VI.-Theorems relating to a Generalisation of the Bessel-Function. By the Rev. F. H.
 Jackson, H.M.s. "Irresistible." Commennicuted b,y Dr W. Peddie.

1.

In this paper, theorems which are extensions of the following, are diseussed :-

$$
\begin{align*}
& 1=\left\{\mathrm{J}_{0}(x)\right\}^{2}+2\left\{\mathrm{~J}_{1}(x)\right\}^{2}+2\left\{\mathrm{~J}_{2}(x)\right\}^{2}+\ldots \ldots \ldots . . . \text { ad inf. } \tag{a}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{J}_{-1}(x)=(-1)^{n} \mathrm{~J}_{n}\left(x^{(x)}\right. \\
& \mathrm{J}_{u+1}(x)=(-1)^{n} \frac{(3, x)^{n+}}{\Pi^{*}} \frac{h^{u}}{d\left(x^{x}\right)^{n}}\left\{\frac{\sin x}{x}\right\}
\end{align*}
$$

We define $J_{[n]}\left(\lambda, c^{c}\right)$ as

$$
\sum_{r=0}^{n} \frac{1}{r]:[n+r):(\overline{(2)},(2))_{n+1}} \lambda^{n+2 r} x^{[n+e n n}
$$

In this expression

$$
\begin{aligned}
& {[n+r]!\text { is } \Gamma_{p}([n+r+1]) \quad \text {,r } \quad \Pi_{\mu}([n+r\rceil)} \\
& {[n] \text { is } \frac{\mu^{\prime \prime}-1}{p-1}}
\end{aligned}
$$

The function $\Pi_{p}([n])$ is defined in the previous paper (Trans. Roy. Soc. Edin., vol. xli. part i.). If λ be changed to $i \lambda$ in $J_{[n]}$, the function will then be more strietly analogous to J_{n}.

In Weierstrassian form

$$
\begin{aligned}
& \mathrm{P}=1+\frac{1}{[2]}+\frac{1}{[3]}+\ldots-\ln \frac{p}{p-1} \\
& \left.\left\{2_{n}\right\}=(2)_{n} \Gamma_{, ~(~}^{n}(n+1]\right)
\end{aligned}
$$

being in the case of n positive and integral
analogous to

コ.4.6 ${ }^{3} n=2 \times 3!$
'This notation enables us to write shortly

2.

If we invert the base element p, we see that $[r]$! is transformed into $p^{-r(r-1) 2}[r]$! and that $(2)_{r}$ becomes transformed into $p^{-(/ r-1) / 2}(2)_{r}$. These transformations hold whether r be integral or not. Inverting the base p in the series $J_{[n]}(\lambda)$, we obtain

$$
\begin{equation*}
p^{n^{2}} \sum_{r=0}^{r=\infty} \frac{(-1)^{r} r^{2} p^{2 r(n+r)}\left[(u+r]!(2)_{r}(2)_{n+r}\right.}{(\lambda)}\left(\frac{\lambda}{p}\right)^{n+2 r} \tag{1}
\end{equation*}
$$

which we denote

$$
\begin{equation*}
p^{p^{c} \hat{a}^{2} \ln \left(\frac{\lambda}{p}\right.}\left(\frac{\lambda}{p}\right) . \tag{2}
\end{equation*}
$$

Lommel has shown that

$$
J_{n}(\lambda) J_{\ldots}(\lambda)=\sum_{r=0}^{r=\infty}(-1)^{r} \frac{\left(\begin{array}{c}
n++n+2 r \tag{3}
\end{array}\right)}{\Gamma(n+r+1) \Gamma(n+r+1)}\left(\sum_{\frac{1}{2}}^{n}\right)^{m+n+2 r}
$$

The function ${ }_{s}^{[}[n]$ was formed while seeking to extend the above theorem. The extension was found to be

The relation between J and $\frac{3}{6}$ was surmised from the following simple but similar theorem.

$$
\begin{aligned}
\mathrm{E}_{2}(\lambda) & =1+\frac{\lambda}{[1]!}+\frac{\lambda^{2}}{[2]!}+\ldots \ldots \\
\mathrm{E}_{1}(\lambda) & =1+\frac{\lambda}{[1]!}+p_{\left[\frac{\lambda^{2}}{[2]!}\right.}^{[2]} \\
\mathrm{E}_{\imath}(\lambda) \mathrm{E}_{\bar{i}}(\lambda) & =1+\frac{2 \lambda}{[1]!}+\frac{2(1+p) \lambda^{2}}{[2]!}+\ldots .
\end{aligned}
$$

which suggested that ${ }^{3}(n)$ might be derived from $J_{[n]}$ by inverting the base p. As I have given the proof of (4) as an example of the use of generalised Gamma-functions in a paper communicated to the Royal Society, London, it will be sufficient to say here, that the theorem may be proved by showing, that the coefficients of the powers of λ on both sides of the equation are identical, being cases of the extension of Vandermonde's theorem (Proc. Lond. Math. Soc., series 2, vol. i. p. 63).

In the notation of Art. (1) we may write the theorem

$$
\begin{equation*}
\mathrm{J}_{\{m ;}(\lambda) \mathfrak{E}_{\left\{_{m}\right.}(\lambda)=\sum_{r=0}^{r=\infty} \frac{(-1)^{r}\{2 m+2 n+4 r\}!}{\{2 m+2 n+2 r)!\{2 m+2 r\}!\{2 n+2 r\}!\{2 r\}!}!^{m+n+2 r} \tag{5}
\end{equation*}
$$

3.

Consider the series

THEOREMS RELATIN: TO A GENEI:ALISATION OF THE BESSEL-FUNCTION. 107 By means of (5) we write this-

We see by inspection that the coefficient of λ^{2} vanishes: the coefticient of $\lambda^{2 r}$ is the expression

The series within the large brackets is easily summed term by term. The sum of the first two terms is $-1 ;[2 \cdot[2]$, which is a factor of the third term. The sum of $-p_{[2 r-2}^{2 r+2}[2]$ and the third term is

$$
P^{r}[2 r-4][2 r-2][2 r+2][2 r+4]
$$

Continuing in this way, we obtain that the sum of the first r terms is

$$
(-1)^{r-1} \mu^{\prime \prime(-11)} \frac{[2 r-2][2 r-4][2 r-6] \ldots \ldots \ldots \ldots \ldots[4][2]}{[2 r+2][2 r+4][2 r+6] \ldots \ldots \ldots \ldots[t r-2]}
$$

which is equal to the last term, but is of opposite sign. The coefficient of $\lambda^{2 r}$ is zero, and only the constant unity is left. Therefore
which, if $p=1$, reduces to

$$
\begin{equation*}
1=\left\{J_{0}\right\}^{2}+2\left\{J_{1}\right\}^{2}+2\left\{J_{2}\right\}^{2}+ \tag{10}
\end{equation*}
$$

4.

Consider now the series

Referring to expression (8), we see that the coefticient of $\lambda^{2 r}$ is

The series within the large brackets, although simple in form, offers considerable ditticulty in summation. The sum is

$$
\begin{equation*}
2\left(p^{2}+1\right)\left(p^{4}+1\right) \ldots\left(p^{2 r-z}+1\right) \cdot\left(p^{2}+1\right)\left(p^{4}+1\right) \ldots\left(p^{-r}+1\right) \frac{\{2 r\}!\{2 r\}!}{\{4 r\}!} \tag{13}
\end{equation*}
$$

The sum in general for all values of r is

$$
2^{[4]^{3 r}} \cdot\left[\begin{array}{l}
2 r] \tag{14}\\
{[2]^{3 \cdot}}
\end{array} \cdot \frac{\Gamma_{p^{\prime}}([r+1]) \Gamma_{p p}([r+1])}{\Gamma_{p^{2}}([\because r+2])}\right.
$$

The reason that the simple series $(p=1)$

$$
1+\frac{4}{2} \cdot \frac{2 r}{2 r+2}+\frac{8}{4} \cdot \frac{2 r(2 r-2)}{(2 r+2)(2 r+4)}+
$$

is easily summed as

$$
2 r \frac{2 r!r!}{2 r!}
$$

while the general series offers difficulty, is that the functions Γ_{p} are present, both to the base p^{4} and the base p^{2} in the series (12) and in expression (14).

Heine has shown in his "Kugelfunctioneu" that

$$
\begin{aligned}
& \left.\phi[a, b, c, p, x]=1+\frac{(1-a)(1-b)}{(1-p)(1-c)} x+\frac{(1-u)(1-a p)(1-b)(1-b p)}{(1-p)\left(1-p^{2}\right)(1-c)(1-c} x^{2}\right)+\ldots . .
\end{aligned}
$$

Consider now the series

Since

$$
\begin{aligned}
& {[2]=p^{2}-1} \\
& {[1]=p+1} \\
& p^{\prime}-1 \\
& {\left[\frac{4}{2}\right]=\frac{p^{4}-1}{p^{2}-1}=p^{2}+1}
\end{aligned}
$$

we write series (16) as the sum of two Heine's series

$$
\begin{align*}
& s_{1}+p \frac{p^{\prime}-1}{p^{r+1}-1} \mathrm{~s}_{2}=\left\{1+\frac{p^{r}-1}{p^{r+1}-1}+p \frac{\left(p^{r}-1\right)\left(p^{r-1}-1\right)}{\left(p^{r+1}-1\right)\left(p^{r+2}-1\right)}+\ldots .\right\} \\
& +p_{p^{r+1}-1}^{p^{r}-1}\left\{1+\frac{p^{r-1}-1}{p^{p+2}-1} p^{p^{2}}+\ldots+p^{p(s+m / 2 / 2}\left(p^{r+1}\left(p^{r+2}-1\right) \ldots\left(p^{r+s+1}-1\right)+\ldots\right\}\right. \tag{17}
\end{align*}
$$

These series we transform by means of (15).
First, for the series S_{1} we put

$$
\begin{aligned}
& a=p \\
& b=p^{-r} \\
& c=p^{r+1} \\
& x=-p^{r}
\end{aligned}
$$

THEOREMS RELATIN: TO A GENERALINATION OF THE BESSEL-FUNCTION. 109

 and obtain, after obvious reductions,$$
\begin{aligned}
& s_{1}=1+\frac{p^{\prime}-1}{p^{r+1}-1}+\frac{\left(p^{r}-1\right)\left(p^{r-1}-1\right)}{\left(p^{\prime+1}-1\right)\left(p^{\prime+2}-1\right)}+\ldots
\end{aligned}
$$

In the same way, if we put

$$
\begin{aligned}
& a=p \\
& b=p^{\prime \prime} \\
& c=p^{r+2} \\
& x=-p^{\prime+1}
\end{aligned}
$$

we obtain, after reductions

$$
\begin{align*}
& \mathrm{s}_{2}=1+\frac{1^{\prime+-1}-1}{p^{\prime+2}-1^{p^{\prime}}+\ldots \ldots} . \tag{19}
\end{align*}
$$

So that $s_{1}+p \frac{p^{\prime}-1}{p^{\prime+1}-1} s_{n}$ may be written

$$
\begin{align*}
& \frac{(1+p)\left(1+p^{2}\right) \ldots\left(1+p^{r-1}\right)}{\left(1-p^{\prime+1}\right)\left(1-p^{r+2}\right) \ldots\left(1-p^{2 r}\right)}\left\{2-\frac{p^{2+}-1}{p^{\prime-1}} p^{\prime \prime}+\frac{\left(p^{2 r}-1\right)\left(p^{2 r-2}-1\right)}{\left(p^{2}-1\right)\left(p^{2}-1\right)} p^{4}-\ldots \ldots \ldots .\right. \tag{20}
\end{align*}
$$

Adding the terms with like numerators together, we obtain

The series within the large brackets is the simplest type of series, and its sum is well known to be

$$
\because\left(1-p^{2}\right)\left(1-p^{4}\right) \cdots . .\left(1-p^{2}\right)
$$

We have therefore

$$
\begin{gather*}
1+\left[\begin{array}{l}
{[2] \frac{[r]}{[1]}[r+1]}
\end{array}+p_{\left[\frac{4}{[2]}\right][r][r-1]}^{[r+1][r+2]}+\ldots\right. \\
=\frac{2(1+p)\left(1+\mu^{\prime 2}\right) \ldots\left(1+\mu^{\prime-1}\right) \cdot\left(1-\mu^{\prime 2}\right)}{\left(1-p^{\prime}\right) \ldots\left(1-p^{2 r+1}\right)\left(1-p^{\prime+2}\right) \cdot \cdots\left(1-p^{2 r}\right)} \tag{23}
\end{gather*}
$$

Changing the base ρ, to μ^{2} we obtain the series whose sum was sought

The coefficient of $\lambda^{2 r}$ is obtained by multiplying this sum by

$$
\begin{gathered}
\{4 \cdot\}! \\
\{\because r\}!\{2 r\}:\{2 r\}!\{\overrightarrow{2}\}!
\end{gathered}
$$

which gives us

$$
\begin{equation*}
(-1)^{2\left(1+p^{2}\right)\left(1+p^{4}\right)\left(1+p^{6}\right) \ldots\left(1+p^{2 r-2}\right) \cdot\left(1+p^{2}\right)\left(1+p^{4}\right) \ldots\left(1+p^{2 r}\right)} \underset{\{2 r\}!\{\{r\}!}{ } . \tag{25}
\end{equation*}
$$

as the coefficient of $\lambda^{2 r}$. If r be not integral, the infinite products in Herne's transformation do not reduce to finite products but to expressions in terms of the Γ_{p} functions, ultimately giving the sum of the series in the form (14).

Having obtained the coefficient of $\lambda^{2 r}$, we have established, subject to convergence, the theorem

$$
\begin{align*}
& =1-\frac{2\left(1+p^{2}\right) \lambda^{2}}{\{2\}!\{2\}!}+\ldots \ldots(-1)^{2\left(1+p^{2}\right) \ldots\left(1+p^{12-2}\right) \cdot\left(1+p^{2}\right) \ldots\left(1+p^{2 r}\right) \lambda^{2 r}}- \tag{26}
\end{align*}
$$

which is the extension of

$$
\begin{equation*}
J_{0}(2 \lambda)=\left\{J_{0}(\lambda)\right\}^{2}-\supseteq\left\{J_{1}(\lambda)\right\}^{2}+2\left\{J_{2}(\lambda)\right\}^{2}-. \tag{27}
\end{equation*}
$$

This is a particular case of the addition theorem for J_{0}.

$$
J_{0}\left(\lambda+\lambda_{1}\right)=J_{0}(\lambda) J_{0}\left(\lambda_{1}\right)-2 J_{1}(\lambda) J_{1}\left(\lambda_{1}\right)+\ldots
$$

5.

Defining * $\operatorname{Sin}_{p}(\lambda)$ and $\operatorname{Cos}_{p}(\lambda)$ as
we obtain

$$
\begin{aligned}
& \operatorname{Sin}_{\mu}(\lambda)=\lambda-\frac{\lambda^{3}}{[3]!}+\frac{\lambda^{5}}{[5]!}- \\
& \operatorname{Cos}_{\mu}(\lambda)=1-\frac{\lambda^{2}}{[2]!}+\frac{\lambda^{4}}{[4]!}-\ldots \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Sin}_{p}(\lambda) \operatorname{Cos}_{p}^{1}\left(\lambda_{1}\right)+\operatorname{Cos}_{p}(\lambda) \operatorname{Sin}_{\frac{1}{p}}\left(\lambda_{1}\right)=\left(\lambda+\lambda_{1}\right)-\frac{\left(\lambda+\lambda_{1}\right)\left(\lambda+\lambda_{1} p^{2}\right)\left(\lambda+\lambda_{1} p^{4}\right)}{[3]!}+. \\
& \operatorname{Sin}_{p}(\lambda) \operatorname{Cos}_{\frac{1}{p}}(\lambda)+\operatorname{Cos}_{p}(\lambda) \operatorname{Sin}_{\frac{1}{p}}(\lambda)=2 \lambda-\frac{2\left(1+p^{2}\right)\left(1+p^{p}\right) \lambda^{3}}{[3]!}+\ldots .
\end{aligned}
$$

This suggests that the extension of the addition theorem of $J_{0}\left(\lambda+\lambda_{1}\right)$ will be on similar lines.

Consider now the series

Iroc. Edin. Math. S'uc, vol. xxii., 1904.

THEOREMS RELATING TO A GENERALISATION OF THE BESSEL-FUNCTION. 111
and the product

$$
\begin{align*}
& { }^{-}{ }_{(n)}(\lambda)\left\{_{[n]}\left(\lambda_{1}\right)\right. \tag{2!}
\end{align*}
$$

From series (28) we are to form a new suriss, of which the successive terms will be homogencous in $\lambda \lambda_{1}$ and of degrees $0,2,4,6, \ldots \ldots 2 r, \ldots$, respectively. The first term of (28) gives rise to the constant, unity.

$$
-\frac{\lambda^{2}}{\{2\}!\{2\}!} \text { and }-\begin{gathered}
\lambda_{1} 2, \mu^{2} \\
\{2\}!\{2\}!
\end{gathered}
$$

The term of the second degree arising from $J_{[1]} \sum_{[1]}$ is

$$
-\frac{[4]}{[2]} \frac{\lambda \lambda_{1}}{\{2\}!}\{2\}!
$$

There are no other terms of the second degree; the sum of these terms is

$$
\begin{aligned}
& \frac{1}{\{2\}!\{2\}!}\left\{\lambda^{2}+\frac{[4]}{[2]} \lambda \lambda_{1}+\mu^{2} \lambda_{1}^{2}\right\} \\
= & \frac{1}{\{2\}!\{2\}!}\left\{\lambda^{2}+\left(p^{2}+1\right) \lambda \lambda_{1}+p^{2} \lambda_{1}^{2}\right\} \\
= & \frac{\left(\lambda+\lambda_{1} p^{2}\right)\left(\lambda+\lambda_{1}\right)}{\{2\}!\{2\}!}
\end{aligned}
$$

Terms of the fourth degree arise only from the first, second, and third terms of (28), being respectively

$$
\begin{aligned}
& \frac{\lambda^{4}}{\{4\}!\{4\}!}+\frac{\lambda^{2} \lambda^{2} p^{2}}{\{2\}!\{2\}!\{2\}!\{2\}!}+\frac{\lambda_{1}{ }^{4} p^{8}}{\{4\}!\{4\}!} \\
& \left.\left[\begin{array}{l}
{[4]} \\
{[2]}
\end{array}\right\} \frac{\lambda^{3} \lambda_{1}}{\{4\}!\{2\}!\{2\}!}+\frac{\lambda \lambda_{1}^{3} p^{2}}{\{4\}!\{2\}!\{2\}!}\right\} \\
& { }^{\prime}{ }^{2}[8]=\left[\begin{array}{c}
\lambda^{2} \lambda_{1}{ }^{2} \\
{[4]} \\
\{4\}!
\end{array}\right.
\end{aligned}
$$

Remembering that

$$
\{4\}!=[4][2] \text { and }\{2\}!=[2]
$$

we write the sum of (30)

Replacing

$$
\left.\left.\frac{1}{[4][2][4][2]}\left\{\lambda^{4}+\frac{[4][4]}{[2][2]} \lambda^{3} \lambda_{1}+\frac{[4][4]}{[2]\left[{ }^{2}\right]}\right]^{2} \lambda_{1}^{2} p^{2}+\frac{[4]}{[4]}\right]^{2} \lambda_{1}^{2} p^{2}+\frac{[4][4]}{[2][2]} \lambda_{1}{ }^{3}+p^{8} \lambda_{1}^{4}\right\}
$$

$\left[\begin{array}{l}{[4]} \\ {[2]}\end{array}\right.$ by $\left(p^{2}+1\right)$ and $\frac{[8]}{\left[\frac{8}{4}\right]}$ by $p^{2}+1$
the expression within the large brackets reduces to

$$
\left(\lambda+\lambda_{1}\right)\left(\lambda+p^{2} \lambda_{1}\right)\left(\lambda+p^{2} \lambda_{1}\right)\left(\lambda+p^{4} \lambda_{1}\right)
$$

The term of the sixth degree in $\lambda, \lambda_{1} I$ have verified as

$$
\begin{equation*}
-\frac{1}{[6][4][2][6][4][2]}\left\{\left(\lambda+\lambda_{1}\right)\left(\lambda+\lambda_{1} p^{2}\right)\left(\lambda+\lambda_{1} y^{4}\right) \cdot\left(\lambda+\lambda_{1} \eta^{2}\right)\left(\lambda+\lambda_{1} p^{4}\right)\left(\lambda+\lambda_{1} p^{6}\right\} .\right. \tag{31}
\end{equation*}
$$

The term of degree $2 \cdot$ is the following expression-

$$
\begin{aligned}
& \left\{\begin{array}{c}
\lambda^{3 r} \\
\{2 r\}!\{2 r\}!
\end{array}+\frac{\lambda^{3 r-2} \lambda_{1}^{2} p^{2}}{\{2 r-2\}!\{2 r-2\}!\{2\}!\{2\}!}+\cdots . . .+\frac{\lambda_{1}^{2 r} p^{2 r}}{\{2 r\}!\{2 r\}!}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +p_{[\because r \cdot r}^{r(r-1,[r \cdot]}\left\{\frac{\lambda^{r} \lambda_{1}{ }^{r}}{\{2 r\}!\{2 r\}!}\right\}
\end{aligned}
$$

We have shown in Art. (4) that in case $\lambda=\lambda_{1}$ this expression is

$$
\begin{equation*}
\frac{(\lambda+\lambda)\left(\lambda+\lambda \mu^{2}\right)\left(\lambda+\lambda \nu^{4}, \ldots\left(\lambda+\lambda p^{2 r-2}\right) \cdot\left(\lambda+\lambda p^{2}\right)\left(\lambda+\lambda p^{4}\right) \ldots \ldots\left(\lambda+\lambda p^{2 r}\right)\right.}{\{\partial r\}!\{2 r\}!} \tag{33}
\end{equation*}
$$

It has been directly verified that for particular values of $r(1,2,3)$ the forms, in cuse λ be not equal to λ_{1}, are

$$
\begin{gathered}
-\frac{\left(\lambda+\lambda_{1}\right)\left(\lambda+\lambda_{1} p^{2}\right)}{\{2\}!\{2\}!} \\
\underline{\left(\lambda+\lambda_{1}\right)\left(\lambda+\lambda_{1} p^{2}\right)\left(\lambda+\lambda_{1} p^{2}\right)\left(\lambda+\lambda_{1} p^{4}\right)} \\
\{+\}!\{4!! \\
-\frac{\left(\lambda+\lambda_{1}\right)\left(\lambda+\lambda_{1} p^{2}\right)\left(\lambda+\lambda_{1} \mu^{i}\right) \cdot\left(\lambda+\lambda_{1} p^{2}\right)\left(\lambda+\lambda_{1} p^{4}\right)\left(\lambda+\lambda_{1} p^{6}\right)}{\{6\}!\{6\}!}
\end{gathered}
$$

respectively. This indirectly establishes the form of the coetficient of degree $2 r$ in λ and λ_{1}. A direct proof of the algebraic identity would, however, be preferable. Writing now

If $\mu=1$, we obtain the addition theorem of J_{0}

$$
\begin{equation*}
J_{0}\left(\lambda+\lambda_{1}\right)=J_{0}(\lambda) J_{0}\left(\lambda_{1}\right)-\because J_{1}(\lambda) J_{1}\left(\lambda_{1}\right)+ \tag{35}
\end{equation*}
$$

6.

The analogue of Lominel's theorem

$$
J_{\ldots}(\lambda)=(-1)^{\prime \prime \prime}\left\{\mathrm{J}_{2, m+\ldots}(\lambda)-\underset{\lambda}{\stackrel{2 m}{ }(m+n)} \mathrm{J}_{\mathrm{J}_{m+n-1}}(\lambda)+\ldots \ldots\right\}
$$

I have shown by two distinct methons* that

$$
\begin{align*}
& \underset{\kappa=m}{\mathrm{~L}} \frac{\left(p^{\gamma-\alpha}-1\right)\left(p^{\gamma}-\alpha+1\right.}{\left(p^{\gamma-\alpha-\beta}-1\right)\left(p^{\gamma-\alpha-\beta+1}-1\right) \cdots\left(p^{\gamma-\beta+\kappa-1}-1\right) \cdot\left(p^{\gamma-\beta}-1\right)\left(p^{\gamma-\beta+1}-1\right) \cdots \cdot\left(p^{\gamma-\beta+\alpha-1}-1\right)} \tag{36}
\end{align*}
$$

* Proc. Lond. Math. Síc., series $\stackrel{2}{2}$, vol. i. pp. 71, $7=1903$, and Imer. Sour. Meth., vol, xxvi., 1904.

THEOREMS REIATING TO A (\&ENERALISATION OF TJIE [BESSEL-FUNCTION. 113

In terms of the function Γ_{p}, 1 this paper, this thenem is

Change the hase fo to p": and put
we obtain

$$
\begin{aligned}
a & =-m \\
\beta & =-m-n \\
\gamma & =1-m+1
\end{aligned}
$$

Now consider

The coefficient of $\lambda^{n+2 r}$ is the infinite series
which by (38) reduces to

Now remembering

$$
\{2 s\}!=[2]^{*} \Gamma_{i}([x+1])=(2) \Gamma_{l}([n+1])
$$

the expression (40) reduces to
which is $(-1)^{-m} p^{2 m(m+n)} \times$ coetticient of $\lambda^{n+2 r}$ in the series. $\mathrm{J}_{[n]}$. This establishes
an extension of

Lominel definerl . "for negative integral ralues of μ, so as to make this theorem always hold: for example, suppose $"$ a negative integer. and put it equal to $-m$, then we have by this theorem
extending

$$
\begin{align*}
& \mathrm{I}_{[-n]}=(-1)^{\mu} \cdot \mathrm{I}_{[n]} \tag{45}\\
& \mathrm{I}_{-\mu}=(-1)^{\prime \prime} \cdot \mathrm{I}_{n} \\
& n_{1} I_{1, n]}=(-1)^{\prime \prime}{ }^{i}[n]
\end{align*}
$$

also
as may be shown by inverting the base p in axpression (43).

7.

$$
\mathrm{J}_{u+\frac{1}{2}(x)}(x)=(-1)^{n} \frac{(2 x)^{n+1}}{\Pi^{3}} \frac{\pi^{u}}{\lambda\left(x^{n}\right.} \cdot\left\{\frac{\sin , x}{x}\right\}
$$

If we now define

$$
\begin{equation*}
\operatorname{Sin}_{p}(\lambda, x) \text { as } \lambda x-\frac{\lambda^{3} x^{(3 / 3}}{[3]!}+\frac{\lambda^{5} x^{[i]}}{[5]!}- \tag{46}
\end{equation*}
$$

then

Operating on this with $\cap^{[n]}$ which is
the first n terms of the series are destroyed, while the term involving $x^{[2 \mu+2 r]}$ is reduced to

$$
\begin{equation*}
(-1)^{n+r} \lambda^{2 n+2 r} \frac{1}{[2]^{n}} \frac{[2 n+2 r][2 n+2 r-2] \ldots \ldots[2 r+2]}{[2 n+2 r+1]!} \mu_{r^{n}([-r]} \tag{48}
\end{equation*}
$$

Taking

$$
\begin{aligned}
& \mathrm{J}_{[n+4]}(\lambda, x)=` \sum(-1)^{r}\left[\frac{\lambda^{n+3+2 r}}{\left[n+r+\frac{1}{2}\right]![r]!}(2),(2)_{n+r+!}-x^{[n+k+2 \cdot]}\right.
\end{aligned}
$$

$$
\begin{aligned}
& (2)_{n+r+\frac{1}{2}}=\left(p^{n+r+\frac{1}{2}}+1\right)\left(p^{n+r-\frac{1}{2}}+1\right) \ldots\left(p^{2}+1\right) \cdot(2)_{\frac{1}{2}}
\end{aligned}
$$

and

$$
(2)_{4} \Gamma_{p}\left(\left[1+\frac{1}{2}\right]\right)=[2]^{3} \Gamma_{p^{2}}\left(\left[1+\frac{1}{2}\right]\right)
$$

therefore

$$
\begin{equation*}
\left.\left[n+r+\frac{1}{2}\right]!(2)_{n+r+\xi}=[2 n+2 r+1] \ldots[3] \times[2]^{\frac{1}{2}} \Pi_{p^{2}}\left[\frac{1}{2}\right]\right) \tag{49}
\end{equation*}
$$

So we obtain
and liy a change of the variable a
$\Delta^{[n]}$ denoting the operator

For further properties of $\operatorname{Sin}_{p}, \operatorname{Cos}_{p}$, and their connection with symbolical solutions of certain differential equations, reference may be made to a paper on "Basic Sines and Cosines" (Proc. Edin. Math. Soc., 1904).

Continuation of Paper-
 " Theorems relating to a Generalisition of the Bessfle-Function."

(MS. reeriver April 19, 1914.)

8.

The theorem

$$
\begin{align*}
& =1-\frac{(a+b)\left(a+b p^{2}\right)}{[2]^{2}}+\frac{(a+b)\left(a+l y^{2}\right)\left(a+l, \eta^{2}\right)\left(a+l \eta^{4}\right)}{[2]^{2}[4]^{2}}-\cdots \cdots \tag{a}
\end{align*}
$$

discussed in the first part of this paper may be obtained very naturally from the properties of a certain function analogous to the exponential function. Elsewhere,* by means of the function E_{p} I have obtained

$$
\begin{align*}
& =1-\stackrel{(a+b)^{2}}{[2]^{2}}+\stackrel{(a+b)=\left(a+y^{2} / 2, y^{2}\right.}{[2]^{2}[4)^{2}}-\ldots \ldots .
\end{align*}
$$

We naturally expect to find some general form to which both (α) and (β) will belong, as particular cases. The following is the general theorem which will be obtained from the function E_{p}, just as the addition theorem for Bessel coefficients is obtained by means of the exponential function. $\operatorname{Exp} .\left(\frac{\because}{2}\left(t-\frac{1}{t}\right)\right)$

In case $\nu=0$ we have the quasi-addition theorem (β). If, howerer, $\nu=1$ we have the quasi-addition theorem (a). The corresponding theorems for the function $J_{n}^{\prime \prime}(a, b)$ will be briefly noticed.

The expression for $J_{n}^{\nu}(a, b)$ will be given also in the case when n is not a positive integer.

* Pruc. Lond. Math. Soc., shortly to be published.

9.

In this article certain results will be obtained which will be required in subsequent work. We define the function $\mathrm{E}_{p}(a)$ as

$$
\mathrm{E}_{p}(a)^{*}=1+\frac{a}{[1]]!}+\frac{a^{2}}{[2]!}+\ldots \ldots
$$

If we invert the base p

$$
\mathrm{E}_{\overline{\bar{p}}}(a)=1+\frac{a}{[1]!}+p^{\frac{a^{2}}{[\cdots]]}}+\cdots+p^{s-x-1) \mid} \frac{a^{s}}{[s]!}+\ldots
$$

without difficulty we have

$$
\mathrm{E}_{\mu}(a) \mathrm{E}_{j}(b)=1+\frac{(a+b)}{[1]!}+\frac{(a+b)(a+b p)}{[2]!}+
$$

Changing $p^{\text {to }} \psi^{2}$

$$
\begin{align*}
& =1+{ }_{[2]}^{[2](a+h)}+\frac{[2]^{2}(a+b)\left(a+b p^{2}\right)}{[2][t]}+\cdots \cdot
\end{align*}
$$

In part (1) we have established

$$
J_{[-1)]}(u)=(-1)^{n} \mathrm{~J}_{[(2)}(a) \quad .
$$

Inverting the base μ^{\prime} we obtain also from this

10.

A consideration of the product of the two absolutely convergent series

$$
\begin{aligned}
& \mathrm{E}_{\mu}\left(-\frac{a t^{-1}}{[2]}\right)=1-\frac{a t^{-1}}{[3]}+\frac{a^{2} t^{-2}}{[2][t]}-\ldots(-1)^{n} \frac{a^{n} t^{-n}}{\{2 n!!}+\cdots .
\end{aligned}
$$

shows us that

$$
\begin{align*}
& =\sum_{-\infty}^{+\infty} J_{[(w)}(a) t^{n}
\end{align*}
$$

In precisely the same manner, if we consider the proluct of

* Prar. I:lin. Muth. Viuc, vol. xxii.
we obtain

We have now, on taking the pronluct of (λ) and (μ),

The product of the four basic-exponential functions on the right of this expression is the product of two convergent series

$$
\begin{equation*}
\left\{1+\frac{(a+b) t}{[2]}+\frac{(a+b)\left(a+p^{2} l\right) t^{2}}{[2][1]}+\ldots\right\}^{1} \times\left\{1-\frac{\left(a+p^{2 \nu}(1) t^{-1}\right.}{[2]}+\frac{\left(a+p^{2 \nu} b\right)\left(a+p^{2+2}+2 b\right.}{[2][4]} \frac{t^{-1}}{[2]}\right. \tag{B}
\end{equation*}
$$

This result follows from result (η) of article (9).
If now we equate coefficients of the various powers of t in (B) with the corresponding coetticients in

$$
\sum_{-\infty}^{+\infty} \mathrm{J}_{[n]}(a) t^{n} \times \sum_{-\infty}^{+\infty} p^{n(n-v)} \hat{i l}_{[\mid n}(l)\left(p^{v-1}\right) t^{n}
$$

remembering that

$$
\begin{aligned}
& J_{[n]}=(-1)^{n} J_{[-n]} \\
& \mathfrak{I}_{[n]}=(-1)^{n} \mathrm{i}_{[-n]}
\end{aligned}
$$

we obtain from the terms which are independent of t

$$
\begin{align*}
& =1-\frac{(a+b)\left(u+p^{2} b\right)}{[2]^{-2}}+\ldots .
\end{align*}
$$

which by an obvious reduction becomes

$$
\begin{align*}
& =\mathrm{J}_{0}^{\nu}(a, b)
\end{align*}
$$

Equating the coefficients of $t^{\prime \prime}$ we obtain
the expression for J_{n}^{ν} being that given in article (8) expression (δ).

11.

When n is not a positive integer the expression

$$
(a+b)\left(a+p^{2}, l\right) \ldots \ldots\left(a+p^{2 n-2}\right) \text { in } J_{a}^{2}(a, b)
$$

must be replaced by

TRANS. ROY. SOC. EDIN., VOL. XLI. PART I. (NO. 6).

If, however, $p>1$,

$$
\begin{aligned}
& l^{\prime \prime}>1
\end{aligned}
$$

is the effective representative of the product $(a+b)\left(a+p^{2} b\right) \ldots$. . . n factors. This corresponds to the change of $n!$ in the Bessel coetticients into $\Gamma(u+1)$ in the case of Bessel-Functions. The series expansions of the products given above may be found in Proc. L.M.S., series 2, vol. i. pp. 63-88. The theorem analogous to Neumann's theorem

$$
\mathrm{J}_{1 \prime}\left(a^{2}+b^{2}+2 a l \cos \theta\right)=\mathrm{J}_{0}(a) \cdot \mathrm{J}_{0}(b)+2 \sum(-1) \mathrm{J}_{s}(a) \mathrm{J}_{5}(b) \cos s \theta
$$

I have investigated in a paper (Proc. L.M.S.). The function E_{2}, being used in a manner similar to the use of the exponential (pp. 25, 26, 27, Gray and Matthew's Trentise on Bessel-Functions), gives us a rather complicated extension of (ξ).

