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Theorems concerning Spheres. By SAMUEL ROBERTS.
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1. I must first of all mention some results relative to plane space,
which are suggestively analogous to those referred to in the heading
of this paper.

The following theorem was the subject of a question by Professor
Mannheim (Educational Times, Quest. 10145, Reprint, Vol. LIL, p. 48),
and has been discussed at considerable length by the late M. Eugene
Catalan (Memorie delta Pontificia Accademia dei Nuevo Lincei, Vol. vi.,
pp. 223-233, 1890).

Let A, B, G be the vertices of a given triangle (Fig. 1). Through
A let a circle be drawn meeting the side AB a second time in a

Fio. l.

point taken at will thereon, which may be conveniently denoted by
ab, and meeting the side AC a second time at a point taken at will
thereon, and similarly denoted by ac.

Through B let a second circle be drawn meeting the side AB a
second time in the point ab, the side BG again in the point be, and
the circle first drawn in a point M; then the points C, ac, be, M are
concyclic. Take, further, an arbitrary point D in the plane of the
triangle ABC, and draw the straight lines, AD meeting the circle
through A again in a point ad, BD meeting the circle through B
again in a point bd, and CD meeting the circle through C again in
cd ; then the points D, ad, bd, cd, M are concyclic.
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M. Catalan and others have proved this theorem simply enough by
means of the condition that a quadrilateral may be inscribable in a
circle.

The method is not available for the establishment of analogues in
three-dimensioned space. However, we readily arrive at the same
results by the repeated application of the first part of the theorem
which may be stated in the familiar form—" If an arbitrary point be
taken on each side of a given triangle, and through each vertex and
the points on the adjacent sides a circle be drawn, these three circles
intersect in a point."

Assuming the truth of this theorem as to the triangle ABC, and
the points ab, ac, be, we can next apply it to the triangle ABB, so
that D, ad, bd, M lie on one circle, and then to the triangle AGD, so
that D, ad, cd, M lie on one circle, and consequently the five points
B, ad, bd, cd, M lie on one circle.

2. In like manner we may take another point E at will in the plane
of the triangle, and, forming the linear connexions EA, EB, EG, ED,
and denoting the intersections of these with the four previously con-
structed circles in their order by ae, be, ce, de, we conclude that the
six points E, ae, be, ce, de, if also lie on one circle. Continuing the

process, we arrive at a system of n circles, and —-—-— lines con-

necting two-and-two together n points, so that there are n intersec-

tions of n—1 straight lines and one circle, ' — intersections of

one straight line and two circles, and one common intersection of the
n circles. On each line will lie two multiple points of tbe first class,
and one of the second, while on each circle will lie the common inter-
section of the circle, one point of the first class and ?i—1 points of
the second class. Otherwise regarded, the conclusion is that, if the
system of straight lines is given, and also n—1 of the circles,
» + l points are determined of the »th circle.

The foregoing result is one with the theorem that, if n—1 circles
intersect in one point, and a polygon be constructed so that each side
not being an extreme one passes through a single intersection of two
circles, and the two vertices terminating the side lie one on each of
the two circles, and if the two extreme sides pass through fixed
points on the two final circles, then, the polygon being varied subject
to the conditions stated, the locus of the last vertex is a circle through

. the common point and the fixed points. If we connect any point ou
x2
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this locus with the vertices of the polygon, there will be n—1 points
determined on the locus by the intersections of the connexion with
the cori-esponding circles. Thus, including the common point and
the point selected on the locus, w + 1 points are determined. We may
suppress in a variety of ways all the n—1 circles but two, and all
the lines but three, and obtain the same locus by the variation of the
triangle formed by the three lines under the conditions (Quart.
Journal of Math., Vol. iv., p. 361, 1861).

3. The diagram of Fig. 1 may be regarded as representing straight
lines and planes in general space. Viewing it so, let ABGD be a
tetrahedron. On each of the edges AB, AG, AD, BG, BD, CD, in
their order, let there be taken a point at will represented according
to the previous notation by ah, ac, ad, be, bd, cd. It is known that,
if a sphere be constructed through the vertex A and the points ab, ac,
ad, a second thi-ough the vertex B and the points ab, be, bd, and a
third through the vertex C and the points ac, be, cd, then the points
D, ad, bd, cd and a triple intersection of the three so constructed
spheres lie on one sphere, i.e., the four spheres meet in a point M
(Proc, Vol. XII.).

Take another arbitrary point in space E, and connect linearly
with A, B, G, D by AE, BE, GE, BE, meeting the four spheres
through A, B, C, D, respectively, in the points ae, be, ce, de; the six
points E, ae, be, ce, de, M lie on one sphere. For we can apply the
previous result to the tetrahedron ABGE, showing that E, ae, be, ce,
M are on one sphere, and next to the tetrahedron BGDE, showing
that the points E, be, ce, de, M are on one sphere. Again, we may
take any other point F, and connecting as before with A, B, G, D, E,
determine seven points F, af, <fec, M on a sphere. In this way, we
arrive at a system of n spheres and n points connected two-and-two

by - ' edges, formed by n'n~~-—'— planes. There are n in-

tersections of n—1 planes and one sphere, —- ' intersections of

two planes and two spheres, n intersections of one plane and three
spheres, and one common intersection of n spheres.

4. According to the foregoing reckoning we shall determine
n + 1 points on the nth sphere. But, in reality, there are determined
w ~ ^ multiple intersections on each sphere, viz., ono intersection

of n —1 planes and one sphere, n—1 intersections of two planes and
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two spheres, '- intersections of one plane and three spheres,
a

and the common point of n spheres,
A certain number of triple intersections and simple intersections

are not here taken into account.
For example, in the case of a tetrahedron, the intersection of the

sphere through a vertex with the opposite face and all the triple
intersections depending on it are left out. We omit, in fact, twenty-
four intersections of two planes and one sphere, and twenty-four
intersections of one plane and two spheres.

It is not necessary to -work out the numbers generally. Moreover,
the multiplicities of the omitted intersections may be increased in
special cases, and their numbers will be consequently modified.

5. We will examine a little more in detail the case of the tetra-
hedron (n = 4). The arbitrary points taken on the several edges
determine more than at first appears.

There are eight quadruple intersections on each of the four spheres,
determining in each case a hexahedron with plane quadrilateral faces.
The tetrahedron is thus formed exteriorly or interiorly into four
hexahedra each inscribable in a sphere. The diagram (Fig. 2) will
give a fairly good idea of the arrangement when the figure is divided

A

Fio. 2.

interiorly. The hexahedra are, of course, Aa'a'a'lmnM, Ba'cdkmnAT,
Ca'bdklnM, Ba'hcl-hnM.

We may consider the spheres as given, while the tetrahedron is
filtered by displacement in accordance with the conditions imposed.
Tim figure l-lmnM, forming Hi roe trihedral angles whoso sum is
measured by -IT, will remain fixed.
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That such variation of the tetrahedron may be effected appears as
follows.

Let ABCD be the original tetrahedron (Fig. 3).

A A

FIG. 3.

Let A'p'B' be drawn so that A' is on the sphere A, and B* on the
sphere Bt and p' is on the circle of intersection of A and B. Here I
use the letters of the vertices to denote the respective spheres passing
through them. Then, draw A'Tf in the plane A'B'B and meeting in
r and D' the sphere D, 11 being a triple intersection of A, B, D and
r on the intersection of A, D. Join B'D'. The sphere A determines
a circle through A\ p, B, meeting A'D' in r. The sphere B deter-
mines a circle through B', p\ B, meeting B'D' in t'. The points I / , / , t\ B
lie on one circle. But the points D", r', 12 determine a circle on the
sphere D, so that t' lies oh JD.

Let M be the intersection of A, B, (7, D, and let P, Q, 8 be the
intersections of the triads of spheres (B, C, D), (A, G, D), (A, B, 0).
Planes through the edge A'B' and the point 8, through the edge
B'D' and the point P, and through the edge A'D' and the point Q
determine the edges A'C, D'C, B'O'. The sphere A will pass through
Q and also meet A'G' in q', the sphere B will pass through P and
also meet B'C in s', the sphere D will pass through P and meet D'G'
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in v. Hence a sphere will pass through 0, q, s\ v, M, P, Q, 8; but
this is the sphere D, which passes through G, q, 8, v, M, PtQ, 8; so
that, as we make further displacements, the locus of the last vertex
is the sphere G.

6. There are a few particular inferences which may be noticed:
(a) When a vertex of the figure (Fig. 1) is considered as generating
a sphere, and the number of director spheres is greater than three, it
becomes unnecessary to retain all the plane faces of the figure, just as
in the plane analogue we may suppress certain of the double chords;
in fact, we obtain in a variety of ways the same locus when all but
three of the spheres are suppressed.

(b) We may regard the diagram of Fig. 1 as a flat evanescent
figure in solid space., The triple intersections of three circles in each
face coalesce, so that we fall back upon M. Mannheim's theorem,
when we regard only the sections of the spheres.

(c) In Fig. 1 suppose that the vertex F is removed to an infinite
distance. It follows that, if we draw from the vertices A, B,C,D, E
parallel straight lines, they will again meet the respective spheres in
points which lie on a plane passing through the common point of
intersection M.

7. A more important particular case is the figure of five planes, of
which a form is given in Fig. 4. Here the six arbitrary points on

A

FIG. 4.

the edges of the tetrahedron ABGD lie in one piane. In the figure,
b, c, dy e,f, g lie in the fifth plane, and there are formed five tetrahedra.
Of the five spheres circumscribing these, four meeb each plane in
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circles circumscribing the triangles formed by the intersections of four
straight lines. These circles meet in a quadruple intersection of the
four spheres, and the centres of the circles are concyclic with that
point. Thus the spheres about A BO and D, Abe and d, Bbe and /,
Ddf and g meet in the plane ABD ; the spheres about ABO and D,
Abe and d, Bbe and/, Gee and g meet in the plane ABO. The two
multiple intersections are therefore the triple intersections of the
three spheres common to both sets. If we select a tetrahedron, and
omit the sphere circumscribing it, the four spheres through the
vertices intersect in the fifth plane.

If we add another plane, the sections of the spheres circumscribing
the tetrahedron by a plane will consist of ch-cles circumscribing the
triangle formed by five straight lines, and, if there are n planes, the
sections of the spheres by a plane will be circles circumscribing the
triangles formed by the n—1 intersections of the plane with the
remainder of the planes. To these systems of lines Miquel's theorem
and the extensions by Clifford, Longchamps, &c, apply, and we need
not occupy ourselves further with them in the present connexion.

We may consider a figure representing the intersections of five
planes as reduced in the limit to one plane. Thus, by inspection of
Fig. 5, we seo that, if bed, BOD arc homologous triangles, A their

FIG. 5.

centre of homology, nnd cfij the axis, and if Abed, ABCD are
inscribablc in circles, then the points cCcg, bBcf, dPfg arc sets of
concyclic points and the live circles meet in :i point M. The
symmetry of the figure shows that each intersection of three lines is
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the centre of homology with respect to two of the triangles, and each
circle circumscribing a triangle passes through its centre of homology
with regard to another triangle.

8. The inversion by reciprocal radii vectores of Fig. 1 in the
simplest case, that of the tetrahedron, introduces more symmetry.

Taking the centre of inversion at an arbitrary point in space, we
get, for the four faces, four spheres passing through the centre and
intersecting in six circles which have four triple intersections. These
form a tetrahedron with circular edges and spherical sides. We
have also four spheres, meeting in a point. Each of these passes
through the inverses of the arbitrary points on the edges of the
original tetrahedron adjacent to the vertex through which the
sphere passes. These inverses may themselves be regarded as
arbitrary points, one on each circular edge. This is the direct inter-
pretation of the original theorem, but does not fully express the
symmetry.

There are eight spheres intersecting in sixteen quadruple points,
the radical centres of sets of four spheres. Let us say the spheres
are A, B, G, D, a, b, c, d. We have to take no account of the inter-
sections of A and a, B and b, G and c, D and d.

The quadruple intersections may be denoted as in the following
scheme:—

Abed, ABCB, abed, aDCD,

ABcd, ABCd, aBcd, aBCd,

AbCd, AbCD, abCd, abCD,

AbcB, ABcD, abcD, aBcD,
showing that there are eight such points on each sphere. It follows
that, if we take six spheres B, C, D, b, c, d, and from the triple inter-
sections as indicated, bearing in mind that Abed, abed must mean
that A passes through one of the triple intersections of bed and a
passes through the other, then, if the eight points of one set form the
apices of a hexahedron inscribable in the sphere A, the other eight
form a hexahedron inscribablo in the sphere a. The analogue in
plane space is—" The circles which have for chords the four sides of
a quadrilateral inscribable in a circle form by the other intersections
of the same pairs of circles a quadrilateral inscribable in a circle "
(Catalan, Theorvmes et Problemes, sixieme edition, p. 39).

Tlie limiting case may be noted in which the six spheres meet
in one point, the tangents at which .are parallel to the faces of a
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hexahedron with quadrilateral faces and inscribable in a sphere, and
to this also there is a plane analogue.*

9. Invert now the figure of five planes and its five associated
spheres. This gives us ten spheres and sixteen points of quintuple
intersections. Let the spheres derived from the five planes be
denoted by a, bt c, d, e, and the other five spheres by A, B, 0, D, E.
The quintuple intersections will be duly represented by

AbcdE, ABCdE, ABcDE, AbODE,

AbcDE, ABcde, AbCde, ABCDe,

abCdE, aBcdE, ahcDE, aBCDE,

aBOde, aBcDe, abCde, abcde.

The total number of quintuple arrangements containing the first five
letters of the alphabet would be 25 •=• 32. But, if we take any one of
the set, say AbcdE, its complementary form aBODe does not appear.
There are left sixteen sets.

From the scheme it appears that eight of the quintuple intersec-
tions lie on the sphere A, and eight others on the sphere a. Also the
hexahedra have not only six plane quadrilateral faces but also two
diagonal planes. Thus as to the hexahedron circumscribed by the
sphere A, the circular sections AE, AB, &c., Ae, Ab, &c., pass
severally through four intersections, and the same is the case with
the circular sections aB, aC, &c, ab, ac, &c.

* Having proceeded so far, I happened to refer to a paper by M. Auguste
Miquel, and in the second part (Liouville, Journal, t. x., le s6rie, 1845) I un-
expectedly found the theorem of this article in the second form. Accepting
Miquel's proof, we may evidently by inversion with respect to one of the quadruple
points pass back to the original theorem relative to the tetrahedron, from which we
set out. For we shall have four planes whose six intersections correspond to the
six circles of intersection through the point. We shall have also the six arbitrary
points, one on each linear edge, and finally the four spheres each passing through
a vertex (intersection of three planes) and the arbitrary points on the three adjacent
edges. The proposition is the last in the second part of Miquel's paper, and differs
rather in character from the other contents, which relate to circles in the plane and
on a spherical surface. Inversion by reciprocal " radii vectores " was at that date
of recent introduction. In fact, the theory of "images " is given by Professor W.
Thomson (Lord Kelvin) in the same volume. Accordingly, M. Miquel makes no
use of the method which is directly applicable to some of his propositions. It
appears that Mr. Stubbs employed the substitution p~l for p in space equations
towards the end of 1843.




