
198 Mr. E. T. Whittaker on a New Connexion of [Nov. 13,

On a Arow Connexion of Bessel Functions with Legendre

Functions. By B. T. WHITTAKKR. Received and Read

November 13th, 1902.

1. Introduction.

The object of this communication is to establish a new connexion
between the Legendre functions Pn(z) and Qn(z) and the Bessel
functions Jn(z) and Yu(z). Hitherto the functions have been known
to be connected in two ways, namely, (1) by Heine's expression of
the Bessel functions of the first kind and integral order as limiting
cases of the associated Legendre functions of infinite order and finite
degree, and (2) by a set of formula) Avhich express Legendre func-
tions in terms of definite integrals involving Bessel functions. The
most general form of these latter integrals was given by Scluifheitlin
{Math. Ann., Vol. xxx.). The integral

P,u(z) = (-1)" (-2-Y {'j^WcDam.x-idx,

which is valid for a certain range of values of n, may be given as
typical of this set of formula;.*

The new connexion developed in this paper between the Legendre
functions P»(z), Q,,(s) .and the Bessel functions /„(-), Y,, (z) is not
restricted to integer values of the order n of the functions, but can
be expressed in various forms applicable to all real or complex
values of n. The connexion is expressed by the results numbered
(I.) to (V.) below.

It may be noted here that a certain kind of reciprocity exists be-
tween the theorems of Schafheitlin and those of this paper; this is
in agreement with a remarkable theorem due to Retzval, namely,
that, if two functions u (2) and v (z) are connected by a relation of
the form , . e ., >,, ,,

u (z) — J cr'v (t) dt,

then they are also in general connected by a relation of the form

v (z) = constant xje' : '?t (t) dt.

* An interesting family of integrals of this type is given by Steinthal, Quart.
Jour., Vol. XVIII., pp. 330-345.
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2. A Formula which embodies a Simple Case of the Connexion.

We shall first recall a formula which is due to Lord Rayleigh,*
namely,

) t J { z ) P\'2Z

this formula may be regarded as embodying the simplest special case
of the connexion which is the subject of this paper.

For the sake of completeness a short proof will be given of this
formula. It is true when n = 0 and n = 1, since it then reduces to
the well known results

h (z) = ( ) i•h (z) = (
* irz

and /2z\i d /sinz\

We sliall now show by induction that it is true in general. For
suppose it true for n = k— 2 and n = lc — 1. Then, from the re-
currence formula

7cPfc (z)-(2k-l)zPk.l (*) + (fc-l) P,_2 («) = 0,
we have

and by hypothesis the right-hand member is equal to

£)'*" { -'-~1)'2*:r L) •'.-!(--

'Theory nf Sound, Vol. u . , j). "J(5••>.



200 Mr. E. T. Whittaker on a New Connexion of [Nov. 13,

™

and the quantity in the last bracket is zero, in consequence of the
reuuiTence-fornuilit! for the Bessel functions. We have therefore

tl \( sin z

and. consequently the formula is true for n = k if it is true for
7i = k - 1 and n = k — 2. But it was shown to be trne for n = 0 and
n = 1. It is therefore true universally.

It "will be noticed that this result connects the case in which the
Legendre function Pn{z) can be expressed in a finite form in terms
of elementary functions (namely, the case of n = an integer) with
the case in which the Bessel function /,„ (s) can be expressed in a
finite form in terms of elementally functions (namely, m equal to
half an odd integer).

M. Transition to a Definite-Integral form of the Connexion.

It is obvious that Rayleigh's equation has a meaning only when n
is an integer. In order to extend it to the case in which n is not an
integer, we must therefore express the result in a form which is
capable of this generalization.

For this purpose we observe that, if r be a postive integer, we
have

eiz'dt = 2 —
?dzr

Since, when n is an integer, P,,(s) is a sum of positive integral powers
of z, we have therefore

and therefore, by (1.), we have

and on combining the two parts of the range of integration, namely,
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from — 1 to 0 and from 0 to 1, this becomes

This equation has so far been proved for the case in which n is an
integer. But each member of it has a meaning, even when n is not
an integer, and we may therefore now inquire how far the result is
still true when the restriction to integral values of n is removed.

4. General Case in which n is unrestricted : a Family of Integrals
which satisfy BesseVs Differential Equation.

It Avill now appear that the integral last obtained is merely one
member of a large family of definite integrals by which the Jicsscl
functions can be represented for all values of z and of n, real or
complex. To show this, let u denote the integral

1 f e="Pn_
Jy

where P,,_4(£) is the Legendre function of order (n—£), and where
the path of integration, y, is left for the present unspecified.

Then, on performing the differentiations, we have

dhi 1 dn , / , ril \
dz- z dz \ zi I

[ [ ezlitPn.h(t)dt

and, since iJ,,_j {t) satisfies Legend re's equation, namely,

it follows that the right-hand member can be written in the form

*"» f eztid i (I-/.2) dP.»-i W ] +2z~H \ e^tP,^ (t) dl
Jy V. dt ) JT

or
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This result is clearly equally true if the Legendre function of the
second kind, Q»-j(O> *s usef^ instead of P,»-j(O> since no property
of Z',,.^) has been required beyond the fact that it satisfies
Legendre's equation. We have therefore the result

The integrals zl [ es"P*n.4 (t) dt

f ( L )

and zk eiliQn.x (t) dt

mi J j

satisfy BesseVs differential equation of order n, namely,

d?n . 1 du , / -I n* \ ^
dz* z dz \ z's I

provided y is any path of integration (it may be either an open path or a
closed circuit) which fulfils the condition that the quantity

[or, in the second case, the corresponding expression in Qn_4 (£)J resumes
its initial value after describing y.

Suitable contours y can be found in plenty to satisfy this con-
dition. Thus it is evident that an arc joining the points t = —1 and
t— + 1 is a possible path y for the integrals (II.), p- 203 ; that is,
the expression

is a solution of Bessel's differential equation of order n.

5. Determination of some Notable Members of the Family of Integrals
found in § 4.

The theorem of § -t enables us to express the connexion between
the Lcgendre and Bessel functions in a variety of forms ; for, if we
write

it has just been shown that the quantity / i s a solution of Bessel'e
differenti.il equation of order «, for all values of », real or complex.
To find its precise relation to the known solutions J» (s), we need
only Hud t.lu- first term of the asymptotic expansion of / f o r large
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positive values of z. This is obtained in the following way :—We
have, integrating by parts,

ts1 J.i dt

The first term of the asymptotic expansion of / is therefore

-̂ i {«•*„-! ( l ) - e - P . - » ( - l ) }
iz*

or ~ {fl»-e-r'*|M-»)ftr},

or 22"*e("-«*"r cos j" * - ( n + £ ) -J | .

Since the first term of the asymptotic expansion of /„ (z) is

it follows that / = (2:r)4 e
(f-*)"'V11

so /„(.)

Combining the parts of the integral which arise from the ranges — 1
to 0 and 0 to 1 respectively, tve have a connexion behoeen the Bessel and
Legendre functions expressed by the formula

Jn (z) = ( I
which is valid for all values of z and of n, real or complex. This re-
sult was previously (in § 3) shown to be true for the particular case
in which n is half an odd integer.

The general theorem of § 4 enables us not only to express J,,{z) in
terms of Legendre functions of the first kind, but also in terms (of
Legendre functions of the second kind—namely, the ^-functions
which are defined by the equation

For, in the plane of a complex variable s, let S denote a contour
Avhich encircles the part of the real axis between the points 5 = 1
and s = —1, and which begins and ends at infinity. The direction
in which S tends to infinity will be supposed to be such as to make
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the real part of szi negative. Then, if t be a real quantity lying
between 1 and —1, we have

f (s—t)-n-ie"ids = an-*elH | «-""» e"dv,
JS Jv

where v = z(s—t), and where V denotes a contour in the v-plane
which encircles the origin and begins and ends at infinity in the
u-plane.

But, from Heine's expression for the Gramma-function, we have

' + £> 27T J r

and therefore

b-< r(
If we substitute this result in Bessel's integral

Avhich is valid when the real part of (« + ^) is positive, we have

and, on substituting the expression given above for the Legendre
function of the second kind, we obtain the formula

= - g j - r " f «"'Q"-i

T/w's integral is of the type fozmd in § 4 ; i£ connects the Bessel function
,Tn (z) toitJi the Legendre functions of the second land. I t is valid for all
values of z, and for all values of n whose real part is greater
than —-|-.

6. The Second Solution T,, (z) of BesseVs Differential Eqtiation ; and
the General Solution.

We now proceed to consider the second solution of Bessel's
differential equation. When the order n of the equation is not an
integer, it is known that Jn(z) and J.,t(z) are two independent
solutions; and therefore the second solution when n is not an integer
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or, by (II.), {*)'][ <*» ( r f+ ^ + f-)*—•(')*•

But the Legendre function of the first kind satisfies the relation

for all values of k, real or complex; and therefore we have

/-„ (*) = ( - ) J cos I zt + — + j j P,,., (0 <ft.

Jo

Since the general solution of Bessel's equation (n being still supposed
to be not an' integei*) consists of any linear combination of /,, (^) and
J_n (z), it follows that this general solution is represented by any
linear combination of

\ COB Bt
o

and 2* J sin ztPn.k (t) dt.
Jo

Consider now the case in which n is an integer. In this case we have

j_,,(,) = ( - i r J.0O;
and therefore the function /_„ (z) no longer provides an independent
second solution of the differential equation. We take therefore the
second solution Yn (z) intooduced by Hankel, which is defined to be

l i m i t . . / " D° •'-, .-.>(*)-*•-,(*>,
t

Substituting the values found above for /_(„_,> (z) and /(H.e)(s), we
have

f (z) = limit (—V P — ( (-1)" cc
Zt+ —. r + TT ) ( "..-iCO dt

A. iJ ^ f i a v x

C7r

= limite.o( —) I sin f z<+— -^J P , , . ^ ) dt;
\ 7 r / J 0 c \ 4 - 2i I

erefore we have the formula

Yn{z) = (27TZ)1 T sin ( zt-(n-%) - | | P,,.4 (0 d*, (IV.)
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which expresses the Bessel ftmction of the second hind in terms of the
Legendre function.

Since the most general solution of Bessel's differential equation of
order n consists of a linear combination of /„ (z) and Yn (z), it follows
that this can be expressed as a linear combination of

p
Jo ""*

and z1 sin zt P,,.b (t) dt.
Jo

But this result, which is thus obtained for the case in which n is
integral, is the same as the result already obtained for the case in
which n is not integral; and therefore we see that in all cases the
general solution of BesseVs equation is a linear combination of

a* \ cosztPn.h(t)dt
J o , . (V.)

and s1 I sin zt Pfl.j (t) dt
Jo

On Groups -which are Linear and Homogeneous in both Variables
and Parameters.* By W. BURNSIDE. Received and Read
November 13th, 1902.

In this paper I propose to discuss the nature of the characteristic
determinant, first of any simply transitive linear homogeneous group,
and secondly of any transitive linear homogeneous group. The
result of this discussion, leading to a quite general form for the

* Prof. L. E. Dickson has called my attention to two errors in my paper ' ' On
the Continuous Group denned by any given Group of Finite Order" (Proc. T.ond.
Math. Soc, Vol. xxix., pp. 546-565). These occur in $} 5, 6, dealing with particular
cuses of the oharacteristic determinant of a eimply transitive linear homogeneous
group. The induction in § 5 is faulty; and, as Prof. Diokson has shown, it is not
the case that, if the characteristic determinant is the power of a single linear factor,
the group is necessarily Abelian. The error in § 6 occurs in the third line from the
bottom of p. 553. The correct inference from the previous reasoning, there, should
obviously be not v = /u, but that v is a multiple of /*. The results of §§5, 6 are used
in § 10 in establishing one of the main results of the paper. In order that this
should rest on a sound basis it is essential that these errors should be corrected.


