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THE ASYMPTOTIC EXPANSION OF INTEGRAL FUNCTIONS OF

FINITE NON-ZERO ORDER

By E. W. BARNES.

[Received and Bead February 9th, 1905.]

1. In three memoirs* which have been recently published I have
investigated the asymptotic expansions of the logarithms of integral
functions of finite order, and suggested that such investigations may be
regarded as preliminary to a classification of integral functions. The
expansions were obtained for functions of simple and multiple! linear
sequence, and it was shewn that expansions for similar functions with
certain types of repeated sequence could be deduced: such deductions
were made in certain cases.

The investigation was based entirely on the theory of divergent series :
in the first memoir I attempted to develop the theory of Borel for this
purpose. Throughout the invet igation no attempt was made to determine
remainders for the asymptotic expansions. The fundamental procedure
consisted in applying the asymptotic expansions of the Maclaurin sum-
formula to a transformation by logarithmic expansion of the function
investigated. The terms of the double series which arose in this way
were rearranged, and were then summed by an application of Fourier's
series. In order to make the application, it was assumed that | z \, when
| z | is large, was of a limited type of number, and a further assumption
was made that this limitation could not affect the validity of the result;
that, in fact, the form of the asymptotic expansion did not depend on the
arithmetic nature of \z\. This assumption is valid in the case of func-
tions of finite (non-zero) order.

It seems, however, advisable to undertake the investigation from
another point of view. The theory of divergent series is but little known:

* " A Memoir on Integral Function*," Phil. Trans. Roy. Soe. (A), Vol. 199, pp. 411-600;
"The Classification of Integral Functions," Camb. Phil. Tram., Vol. xix., pp. 322-355; "The
Asymptotic Expansion of Integral Function! of Multiple Linear Sequence," Camb. Phil. Trant.,
Vol. xix., pp. 426-439.

t For the definition of these terms see § 2 of the present memoir.
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parts of the theory are still obscure: it is desirable to place an important
series of expansions on a basis which will appeal to mathematicians
accustomed to the older methods of analysis. More than this, at the time
when the former memoirs were written, I had not developed the theory of
Maclaurin expansions, and it was impossible always to assign definitely
the range of validity of the results. After the investigation of the previous
memoir this can now be done.

The procedure employed in the present paper is that which I have
previously used* to obtain the asymptotic expansions of the simple and
multiple gamma functions. It is an application of Cauchy's theory of
residues suggested by a noteworthy investigation of Mellin,t and after-
wards applied by him to the case of the simple gamma function in a
memoir! which has priority to my own, but of the existence of which I
was ignorant when my results were being obtained. Mellin has sub-
sequently considered^ some of the problems of the present paper: the
reader may with advantage compare his investigations with my own.

2. It is convenient to repeat at the outset certain definitions which I
have introduced in connection with the classification of integral functions.

A simple integral function is one which may be expressed as a single
Weierstrassian product whose n-ih zero an depends solely upon n and
definite constants, and which is such that the law of dependence of u,,
upon n is the same for all but a finite number of zeros. The function is
called a non-repeated function if the n-th primary factor of Weierstrass's
product does not correspond to a zero of order depending upon n. If
there is such dependence, it is called a repeated simple integral function.
The zero is said to be algebraically repeated if the number which ex-
presses the repetition is a polynomial in n.

Functions of multiple linear sequence are functions whose general
zero is of the type f(a-\-?i1oD1-\-...-\-nroor), a and the <o's being constants
and the n's being the integers which define the particular zero.

The order of a simple non-repeated integral function whose n-th zero

is an is the number p such that 2 • r—7 is divergent, and 2

• Messenger of Mathematics, Vol. xxtx., Part 4 ; Phil. Tratu. Boy. Soe. (A), Vol. 196, Part 5 ;
Camb. Phil. Trans., Vol. xix., §$ 55-57.

t Ada Soc. Sci. Fennicce, T. xx., No. 12.
% Ibid., T. xxiv., No. 10.
§ Ibid., T. xxix., No. 4.
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convergent, however small the real positive quantity e may be. If
an = np, the order is l//>.

The order of the r-ple non-repeated function whose general zero is
f(a-\-Q), where Q — nlwx-\-...-\-nrwri is similarly a number p such that

When f(x) = xk, the order is r/k.

8. In the present paper I consider only integral functions of finite
non-zero order. We consider first simple non-repeated functions. The
three standard functions of this type are

1pP(z)= n J i + * } ,
u=o 1 {a-\-nu>y)

where p > 1 ;

•!&(*) = n ]fi-h
^p

 n=o 1L
where /o < 1 and p+l > l/p>p ;

^(z) = II i r i + r r T p l ^ P p S / T \
p »=o 1L (a+nwyl r U=i s (a+noo

where l//o.is an integer ^ 1.
The first function is of order l//t> less than unity. The second is of

non-integral order i/p greater than unity. And the third is of integral
order 1/p equal to or greater than unity. These functions are the proto-
types of general simple non-repeated integral functions of finite non-zero
order.

I proceed in the first place to obtain asymptotic expansions of their
logarithms and to establish the conditions under which such expansions
are valid.

4. THEOREM I.—If p be real and positive, and if z5 has its principal
value with respect to the quantity —of, the integral

1 f £(ps, a) _J[£_ds
%TTI J s sin ITS

vanishes when taken along any part of the great circle at infinity for
which B (s) is finite, provided

(1) | arg (a/w)p | = ir—e, where 0 < e <$ TT.

(2) | arg (zl<S) \ = <•', wliere 0 < V < e.
T 2
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It will also vanish along that part of the same circle for which R (s) is
positive and very large, provided in addition

(3) \aHa+n»Y\<l (n = 0, 1, ..., oo),

(4) the circle pass between the points n, n-\-l,..., n being a large posi-
tive integer.

The integral may be written

l [
2-m J sin irs

and the proof of the theorem follows the lines of Theorems I., II.,
and III. of the previous paper.

By saying that z* has its principal value with respect to the quantity
— of we mean that

zs = exp {s log z} = exp {s log | z | + s arg z},

where arg z lies in value between p arg w ± IT, SO that

— TT < arg (z/af) < x.

We do not necessarily mean that a* has its principal value with respect to
the axis to the point which represents —of in the Argand diagram.

5. Let Lo be a contour embracing the positive half of the real axis
and cutting it between s = 1/p and s = 1, and let L1 be a contour parallel
to the imaginary axis and cutting the real axis in the same point as the
contour Lo. Further, let L2 be a contour parallel to Lx cutting the real
axis between s = — I and s = — (l+l). These contours may be com-
pared with those drawn in § 7 of the previous paper.

THEOREM II.—Provided the conditions (1) and (2) of § 4 hold,

a x p 2TT< }Ll s s i n ITS

By Cauchy's theorem, provided all four conditions of § 4 hold good,

hi = -TLO>

where I denotes the integral under consideration.
The residue of ILo at s = k is (—)k A-"1 £(pk, a)zk.

Hence -1^ = - 2 K—^- 2 , . ,pfc (since p > 1)

v v ^—^
— ZJ Z*«=o
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the inversion of the double series being legitimate under the condition (3).

Thus _7u = _rXi = k ) e £ ) H . _ £ _ _ ( 1

or —ILl — log XPP (z),

provided the conditions (1), (2), (3), and (4) are satisfied.
But the condition (4) obviously cannot affect this equality; neither,

since each expression is one-valued, continuous, and analytic for all values
of | z \, can the condition (3).

We thus have the theorem stated.

6. THEOREM III.—Provided the conditions (1) and (2) of § 4 hold good,

TTZl'l>

log xPp(,z) = — ii,H : j—h£(O, a) \oBz-\-pQ'(0, a)
on Bin "T/P

where £'(0, a) denotes -~-£(s,a) and is equal to [G.F., p. 102]
Los J«=o

in the notation of the simple gamma function of parameter to.
By Cauchy's theorem coupled with Theorem I., we see that

- h , =-IL>

together with the sum of the residues of the subject of integration at
1//3.0, - 1 , ..., -I.

The residue of the subject of integration at s = — n is

()
nzn

The residue at s = 0 is the absolute term in the expansion of

and is therefore £(0, a) \ogz+p£'(0, a), the logarithm having its principal
value with respect to the quantity — of (vide § 4).
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The residue at s — 1/p is the coefficient of 1/e in the expansion of

Pi ^{a)...\- r = — : r . [G.F., p. 95.1
I /oeto r J s i n 7r//> &> s i n -jr/p r J

Combining these results with Theorem II., we have the proposition stated.

7. We have now proved that when

(1) | arg (a/wY | = TT—e, where 0 < e < •*;

(2) | arg (*/«/•) | = e', where 0 < e' < e,
we have

iog,pPw = f(o,o: T , +
O) SID. 7T//3 w

_ 1 f
27rt JL

£(££,£)
S sm

and we have to investigate how far the conditions limit the asymptotic
expansion to which this equality gives rise.

For this purpose we need the following:—

THEOREM IV.—Under the conditions (1) and (2) coupled with

| (a+kwY/z | < 1,
we have

ps sin 7rs ft=i+i n-?71

As in § 5, we prove that, under the conditions (1) and (2),

Hence, as in § 6, under these same conditions,

r r , v ( — ^
71=1 nz

+logs—/olog(a+/fcft>)

+2; ( )
^ J n = l «^'ri

Therefore, provided we have the original condition \(a-\-kai)pjz\ < 1,

which is the theorem required.
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Now we know that £(s, a-f a>)—£(s, a) = —a~',
k-\

so that £(s, a-\-kv)) = £(s, a)— 2 (a-\-nw)~s.
71 = 0

Therefore, under the conditions (1) and (2),

log AC*) = f(0, a)\ogz+f>£{0, o)+ 2 ^ ^ ^(-pn, a)+—Hl!L-

-— f
27T< Jl

m=o
sin

And therefore, provided in addition | {a+muoflz\ < 1, m = 0, 1, ..., &—1,
we have

I / \ n - l —l/o

n=J+l » m=0 «* 2-JTI J i , S Slit ITS '

In this formula the condition (1) may be modified ; for, in order that
the integral last written may be convergent, it is merely necessary that
| arg \(a-\-kw)lu>Y\ \ = -w—e, where 0 < e < ir, and that then

| arg (zjaf) | = e',

where 0 ^ e' < e. But we I .ay, by taking k large but finite, make
sxgiajw+ky as small asweplei,se, and then | arg(z/uP) \ may have any
value < 7r.*

(_) (a-fma))p

The series 2 2 —— will then be the sum of a large

but finite number of remainders after I terms of convergent logarithmic
expansions (provided | z \ be very large), and will therefore be of order
less than the order | z \~l.

s, a-\-ka>) TTZ3

Again -— I
° 27T£ )

as is, when U is large, of order
S SlllTTS

l/\zf+t (0 < t < 1).

If, then, z is not in the immediate vicinity of the zeros of iPp{z), and
if a is not such as to make any zero —{a-\-na>)l> vanish, we have, when
\z\ is large, the asymptotic expansion

y»-i
loglPpW = Z{0,a)\ogz+P?(0,a)+ T , + 2 K-±r ${-Pn, a)+Jlf

(V D i l i 7TI p 71 = 1 ' ' "

where \ Ji \ is of order less than \ z \~l.

* There is the obvious restriction that a 4 nu must not vanish for positive integral values of n.
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This result is a slight generalisation of that obtained by me previously
by the theory of divergent series [I.F., § 52]. In the present instance
we have determined the remainder in the asymptotic expansion of the
standard function of simple non-repeated sequence of order less than
unity. The result accords with my general theorem that the asymptotic
expansion is valid for all large values of | z | which are not in the
immediate vicinity of zeros of the function [I.F., § 44].

8. It should be carefully noticed that the previous formula has only
been proved under the restriction that p is real. In this case the zeros
—[a-\-nwf ultimately lie along a single line tending to infinity. But, when
p is complex, the zeros in general cover the whole plane near infinity,
for they ultimately behave like

(n,to)p = e x p |/o log n-\-p l o g w } ,

and therefore each sucessive zero has a different argument. We expect,
for this reason, that no asymptotic expansion will exist; and, in fact,
it is easy to shew that the foregoing proof breaks down.

9. Few modifications are necessary to establish the asymptotic ex-
pansions for

tog A w = log n

where jp-fl > 1/p > P-
We take the contours Lo and Ll to cut the real axis between s = \jp

and s = p+l. Then, provided the conditions (1), (2), (8), and (4) of § 4
hold good,

^ds I
sin ITS a=p+i s

00 00

S w=0

n=0

Hence, by the former argument, under the conditions (1) and (2) alone,

—ILl = log xQp(z) ;
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and therefore, by Cauchy's theorem,
»I/P i i \n-i

V . + 2' L-L-f (-,*, fl)
te) Sin 7T//0 n = - p n&

simrs

where the accent in the summation denotes that the term corresponding
to n = 0 is to be omitted.

From this formula we deduce, exactly as in § 7 and under the same
conditions, the asymptotic expansion of \ogxQp(z).

10. Consider next the function

2 ( ~ g ) 8= fi \\l+, * J exp j 2

where ljp is an integer !> 1.
In the case of this function we take the contours Lo and L t to cut

the real axis between l//o and l//o + l.
We have, under the conditions (1) and (2) of § 4,

log jjRpU) = — —- bV^ ' ds,
0
 2TH JLl s sin irs

and thence, by considering the residues at the poles of the subject of
integration between Lx and L2l we deduce

log

2'
n=-l/p+l

sin 7rs

This is the result of making 1/p — p-\-e and then putting e = 0 in the
formula for log xQp(z).

For the two terms in that formula which become infinite are

7TZ>p+e

P

we

(-zy
(0

log . - < = p + J = ^ VI" W-
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Since SfV) = l/« [G.F., p. 80], this agrees with the former result.
The calculus of limits can always be employed in this way in the more
complicated formulae to which we now proceed, when infinite terms arise
for particular values of the constants involved.

11. We now proceed to consider a very general type of simple non-
repeated integral function of finite (non-zero) order, and its asymptotic
expansion.

Let <f>{x) be a {not necessarily one-valued) function of x ivhich is such
that neither <j>(x) nor its reciprocal has any singularities outside a circle of
finite radius k and centre the origin, outside which* a, a-\-w,..., a-\-nw,...
all lie. Further, let Lt <j>(x) = 1 and let p be a positive, quantity.

Then the function which, when M(s) > 1/p, is represented by

the many-valued functions having their principal values with respect to
the axis of —w, is a function of s which has no singularities in the finite
part of the plane except at the points

s = — (m— l)jp, m = 0 , 1, 2 , . . . , QO.

Outside the circle of finite radius k we have the expansion

and, by the conditions attached to <j>(x), we have within the same region,
by Abel's investigation of the binomial series, +

By the Cauchy-Hadamard theorem, when m is large, | / r ( s ) | = km to a
first approximation.

We see now that, when R (s) > 1/p,

2 m—i T7—i TSTs = 2 /m(s)fO°s+m, a),

where /0(s) = 1, provided the series on the right-hand side is convergent.
But, when m is large, £(ps-\-m) behaves like

* In the sequel (§ 17) this need only be true when n is large, if a + «« never vanish and be
not a singularity of <p (x) or its reciprocal.

t Abel, (Euvres Completes (1881), T. i., pp. 219-238.
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and, as we see by the Taylor's expansion of log F^a+t), the modulus of
this quantity behaves like l//xm, where /x is the minimum value of

\a+na>\ (n = 0, 1, 2, ..., oo).
00 / k\m

The series 2 fm(s)£{ps+m) is therefore convergent with 2(—) ,
m=0 ° m \fl/

that is to say, if fx >- k.
Thus, if a-\-ncd for all positive integral (including zero) values of n lies

outside the circle of radius k, the function
00

Z(s, a) = 2 fm(s)£(ps+m, a)
m=0

is convergent and represents the continuation of the function which, when
00 -I

J?(s)>l//o, is represented by 2 j=—r-̂ rs . The sole poles of the

function are at the points

ps-\-m = — 1 or s = —{m—l)lp.

12. THEOREM. — / / j arg (a/coy | = ir—e where 0 < e < 7r,
« = %+xv, ^ew |Z(.«)ft/ls|e~(ir~€'>|i'l> where 0 ̂  e' -< e, tends exponentially
to zero as\v\ tends to infinity, u being finite.

We have Z(s) = 2 Ms)t(p8+r).
r =0

Also fr(s) is an algebraic polynon. al of degree r in s. Hence the (r-+-l)-th
term of Z(s) behaves like (1, s)r£(ps-\-r); and therefore, when |tt| tends to
infinity, u being finite, this term tends to infinity like

Hence, as the series for Z(s) remains convergent, however large \s\ may
be, if u be finite we see that

where 0 ̂  <•' < e, tends exponentially to zero as | v | tends to infinity.

COROLLARY.—From the formula

we see that, if u > 1/p, the same expression tends, under the assigned
conditions, exponentially to zero, when | s \ tends to infinity

13. THEOREM.—The integral -—I—— —•—ds, in which z" has its
2xi J s sin ITS

principal value with respect to the quantity —a/", is finite when taken along



284 REV. E. W. BARNES [Feb. 9,

any parallel to tlie imaginary axis in the finite part of the plane which
does not pass through finite poles of the subject of integration, provided

(1) |arg(a/o))p| = 7T—e where 0 < e ^ x ,

(2) | arg (z/ft>)p I = e' where 0 < e1 < e.

The subject of integration may be written

s sin ITS

and this, under the assigned conditions, tends exponentially to zero as | v \
tends to infinity, u being finite.

COROLLARY I.—The same integral vanishes when taken along any part
of the great circle at infinity for which u is finite.

COROLLARY II.—The same integral vanishes when taken along the
great circle for which u is infinite and positive, provided that, in addition
to conditions (1) and (2), we have

I (n = 0, 1, 2, ..., co),(3) (a+nwY
(4) The circle pass between the zeros of sin TTS.

14. We now can obtain the asymptotic expansion of the logarithm of
the very general simple non-repeated integral function of finite (non-zero)

FY{z)= nf{n--4--lexpl2

where ^-j-1 > 1/p >p.
For, by the method previously employed, we evidently have, under the

conditions (1) and (2) of § 18,

jLi s sin 7r.s

where the integral is taken along a contour Lx parallel to the imaginary
axis and cutting the real axis between the points 1/p and p-\-\. Hence,
if L2 be the contour defined in § 5, cutting the real axis in — (ZH~l)+f,
where this point is not a pole of the subject of integration, and e is small
and positive, we have, under the same conditions,

27rtJi2 s amirs

together with the residues of the subject of integration at its poles 3 = 0,
s — —(r—l)lp, r = 0, 1, ..., m, where (m—l)jp < l+l < mfp.
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Now the residue at s = 0 is the absolute term in the expansion of

l / e j l + e l o g * + . . . H Z ( 0 ) + e Z ' ( 0 ) + ...} = Z(O) log«+Z'(0).

And the residue at s = —(r—l)/p is*

r^ Ti r X residue of 2 fr(s) £(ps+r)1—r . / I—r\ r=os ( 1sin 7r (
P

/ I—r\( 1
P - v g~(r-1}/P f I r-\\

sin 7r

Therefore, under the conditions (1) and (2),

nz"

£/,

n=-p

fl—r\ 1 f^ ()
- r ) sin O^S V p } 27 r ' J '" s s m 7 r s

the double accent denoting that r = 1 is to be excluded from the summation.

15. Suppose now that \z\ is very large. As in § 7, the conditions (1)
and (2) can be replaced by the conditions

(1) That a-\-noo does not vanish for any positive integral value of n,

(2) That | arg (z/af) \ < IT.

The modulus of the integral along the contour L2 may be proved to be
at most of order |z|~J~1+e.

/ f )
The series 2 ^ is absolutely convergent if \z\ be

r=0 /-, x • /I—f'\
( 1 — r) sin-n-

V P I
m

sufficiently large and differs from 2 by a quantity which is at most of

order I-H"1"1.

the integral being taken round a circle, centre the origin and radius
k' > k. If M be the maximum value of [xp 0(x)]lp on this circle, the
integral behaves when r is large like CAT"1, where C is finite. Therefore
the series is convergent if M <. | zVjp\.

• [Note added Aprilb, 1905.]—"We assume, of course, that [l—r)fp is not an integer. In
such eases limiting forms arise.
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We see, then, that, under our new conditions (1) and (2),

log Fx (*) = Z(0) log z + Z' (0) + 2' t ^ Z(-n)
n=-p

„<*-*/. (i=2)
H=0 —n) sin 7r(

\ p
where Jj, when | z | is large, is at most of order | z \~K

16. We may give a slightly more elegant form to this formula, as
follows.

Suppose that y = x"0(x) = x"\ 1+-^ +-^2 + . . . |

when | x \ > A;.
As arg a; goes from 0 to 2TT, arg i/ goes from 0 to 2irp.
By reversion of series we obtain an expansion valid for large values

Of 12/1 ( , , )

wherein also, as arg y goes from 0 to Zirp, arg x goes from 0 to 2-n-.

/l—n\ 1 f
Now we have fn ( J = -— xn~1[(j>{x)Jn~1)pdx

(the integral being taken round a circle, centre the origin and radius > ft,
from arg x = 0 to arg x = 2>TT)

d

wherein the integral is taken along a contour which is a circular arc from
arg// = 0 to argy = 2irp.

Now, if the integral be taken along a circular arc from arg y = 0 to
argy =

[ [~np f2ir

J Jo Jo
= 0 if ft f̂c 0, and = 27np if ft = 0.

Hence
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This relation is purely algebraical, and can be otherwise obtained by actual
calculation of the quantities fn{slp) and by establishing the set of
relations between these quantities and the d's furnished by the reversion
process.

We now see that we have the asymptotic expansion

log Fx(z)

= Z(0)\ogz+Z'(0) + 2' L _ L z ( - n ) + 2 » /

p
The quantities Z(—n) which intervene may be called the Maclaurin
constants.

Vnr w

Z(-n) = 2/,(-») £(r-/m),
r=0

and, since [xp<b{x)~]n = xpn 2 Jr
 n

,•=0 xn

when x = a-f-pw (p = 0, 1, ..., m—1), we see that we have the Mac-
laurin sum-formula

V ®V V") I d I

P=O P=o p ' Lrfxp J
Again, we have

r=0

for /r(0) = 0, r=fr 0, and /0(0) = 1.

Also Z'(0) = />?«))+ 2 /;(O)f(r)f
r=0

and therefore — ̂ '(0) is the Maclaurin constant corresponding to the
application of the Maclaurin sum-formula to the function

m - l

2 log {^(aOl^a+iu.'

17. The integral function Fx(z) which has been considered is not the
most general simple non-repeated function of finite non-zero order. A
more general function would be *

)' (— »Vv v 'ft r i l+ -2—\ exp I

where <p(x) admits together with its reciprocal, outside a circle outside

* Verbal alterations have been made in this paragraph [Jpt-il 5th, 1905].
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which a+nw (w=l, 2, ..., oo) all lie, an absolutely convergent expansion
of the form

X*1 X'r

where 0 < ex < e2... and the e's tend to infinity or are finite in number.
The asymptotic expansion of the logarithm of this function can be
developed in the same way. The function F^z) which has been considered
is obtained by putting er = r (r = 1, 2, ..., oo). By a slight modification
of the previous theory we may see that, provided 1/p is not an integer,
provided a-\-nw and <f>{a-\-nu>) and its reciprocal vanish for no positive
integral value of n, and provided | arg (zl<if) | < ir, we have, when | z | is
large, the asymptotic expansion
log Fx (z)

= -8[(a)hgz+Z'{0)+
— ' nz

p
where p < l//> < p-\-1, and where \Jt\ is at most of order \z\~l-

When l//> is an integer^, we may obtain the corresponding expansion
by the calculus of limits, just as the expansion for iBp(z) was deduced
from tQpiz).

No limitation is involved in the assumption that Lt d>(x) = 1, for
we may always ensure that this shall be the case by making the
substitution z = co£ in Fx(z).

The result which has been obtained is, in the main, in accordance
with that obtained previously for integral functions of finite non-zero
order by the theory of asymptotic series [I.F., §§ 53-59]. We have,
however, given greater precision to the conditions under which the
expansion is valid than was possible before the enumeration of the
conditions under which it is legitimate to apply the Maclaurin Bum-
formula.

The generality of the form of the function 0(x) which we have taken
is very great. We may note among special cases that 0(x) may be

(1) a rational integral function of 1/x which does not vanish when
1/3 = 0, B(l/x) say;

(2) a similar rational integral function of negative fractional
powers of x ;

(3) of the form R{l/x)eGillx), where G(x) is an integral function
of x ;

(4) of the the form R(1/z)/*(1/x), where JJ.{X) is a meromorphic
function with no poles or zeros within a circle of finite radius
surrounding the origin.
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We may state the final result as follows:—

The logarithm of the specified general type of integral function of
finite non-zero order with a single sequence of non-repeated zeros admits,
when \z\ is large, an asymptotic expansion valid everywhere but in the
neighbourhood of the zeros of the function ; and all the coefficients
of this expansion can be built up from the simple Riemann £ function
£(s, a | w).

If the function is of order ljp where J-J-J-I > ljp > p, the dominant
term of the asymptotic expansion is of the order of magnitude of zxlf>, and,
if ljp is an integer p, is of the order of magnitude of zv log z.

18. I will now briefly indicate the extension of the previous theory
to non-repeated functions of multiple linear sequence. We base the
investigation on the properties of the multiple Riemann £ function
£r(s, a\w1, ..., u)r), defined in § 15 of the previous paper, the theory of
which has. been developed in the author's memoir on the multiple gamma
function.

Let <fi(x) be the function of x defined in § 11 which is such that
neither (f>{x) nor its reciprocal has any singularities outside a circle
of finite radius k and centre the origin, outside which (a-\-Q), where
ft = n1wl + . . . + nrcor, lies when nv ..., nr have any positive integral
values (zero included). We assume that the to's all lie on the same side
of some straight line P through the origin. Further, let Lt <p(x) = 1.

Then the function which, when E(s) > rjp, is represented by

where the many-valued functions have their principal values with respect
to the axis of — ljL defined in § 15 of the previous paper, is represented
for all values of s by «

Zr(s) = 2 fn(s) £r(ps+m, a),
0m=0

where £r(s, a) is the r-ple Riemann £ function, and where

The sole singularities of the function, qua function of s, in the finite
part of the plane are at the. points

(q = 1, 2, .... r,
ns+t = q, where
' T *' U = 0, 1. . . . ,oo,

or s = (q — t)/p,
SBB. 2 . VOL. 3 . HO. 9 0 0 . "
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For [M.G.F., § 81] the sole singularities of £r(s, a) are at the points
s = q.

19. We now assume, for otherwise the points (a+Q)p will cover the
whole region of the plane near infinity, that all the points Qp lie within
an angle 6 « 2ir) whose vertex is the origin. This necessitates that>
when p > 2, the points a> lie within an angle 6/p« 27r//o). In this
latter case we take the fundamental line P (see § 15 of the previous paper)
to be the external bisector of this angle.

We shall obtain the system of points Qp within the angle 6 by
rotating each point Q until its argument is p times its former value.
Let 1/Lp be the line which is obtained from l/L in this way. Then,
if <f> be the argument of the line l/L, that of the quantity 1/LP is p<f>.

Let z* have its principal value with respect to the quantity —1/Lp. (1)

By this we mean that p(j>—ir < oxgz < p<t>-\"ir.

Further, assume that z does not lie within the region of the points
- f l " ; (2)
so that therefore

| a rg z—p<f> | = rj, where 0 ^ i? < •

In the expression for fr(s, a) terms of the type (a-\-Q)pt occur, which
have their principal values with respect to —l/L. By taking a to be
positive with respect to the co's (3), we ensure that arg(a-f-fi) differs from

by a quantity < | ^ , ^ . and therefore that
Wlp (P>2);

| arg (a+W-pt | = e, where 0 < e < { J ^

We may therefore put under the conditions (1), (2), and (8)

= {Tn€l tt)8>

and we shall have 0 ^ | x/rn| < e+i; < TT.
If, now, we have the further condition rn < 1 (4), we have the

proposition that

where R(s) > — (l+l) and s = u-\-iv, tends exponentially to zero as
| s | tends to infinity. This may be proved by the same methods as those
already employed

Suppose now that p +1 > rjp > p. Let rL0 and rLx be contours,
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similar to those employed in § 5, cutting the real axis between r/p and
(p+1). Then, by the proposition just stated, the integral

1 [ZM 7T2*
2tri J s SUl TTS

is finite when taken along the contours rL0, rLlt and L2, and the two

former integrals are equal to one another.

20. Let Fr(z) denote the integral function of multiple linear sequence
and order rjp

z=o+n

p being such that p-\-l > r/p > p.
Then, as previously, we see that, provided rn < 1 and \\fsn\ < *,

log-Frfc) = — rr— -^-^ ds.
27T£ J , ! ! S Bill 7TS

But both sides of the equality are one-valued continuous analytic functions
for all values of rn. Therefore we may dispense with the condition (4)
of § 19.

Now apply Cauchy's theorem and change the contour of integration
from rLx to La. We get

S sin TTS n=-p m

plus the sum of the residues of the subject of integration at the points

« = 0,

s = (q — t)/p (q = 1,2, . . . , r ; t = 0, 1, .... m),

where {m-\-l—q)lp > l+l > (m—q)/p.

Now the residue of —? £r(ps+£) at s = (q — t)lp is
s sin 7rs

Hence the sum of the residues of the subject of integration at the points
.s = (q — t)/p is the sum of such terms of the infinite series

p J
u 2
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as are not of order less than l/|^|z+1 when \z\ is large. The double
accent in the summation denotes that the term for which t = q is to
be omitted.

The series just written is absolutely convergent for sufficiently large
values of | z |, since

= t J
the integral being taken round a circle of radius k' > k. Hence, when
t is large,

where M is the maximum value of x'fiz) on the circle in question.
The series is therefore convergent if | z | > M.

Again, the residue of the subject of integration at s = 0 is the absolute
term in the expansion

1=0

and is therefore

? \ = fr(0)

= fr(o)iog*+2;«».

We note [M.G.F., §§ 22 and 23] that £.(0) = (-YTS[{a) and that

f (0) = K-C-(S, a) = lo«r—VT)
|_3s J*=° Pric)

where 1\(a) is the r-ple gamma function and pr(w) is the r-ple Stirling
modular form.

We have then

\ogFr(z)= 2' •~""1

n=-p

_ i r

1 — t)

ZTI JL2 S sin TT

where / j , when \Z\ is large, is of order less than |z|~l.

21. In this equality the many-valued functions z\ z{q-t)lp, and log z
have their principal values with respect to the quantity —1ILP; that is to



1905.] EXPANSION OF INTEGRAL FUNCTIONS OF FINITE NON-ZERO ORDER. 298

say, in each case the argument of z lies between p<p ± TT. Further, we
have assumed that z does not lie within the region within which the
points — £2P lie. And, finally, we have assumed that a is positive with
respect to the w's, that is to say, that a lies within the region within
which the w's lie.

Exactly as in $ 7, we may remove the last restriction. And we obtain
the theorem:—

If \z\ is large and not within that part of the region at infinity
within which the points — (a+fi)p lie, and if a is of finite modulus, and
not such as to make a+£2 vanish identically for any positive integral
values of nx, ..., nr (zero included), then

log Fr(z) = h tl£ll Zr(-n=-p nz

H
P I

where \Ji\is of order less than \z\~l. In this expression

P
and log z is such that its argunu it lies between p<f> + TT.

22. We may give a more elegant form to the series just written.

Let y = * * ( * ) = a" ( l + *L+-£| + . . . ) ,

where, as arg x goes from 0 to 27r, arg y goes from 0 to 27r/>, and suppose
that, by reversion of series, we obtain

and

where q = 1, 2, ..., r.
Then, as formerly (§ 16), we have

taken along a circular arc from arg y = 0 to arg y = 27jy>.

Thus /, (s=*) = -e-\ (J=f) ,d, 4
J \ p I - %Liriq ] \ p I y
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taken round a circle enclosing the origin,

Hence the previous formula may be written

log Fr{z) = 2' ( - = ^ ZA-n) + (-YrS[(a) logz+Z'r(0)
n=~p flZ

If we make I infinite, we obtain the asymptotic expansion of log Fr(z),
which is valid when \z\ is very large and not within the domain of the
large zeros of Fr(z). If these zeros cover the whole plane at infinity, no
asymptotic expansion exists. The formula now obtained is a development
of the formula previously adumbrated [Integral Functions of Multiple
Linear Sequence, §§11 and 15]. The asymptotic expansions of the general
integral functions* of multiple linear sequence, non-repeated zeros, and
finite non-zero order follow in the same way.

In obtaining the previous formula we have assumed that 1/p is not an
integer, and that (q—t)/p is not an integer for the values

q = l, 2, ..., r ; t = 0, 1, ..., oo (q =£ t).

When such exceptional cases arise we can always obtain a definite formula
by the use of the calculus of limits.

28. As particular cases of the general result just obtained we may
write down the asymptotic expansions of the three standard functions of
finite non-zero order and multiple linear sequence:—

where p is an integer such that p+1 > r\p >p,

rRp(z) = ft ... n | ( l + £ ) exp 2 *=
L \ 17 l SX7 n 0 « r 0 s x=a+a

where r/p is an integer p.

* Such as correspond to those mentioned in $ 17 [April 5, 1905].
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We have

logrP,(*) = 2 K ^ L l
n=l

+ 2 ^—"r, 1 w — +Jh
q=l q' . TTQ

sin—1

agreeing with I.F.M.L.S., § 5. . ' '
We have a similar expansion for logrQP(-z), except that the first series

is summed from n =• —p to I (zero excluded).
To obtain the asymptotic expansion for logrftpCz) we apply the calculus

of limits to the formula for logrQpCz). The work has been carried out
[I.F.M.L.S., §§16 and 17]. The result is that, if p be not a multiple of r,

-p+l SZ

r - l ( -

m=i
m! sin

r
If p = kr, where k is &-. integer, we have

m\k Tr m\k \ 6 n

the star indicating that the terms which correspond to s = 0,
— 2&, ..., —rA; are to be omitted in the summation.


