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On a New Conncaion of Bessel Functions with Legendre
Punctions. By B. I. Wairraker. Received and Read
November 13th, 1902.

1. Itroduction.

T'he object of this communication is to establish a new connexion
between the Legendre functions P,(z) and (,(2) and the Bessel
functions J,(2) and Y, (z). Hitherto the functions have been known
to be connected in two ways, namely, (1) by Heine’s expression of
the Bessel functions of the first kind and iutegral ovder as limiting
cases of the associated Legendre functions of intinite order and finite
degree, and (2) by a set of formunle which express Legendre func-
tions in terms of definite integrals involving Bessel functions. The
most general form of these latter integrals was given by Schafheitlin
(Math. Ann., Vol. xxx.). The integral

P, (z) = (=" (i)‘ [ Joney () cos 2z . 27V,
S0
which is valid for a certain range ot values of », may be given as
typical of this set of formnla.*

T'he new connexion developed in this paper between the Legendre
tunctions P, (2), Q.(2) and the Bessel functions J,(z), Y, () is not

_restricted to integer values of the order # of the functions, but can
be expressed in various forms applicable to all real or complex
values of n. The connexion is expressed by the results numbered
(1) to (V.) below. .

It may be noted here that a certain kind of reciprocity exists be-
tween the theorems of Schafheitlin and those of this paper; this is
in agreement with a remarkable theorem due to Retzval, nanely,
that, if two functions « (2) and v (z) are connected by a velation of

the form - . " (Z) _ J'O:f,“ (t) (lt,
then they are also in general connected by a relation of the form
v (2) = constant X [e~*n (¢) dt.

* An interesting family of integrals of this type is givon by Steinthal, Quart.
Jour., Vol, xvir., pp. 330-345.
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2. A Formula which embodics a Simple Case of the Connexion.

We shall first recall a formula which is due to Lord Rayleigh,*

namely, . 4 .
(&) 77 =2 () (557)

this formula may be regarded as embodying the simplest special case
of the connexion which is the subject of this paper.

For the sake of completeness a short proof will be given of Hm
formula. It is true when » =0 and » = 1, since it then reduces to
the well known results

’ F 2\ .
.J’ (z) = (wz) sin z

dz z

w ne = (Z) L)

We shall now show by induction that it is true in general. For
suppose it true for n = k—2 and n="Fk—1. Then, from the re-
currence formula ’

P (2)—(2k—1) 2P, _, (2) ;}- (k—=1) P, (2) =0,

we have

() ()

=y () -e-nre ()] (7).

and by hypothesis the right-hand member is equal to

@=L () # @ -6 () ¢ o)

. =\ g (201, RS (Ul .(~) _ }
K (2;,) PTGy e ()= (k=) + (k=1 s (5)

()« {—EDEZD 16 @10, @ + (=) ) }

* Theory of Swund, Vol, 15, p. 263,
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or

LI LI 2h—1 .
() #7@+ (Z) ¢ G0 { 2@+ ha@ + 5@ |
and the quantity in the last bracket is zero, in consequence of the
recurrence-formulie for the Bessel functions. We have therefore

2 () (722) = ()

and consequently the formula is true for ==k if it ig true for
n=Lk-1and n="Fk—-%2. But it was shown to be true for » =0 and
w=1. It is thevefore true universally.

It will be noticed that this result connects the case in which the
Liegendve function P,(z) can be expressed in a finite form in terms
of elementary functions (namely, the case of = = an integer) with
the case in which the Bessel function J,,(z) can be expressed in a

finite form in terms of elemeutary functions (namely, m equal to
half an vdd integer).

3. Lransition to « Definite- Integrul form of the Connexion.

It is obvious that Rayleigh's equation has a meaning only when =
is an integer.  In order to extend it to the case in which 2 is not an
integer, we must therefore express the result in n form which is
capable of this generalization.

For this purpose we observe that, if » be a postive integer, we
have

1 r (1 r Ty
[ et = (—1)" —dj et = 2 S (?.‘P:)
-1 (l;'

- ddz" \ oz

o

Since, when % is an integer, P,(z) is a sum of positive integral powers
of z, we have therefore

LI d \ /=ing
P, (1) dt =20, );
j_|b ( ) I:(t") (

~ &

and thevefore, by (1.), we have

By (2) = (=5)" ( 2”)'_['1 =P, (t) dt,

and ou combining the two parts of the range of integration, namely,
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from —1 to 0 and from O to 1, this becomes

Ty () = (Z—;‘)a [ cos (2~ 27) Pu(0) s
0

This equation has so far been proved for the case in which # is an
integer. But each member of it has a meaning, even when % is not

an integer, and we muay therefore now inquive how far the result is
still true when the restriction to integral values of n is removed.

4. General Case vn which n s unrestricted : @ Family of Integrals

which satisfy Bessel’s Differential Bquation.

Tt will now appear that the integral last obtained is merely one
member of a large family of definite integrals by which the Bessel
functions can be represented for all values of z and of #, veal or
complex. To show this, let « denote the integral

ZQJ et u—i(t) dt,

where P,_, () is the Legendre function of order (n—1), and wherve
the path of integration, vy, is left for the present unspecified.
Then, on performing the differentiatious, we have
2 ’ 2
d*u +.1v du + (l_f’."_) w

dz? z dz g

= (§—n")s~ f P,y (t) dbt+ 22745 j

Y k4

¢t P,_, (t) dt

+ z* ( et (1—=8) P, _, (¢) dt,

Y

and, since I’,_, (¢) satisties TLegendre’s equation, namely,
) .
d {(1_¢2) ‘Z_I_:M} 4 (nf—3) Py (8) = O,
dt dt
it follows that the right-hand member can be written in the form

st J i § (=) PP (0] T L ANOT?

v

42 J & (1—=1%) P, _, () dt,

or I d{ s-%e=”(1—tﬂ)‘ilit:l§it_)-iz-! 1—8) e-“P,,_,(t)} .

Y
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This result is clearly equally true if the Legendre function of the
sceond kind, @,.-,(¢), is used instead of P,_;(¢), since no property
of P,;(t) has been required beyond the fact that it satisfies
liegeudre’s equation.  'We have therefore the result

T'he integrals z‘j ey (8) dib
’ (1)
and z‘j Q. () dt
satisfy Bessel's differential equation of order n, namely,
A 1 du 2}
wty Er(=F)e=0

provided y s any path of integration (it may be either an open path or a
closed civendt) which fulfils the condition that the quantity

¢ (1 __tﬂ) (d.],)’:i—;—(t—) —1zP, (t) )

[or, in the second case, the corresponding expression in Q,_, (t)] resumes
ats initial value after descrabong y.

Suitable contours y can be found in plenty to satisfy this con-
dition. Thus it is evident that an avc joining the points t = —1 and
t= +11is o possible path y for the integrals (II.), p. 203 ; that is,
the expression

1
2 j P, (8) dt
-1
is a solntion of Bessel’s differential equation of ovder #.

5. Determanation of some Notable Members of the Family of Dutegrals
' Jound iu § 4.

The theovem of §-+ enables us to express the counexion hebween
the Tiegendre and Bessel fouctions in a vaviety of forms ; for, if we
write

7= j " enp,, (8 dt,
-1

it has just been shown that the quantity is a solution of Bessel's
diffevential eqnation of ovder #, for all values of », real or complex.
To find its precise rvelation to the known solutions J,(z), we need
only fiud the fivst tevm of the asymptotic expansion of 7 for large
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positive values of z. This is obtained in the following way :—We
" have, integrating by parts,

1 z4i 1
‘— 4 (_3__ 2} - _»l‘ sti dPH- (t)
I=2s [_1 P ] - L gt Pus () gy
The first term of the asymptotic expansion of I is therefore
1 21 - i
o {e"Puy (1) —e Py (—1)}
or ;i_‘ {ezl_e-:n(n—])iw}’

or 2274 -D¥T og {z—(n+-}g) g— } .

Since the first term of the asymptotic expansion of J, (2) is

2\ - 1y™ ]
(”—z) cos {z (n+3) o) } y
it follows that I = (2r)t -0 J (2),

L] e .
50 Ju(2) = (Zz;) g\ -bkim j le=“1>,,_,(z) dt.

Combining the parts of the integral which arise from the ranges —1
to 0 and O to 1 respectively, we have a conneaion between the Bessel and
Legendre functions expressed by the formula

7. = ( Zy’ [ : cos { st (n—3) :‘} Py®dt (L)

which is valid for all values of z and of n, real or complex. This re-
sult was previously (in § 3) shown to be true for the particular case
in which = is half an odd integer.

The general theorem of § 4 enables ns not only to express J,(z) in
terms of Legendre functions of the first kind, bnt also in terms of
Legendre functions of the second kind—mnamely, the Q-functions
which are defined by the equation

©E) =g Aoy =)™ a

For, in the plane of a complex variable s, let S denote a contour
which encircles the part of the real axis between the pointss=1
and s = —1, and which begins and ends at infinity. The direction
in which § tends to infinity will be supposed to be such as to make
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the real part of szz negative. Then, if ¢ be a real quantity lying
between 1 and —1, we have

[ (s—t) " deids = z“'*e““" vV e dy,
s v
wherev = z(s—¢), and where V denotes a contour in the v-plane
which encircles the origin and begins and ends at infinity in the
v-plane. )

But, from Heine's expression for the Gamma-function, we have

1 1 ~(n+)) i -nkj ivd
—_— = v
T(ntd) 2 Lo e
and therefore
. 2 - ;
§—t -n-le.;fds = _ zu-}e.tu(nﬂ}lm.
J, ¢ T +d)

"

1f we substitute this result in Bessel’s integral
Ju(2) = :

1 -
=ti 1 — tﬁ n-§ ¢
"M (n+%) ’:,B ( )i,

which is valid when the real part of (n+1) is positive, we have

Zig- mrhlim

. .
J.(z) = S qu-x (A=)t (a=t) -V g™ dsdt,

and, on substituting the expression given above for the Legendre
function of the second kind, we obtain the formula

Ze-tr+Dyim

T =2 Qo) (1L

This integral is of the type found in §4; it connects the Bessel function
J. (2) with the Legendre functions of the second kind. It is valid for all
values of z, and for all values of » whose real part is greater
than —4.

6. The Second Solution Y, (z) of Bessel's Differential Equation ; and
the General Solution.

We now proceed to consider the second solution of Bessel's
differential equation. When the order n of the equation is mot an
integer, it is known that J,(z) and J_,(z) are two independent
solutions; and therefore the second solution when = is not an integer

iS J_,‘(Z),
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2z 4! nr , ow\ g,
or, by (I;.), _ (ﬂ:) jocos (zt+ ) + 7[)1 _uy () dt.
But the Legendre function of the first kind satisfies the relation
Pk (Z) = P—k-l (Z)
for all values of k, real or complex ; and therefore we have

J.,.(2) = (2;2)i Jl cos {zt+ %’5 + %}P,,_, (t) dt.

Since the general solution of Bessel’s equation (n being still supposed
to be not an'integer) consists of any linear combination of J, (3) and
J_. (2), it follows that this general solution is represented by any
linear combination of

1
2t j coszt P, (t)dt
1]

and 2 J' sin 2t P, _, (£) dt.

0

Consider now the case in which = is aninteger. Inthis case we have
Ju(@) = (-1)"1.(2);

and therefore the function J_, (z) no longer provides an independent
second soluticn of the differential equation. We take therefore the
second solution Y, (2) introduced by Hankel, whiclh is defined to be

(—1)" J-(n-e) (Z)_J(u-e) (z) .

€

limit, _,

Substituting the values found above for J_i_. (2) and J, . o (s), we
have
.. 22\¢ (' 1 T Mw  €w
— N =z il __1 " ( o e
Y, (2) hmlt,o(")‘LG{( )" cos zt+4+2 2)
™ nw €T
—CO0S (Zt+ —4— —'-2" + E}:) } P,,_&(t) dt
2sin <

= limit.., (gf)l f - 2 sin (zt+ —1—.— %’r) P, ,(t)de;
o /

and therefore we have the formula

Y, () = (2mz)} r sin {zt-— (n—%) -% } P, (t) dt, av.)
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which expresses the Bessel function of the second kind in terms of the
Legendre function.

Since the most general solution of Bessel’s differential equation of
order 2 consists of a linear combination of J, (2) and Y, (2), it follows
that this can be expressed as a linear combination of

1
z*j coszt P,_, (t) dt
0

1
and z*J sinzt P,_, (¢) dt.
0

But this result, which is thus obtained for the case in which « is
integral, is the same as the result already obtained for the case in
which 7 i3 not integral ; and therefore we see that in all cases the
general solution of Bessel's equation is a linear combination of

o jq coszt P,_, (¢) dt I
0

. (V)
1 .
and P J .sin 2t P,y (¢) dt j

0

On Groups which ave Innear and Homogeneous in both Variables
and Parameters.* By W. Burnsipe. Received and Read
November 13th, 1902.

In this paper I propose to discuss the nature of the characteristic
determinant, first of any simply transitive linear homogeneous group,
and secondly of any transitive linear homogeneous group. The
result of this discussion, leading to a quite general form for the

* Prof. L. E. Dickson has called my attention to two errors in my paper ‘‘ On
the Continuous Group defined by any given Group of Finite Order’ (Proc. Lond.
Math. Soc., Vol. xx1x., pp. 546-565). 'These occurin §§ 5, 6, dealing with particular
cuses of the characteristic determinant of a simply transitive linear homogeneous
group. The induction in § 5 is faulty; and, as Prof. Dickson has shown, it is not
the case that, if the characteristic determinant is the power of a single linear factor,
the group is necessarily Abelian. The error in § 6 occurs in the third line from the
bottom of p. 553. The correct inference from the previous reasoning, there, should
obviously be not v = u, but that v is a multiple of u. The results of §§ 5, 6 are used
in § 10 in establishing one of the main results of the paper. In order that this
should rest on a sound basis it is essential that these errors should be corrected.



