂ; o m!sin{(@a+Am)r

1 BR+R@=1] o l—a) .|
Y 2 (—)F( Y )’l’
where [%] denotes as usual the greatest integer contained in 4. The limit
on the right-hand side is certainly determinate, but it will be clear from
the first part of this paper that the series

® (—)™ ™ od n n+l—a\ ,
(20) 2 Tein(@+am) = E(—’F(" Y )”

are not necessarily convergent.

1

'If,a.g.,x-?l(l——‘—&

, 6= .-1—, it occurs for p =~ 1, ¢ = 2, and no other pair of values.
72 pat
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20. If one series converges, so does the other. We can prove, as in
the first part, that—

(i) each series is convergent if a is complex, or if a is real and
rational and A algebraic ;

(ii.) that for suitably chosen values of A the series may have any
radius of convergence, and represent functions for which the circle of
convergence is a critical line ;

(iii.) that, if the series represent integral functions of z* and z
respectively, the increase of these functions may be regular or
irregular.

21. If @ = 1, the form of the equation (19) must be modified much
asin § 17. We find
(21) F,,(@x) =— (log z+ —%—)
X ( (R} (_)m zAm
+11;1£ 17 ? m! sin Amar

(_)m m;\m

m! sin Amw

1 [(AR] a n " }
ty T err(-x)=).
The series

is one of those to which the first part of this paper was devoted. The
case in which its radius of convergence is finite is particularly interesting,
it being not a little curious to find that the sum of two functions of z and
z* respectively, whose region of existence is bounded by the circle
| £| = R, should be a function of «, which exists all over the plane.
Many other pairs of series can be constructed possessing similar pro-
perties. For example,
< (—)= P 1 s (=) z"
~ T e
sinmAr A . mw

sin —
A

is such a pair. In this case the radius of convergence of either series
cannot possibly be greater than 1, and is equal to 1 if X is algebraic; and
the circle of convergence (whatever its radius) is a coupure for the function
represented by either series. But the two series taken together in a
manner analogous to that indicated by (21) in any case converge through-
out the interior of the circle » = 1 (supposed cut along the negative real
aN1s).

22. When the series in (21)—or in (19)—aure not separately con-
vergent, we have an interesting example of the phenomenon of a “pair
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of series”” which only converge when taken together in the manner
specified in those equations. Such * pairs of series” have been con-
sidered before by Prof. Lerch and myself,* but, so far as I know, not in
connection with the question of the representation of an analytic function
in the neighbourhood of a singular point.

When the series diverge separately for all values of z the eauation
(21) serves none the less to determine the behaviour of F, ,(z) near the
origin.t Thus F), , (z) behaves like

(22) —(log 2+ 1),

and we can determine the way in which any given differeniial coefficient
for F), 1 (z) behaves near z = 0. For instance, Fin)l (z) behaves like

v (=Pt n\, (=) m—1)!
o et (- ) L

+ ‘E (=) am@Am—1) ... A\m—n~+1) ZAm—n

y m! sin mA

’

where p is the greatest integer such that Ap—n < 0. In fuct the in-
formation furnished in this case is really not less complete than in the
case in which the series are separately convergent.

922. We can write (21) in the form

F,, (@) =— (log z+ %)

. (_)m .cmu T (_)m z* ]
+hm{vr ?,n!sin Anpvr—T? r (H—i) Smn_v_rt
A A

(—r L um.rc L 7).

The function F), ) (z) therefore satisfies the two difference equations

{ F(fe)—F(fe~™) = — 2mie ",

(24) 5 . R Qe .
| Flee™—F (g™ =~ —;’—‘ B (—8).

+ See a paper ‘‘ On certain Series of Discontinuous Functions connected with the Modular
Tunctions '’ (Quart. Jour. of Math., Vol. XxxVI., p. 93), where references are yiven.
+ OQur previous couclusions as to its behaviour elsewhere are <till valid.
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where E,(£) is Mittag-Leffler’s function*

&
E.©) = P (an+41)°

The latter equation may be verified by meauns of the expression of E,(£) as
a contour-integral given by Mittag-Leffler.t

¢ Adcta Math,, t. xxix., p. 101,

t+ A full investigation of the properties of this most interesting function will be found in
Mittag-Leffler’s memoir quoted above and in two memoirs by A. Wiman in the same volume of
the Acta Mathematica. 1 may ruention inocidentally (though it hus no conneotion with the subject
of this paper) that the function &, (z) gives (for suitable values of  and s) an interesting generali-
ration of Heine’s contour integral for the gamma function, viz.,
-~ —)(—u)s 1y = —)
2 IE' (mel=wptde = ooy
the contour being the same as in Heine's formuls, to which the above equation reduces for

am],



