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On Partial Differential Equations of the First Order with several
dependent variables. ByR.W. LLOYD TANNER, M.A.

[Read January 10*A, 1878.]

1- Let y u y t , yn

be n functions of m independent variables

m being not less than n. The equations proposed for consideration in
the present paper are those involving the differential coefficients

It is desirable to show that such equations can always be reduced to a
certain standard form, and this will be done in Arts. 2—4>.. Before
attempting the transformation in question, it is desirable to express
the given equation as far as possible in terms of Jacobians. For
instance, if the expression

dyx dy± __ dy± dy±
dxl ' dx% dxt ' dxx

occurred in the given equation, we should regard it, not as composed of
two terms of the second degree, but as a single term

Vy y%)

d (ah. x%)

of the first degree. Similarly, the determinant

dxr

'dxx*

Us. d^_
ajx * ' dxr

would be regarded as a single term of the first degree, and will be in-
dicated as usual by the symbol

d(yt ... ?/r)
dfa ... xr)'

It will be assumed that this preliminary reduction has been effected;
for, though not essential, it has a very important influence upon the
formal simplicity of the transformed equation.
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Reduction to the Homogeneous Form.

2. By a homogeneous equation we understand one which has the fol-
lowing properties:—

(1.) All the Jacobians involved are of the nth order; n being the
number of dependent variables.

(2.) The equation is algebraically homogeneous with respect to these
Jacobians.

(3.) Besides the Jacobians the equation involves only the independ-
ent variables.

It may be added that the common degree of the terms of the homo-
geneous equation is never greater than the degree of any of the non-
homogeneous equations to which it is equivalent.

Suppose we are given an equation, or a system of equations, involving
n dependent and m independent variables: but it is not assumed that all
of these variables are present in each equation. Let v^, ... un be n
independent functions of «, ... xm, yx ... yn\ such that

W j = 0 ( i = l n) ... .(1)

are particular solutions of the given equation or system of equations.
It will be shown that the transformed system in which ux .. un are
the dependent variables, and â  ... xm, yx... yH the independent vari-
ables, will be composed of homogeneous equations.

Differentiate any one of the equations (1) with respect to any as;
we get

dyn _ A

d
du{ , du{ dyx , ,
d d d

or

dyn dxf

dyt dxj " dyn ' dx}
(2).

Now we know that, if

then Clu Cm . . .

"nil Cnj, . . • CHH nj, ... dn

bu, 6 I 2 , ... bln

b, 7» b

Comparing this with (2), we have

dc^t... yn)' d(«,...
(3),

•where £1... ZH represent any n of the m quantities a*,... xm.
A similar result is obtained when some of the £'s are replaced^ by
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some of the y's. For we have identically

du{_du{ 0 dut , , dn< n
—— — -=— . \J~r . . . - f j — • ATT ••• T ~\—• V
d^ dyx dyj dyn

_dn_i dy1, ,duii}h, ,du{ *£, ...
diji dijj dy, dyj dyn dy}

if we regard the y's as mutually independent, so that —-̂ - vanishes nn-

less i =y , when it is unity.
Now take r equations (2), the r values of Xj being called £x ... $r;

and n—r equations (4), calling the selected y's, nr*u ••• Vn» In these
TO equations let «< be replaced by ux ... w,,, in succession. Then we
have MS equations which give

. ^r, Vm ••• »;») d ( 7 i . . v») ' cZ(£x . . . fr, j ; r + 1 . . . f]H)'

Here, »?!... tjn and y, . yn are the same quantities arranged in
a different order. Let this arrangement be such that one order may
be reduced to the other by an even number of transpositions. If this
be not the "case, it is only necessary to transpose a single pair of
Vi ••• Vn or of tfr+i ...vn to bring it about. Then we have

... un) _ dfa ... un)
d (m . - '?.,) d (yx ... yn)'

Also, in Virtue of the hypothesis as to the values of ~^-} we have

Vr, >7r*l Vn) _ .

as may easily be seen by writing it in the form of a determinant. Hence

.Ur, Ur + 1 ... Un) _ dfa ... Un)
y

^ ; 'd (^ ...
an equation which includes (3) as a particular case.

Tn the second factor on the right side of (5), ^ ... r\T may be any r
of the w variables Jf\...yn\ and lx ... £r may be any r of the m
variables a?,... xm. Thus this factor is any Jacobian of the rth order:
that is, since r may have any value from 1 to n inclusive, it is any
Jacobian of any order that can be formed from yx ... yB with respect
to x1... xm. By (5), then, any such Jacobian is expressed as a ratio
between two Jacobians of the nth order; the denominator always being

d(u. ... it,,) A

-y* % = A, say.
y)
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If, then, we substitute in any of the original equations from (5), we get
an equation in which all the Jacobiana are of the w01 order.

Again, each term of the tiansformed equation is of degree zero with
respect to these Jacobians: but if in the original equation any term is
of the rth degree, the denominator of the corresponding term iu the
transformed equation is Ar. Suppose the degree of the original equa-
tion to be r. Then we can clear transformed equation of fractions by
multiplying by Ar. But by this the transformed equation is made
algebraically homogeneous, of the rth degree.

Lastly, the transformed equation, besides the Jacobians of u, will
involve only the variables «, .. asw, y,... y«, which are the independent
variables of the transformed equation.

But these characters are just those by which we defined the homo-
geneous form of equation—so that the required reduction has been
effected.

3. In some cases—more especially when the equations are linear—
another method is applicable, which involves a change iu the dependent
variables only, not increasing the number of independent variables.
Say, the original equation has the n dependent variables y, ... yH

and the m independent variables xx ... xm. Suppose also that, when
TJX ... tjH are taken as dependent variables, the equation becomes
homogeneous; Vi ••• 17,,, being functions of xl... asm, yx ... y,,, such that

does not vanish. Then we may write

in* — in* ^j_i_ +ioi iis + iiu i®i±. +ia*. i^m
dxj dyl' dxj dyH'dsj dxt dxi dxm'dx/

since
dx
— vanishes unless i = j , when it becomes unity.
dx

j

From these equations we infer, by a generalization of the rule for
multiplying determinants, that

l ••• Vn)

where ^ ... £, are any n of a, ... ajm; vl... v» are any n of y, ... yHt

{,...{„;* and the sign of summation includes all the different sets of
the v's. The second factor on the right-hand side reduces to a

• If any v were an x not included in { j . . . (n» tno second factor on the right-hand
Bide would vanish identically. -
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Jacobian of the rtb order when vt ... vu include r of y,.. . yn and n—r
of<i.. .4..

Suppose that the t/-equation is linear : say it is

and let the 17-equation be

the second equation differing from the first in not involving any
Jacobians of an order lower than the n*1*. The left-hand side of (»?) is,
by (6),

d ( ) ( d(yx ... y,t) . Q. d (yt ... y,)

4- terms involving y- Jacobians of lower orders.

Comparing with (y), we get

P F ~
Hence, as we are not concerned with the absolute values of Q, Qf, ...,

bat only with their ratios, we may say that in the ^-equation the co-
efficients Q, Q', ... are equal to the coefficients of the corresponding
y-Jacobians in the given equation (y). By comparing the coefficients
of the lower Jacobians in (y) with those in (JJ) after the application of
(6), we get a system of equations for 17, ... »;„. If we can get n parti-
cular solutions of this system, the transformation is effected.

4. As an example, consider the equation

d (a?!, xt) a (xit x9) aj8 dx,

xJ dxt x1 d:et

We have to find »?„ n% so that, if possible, the above may reduce to

_ Q

d(x3ixs)
A comparison of coefficients gives the following equations for 17,, 17,:

?i, >;a) . d (tix, y2) y a ^ ( i p >72) _

i. Vi) d (y,, *8) aj, " rf (yM y,)
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d(xi>yi) d{yi,xi) \xl xxxj

d (riv y,) _ jf]_j _ Q

xlxt'd{yv y%)
These equations will be solved in the sequel. For the present it

suffices to give a particular solution,

vi = »iyi+»»y4, n% = ^y%,
which is verified without difficulty. The given equation is therefore
equivalent to

The above example will illustrate an important point,- namely, that
even whon the complete reduction sought is not attainable, yet the
number of terms may be considerably reduced, and the equations pro-
portionally simplified. For suppose the second member of the original
equation to be Y instead of zero; then the ^-equation would be of the

form

Thus the seven terms of the original equation would be reduced to
three.
. Another point of importance arises. If the y-equation of the last

example be transformed into a homogeneous equation by the general
method, the new equation will consist of seven terms. Suppose now
that the change of variables above indicated be made in the new equa-
tion. This will reduce to two terms, thus showing that in a homo-
geneous equation a change of the independent variables may cause a
considerable simplification. To this point I hope to return hereafter.

5. The results of the preceding Articles enable us to confine our atten-
tion to homogeneous equations. We shall further restrict ourselves to
linear equations—viz., equations which are included in the form

3^. ffi •"*> = () (7),
where xl ... xH are any n of the m independent variables; P i s any
function of xx ... xm\~ and the sign of summation extends to the

I m
1—, terms which can be formed by taking different sets of
\n I m—n rf °
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Of this equation (7) we shall discuss three cases :
1) When it consists of a single term, or is reducible to this form.
2) When it consists of two terms, or is reducible to this form.
3) When only certain specified terms occur.

Under each case will be discussed the systems of simultaneous equa-
tions corresponding thereto.

Single Term Equations.
6. The simplest form of the general equation (7), in which, namely,

only one term occurs, is

d(xl...xn) ~ ° (8)*
The general solution is 0(i/i--- y») = 0 (9),

where <p is an arbitrary function, involving, besides its expressed argu-
ments, any quantity not explicitly involved in (8). If, for instance,
yx ... yn are functions of xx ... xn, a?B+1 ... xm, the solution of (8) may

be written <p ( y x . . . yH, x n + l . . . x m ) (10).

Let us now seek the conditions under which the general equation (7)
is reducible to this well-known form—viz., when it may be written

.Vmull^u£) ( m = w +

This implies equations of the form

(12),

• I fi+p
by means of which the ]—r— coefficients P are expressed in terms

of p + 1 independent quantities X, ux ... up. The former number is
greater than the latter, so that the P's are subject to certain conditions
when the transformation is possible, save when either n or p is zero or
when » = 1 . In the first case there is no dependent variable ; in the
second case the equation is (8) itself; in the third case we have only
one dependent variable, or the equation is a common partial differential
equation of the first order. Except in these cases the P's must satisfy
certain relations which it is our object to discover. Supposing these
relations to-̂ be satisfied, we then require the forms of w, ... up. To
attain the former" we might eliminate X, ux ... up from the equations
(12), and find ux ... ua by solving the system formed by eliminating X;
but we prefer to avail ourselves of the peculiar form of (12), and to
make use of an artifice by means of which both ends may be attained
without difficulty. • . •
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It is convenient to assume that £,... lm are the same as xx... xm

but arranged in a different order. Let £, ... lm be so chosen that in

(7) the coefficient of dty ' VH\ (13)

is not zero, and let the equation be divided throughout by this co-
efficient.

Consider next the p Jacobians formed from (13) by replacing fp+I by
£x, £, .. lp respectively. Let the coefficients of these Jacobians in (7)
be denoted by Fp+U Pl+u ••• ^l+i respectively, the suffix denoting the
£ of (13) which is removed, the index denoting the £ which replaces it.
Then a comparison of (7) and (11) gives

a [fix

equations which may be conveniently expressed in the form

which is meant to imply that the Ith member on the left is equal to the
determinant formed on the right by erasing the Ith constituent of the
denominator.

XT L\. i« d (U, 1I~, . . . Up) A

Now the equation \ " ' —*•' = 0

is identically satisfied by u = «,, wa ... ttn. This equation may be
written

+

or, because of

J" ' *" J" J" = 0 .\ du p> du, pp du du

This, then, is an equation which must be satisfied by ux...up\ but
evidently it is insufficient of itself to determine them, since it gives no
information as to how they depend upon $p+2... £„,• To supply this
deficiency we form other equations, starting in each case, with the
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Jacobian (13), but replacing, for one equation $pf2> for another {^j, and
so on. Thus we form a system of n equations, viz.:

_ p\ du
— *>+1 lit

du , du

du du , du = 0

•(15),

which must be satisfied by ux ... «,.
But the system (15) comprises n equations, which are mutually in-

dependent, since each contains a differential coefficient not occurring
in any of the others : there are n +p independent variables. Hence
(15) canuot have more than p common solutions, nor can it have so
many, unless, identically,

ArP'.^XPi (i=l...p; r,s = p + l,...p+n) (16),

the A's being as defined in (15).

When these conditions are fulfilled, the common integrals of (15)
are given by integrating

$1 — Pp+idZp+i—Pp+idZf+i— —Pp+ndl;p+n = 0

= 0

tB = 0.

which then are reducible to p exact differentials. It does not follow,
however, that the p integrals of (17) may be put for ut ... Up. For
these integrals are determined from a knowledge of np +1 of the P's ,

and without any reference to the remaining . . — np — 1; aud if

tf, ... Up are the p iutegrals of (17), then the remaining P's are
determined without ambiguity from the P's used in (15) or (17).
These other P's must therefore satisfy certain conditions which may be
determined either by forming other equations similar to (15), and ex-
pressing that all such equations must be consequences of (15), or by
making use of the known relations between the determinants of the

matrix

But practically it is most convenient in any given case to remember
that the iutegrals of (17) include nil the valncs of u which can be used
in (11) ; and by comparison with the given equation (7) to determine

VOL. IX.—NO. 127. K
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bow many, and which, of these integrals are suitable for our purpose.
If there be p integrals of (17), and all of these be suitable, the general
solution of (7) will be

0 (Vi ...' Vn, « i . - «„) = 0 (IB),
ttj.. . up being in this case the p integrals of (17). If, on the other
hand, there are less than p integrals of (17), or all the integrals are not
available, then we get a solution,

0 O/i ». y» • «i - »•) = 0 (19),
where p < p. This is not a general solution, for, as will appear in the
sequel, it will satisfy not only (7), but p— p other differential equa-
tions.

The knowledge of this, solution is however useful, as it enables
us to reduce the number of independent variables by p'. This is effected
by taking a new set of independent variables, say £, ... £m, of which p'
are to be ux... uyt say ^ = uv ... lp, = wp.; for clearly

and BO on ; so that of the new independent variables only ty
will remain.

7. A few simple examples may be useful.
d Q/i' y«) + d fa* y*> — o.
d ( ) d ( )d (xv xz) d (a?,, xj d (a>,. xa) d (xlt

Let us put £, = a?1} i3 = a?8, £s = xv £4 = xv

Then Ps = O, P j = - 1 ,

Thus (17) become

= 0, £i + £8 or a;1+!c» = ttl;

:/̂ 4 = 0, ij + 4̂ or cc,+aj4 ^ i*j.

Hence the required solution is

fit seems worth while to show d posteriori how such an integral
equation satisfies the proposed differential equation; viz., the integral

equation is y, = (}> (y,, a-, + xit xt + a?4),

BO that dyt = Adyl+B(<dxl + dxt) + C (dxt -f dxt);

d.V* A
 d!/i _i_ T?

 d!h A
 d}/i

%. 6., -7-* — A -f- + 1 » , -r— ^ A -T—

dxx dxx dxt arc,

dxt Ux% '
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or, eliminating A, B, G,

dxx dxt dxt

The equation of Art. 4, viz.,

{ 1%) — Q
J, a,) d (» „ a?s)

is found in the same way to have for its solution
# (aj,+a?s, i?,, i/2) = 0,

so that the general solution of the y-equation of that Art. is

<p(xx + xiy «i # + »«#, a!8ya) = 0.

As a third example, take

<?iii|u_&!_&) + d (y» yi' .y») + ^ 0/u y». .v») = o.
d ( * , , ccj, a-8) t? (xSi as4, a?6) d (a;a, rc4, a'o)

Here let Ci = «n ^ = *« ^ — *oi
£, = ^ j , i8 = #5, £, = a:6.

On trying, we find that every P) vanishes; so that (17) would become
# , = 0, rf£8 = 0, # , = 0;

or w, = *M «, = xit ut = .r6.

But without trial we know at once that these cannot be available;
for, if they were, #„ n\, x6 would not occur amongst the independent
variables of the proposed equation. [Gf. (10).]

This, then, is an equation not soluble in the form (18) or (19). By
another method we shall get its solution hereafter (Art. 14).

8. In the preceding paragraphs it has been assumed that the P's do
not involve the dependent variablos. It may happen, however, that wo
have to deal with an equation which is 'homogeneous' except in this
respect, and the troublo of reduciug to the homogeneous form may bo
avoided in many cases. Suppose, then, that some or all of the P'a
involve y, ...y,,, so that the same will bo true of ux... nr Now, in
forming the determinant

dpA .. .y,, W| ... it,)

we differentiate ut... up as if tho y's were constant. For lot any con-
stituent of the determinant bo

ditt.ihtt dt/i (hti <fy,,
"5 r j , r "I—:— • -;— I I V 1 .rfa^ rtfy, d.Vj dy* dx v '

E 2
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In the same column we shall have the constituents

%£lt tyl . . . . . . §Xsm

dxj dx/ dx.

Multiply the rows in which these constituents occur by

du{ du{ du{

respectively, and add to the row to which (19) belongs. This, of course,
will not affect the value of the determinant, and it will reduce (19) to

j

But observing that the multipliers (20) are the same for all values
of j , we find that all the constituents in the row of (19) are similarly
reduced. Applying the same in turn to all the rows involving w, we
get the result announced—viz., that in forming

we may regard yl... yn as constants when occurring in «, ... up.

Hence, in seeking the integrals of (15) or (17), we may regard any y
which occurs in the coefficients as a constant.

Simultaneous Mononomial Equations.

9. These equations have for their general solution

0 (y, ... y», «, ••• «P) = 0 (20) ;

but n+p is now less than the number of independent variables. The
system of differential equations which has (20) for its general solution
may bo written

d(yx.. y., «, . . .«,) = 0 ( m > }

Let q be the number of independent equations that can be formed
from (21). Then we have

or m + l=m+p + q )
For if we take the equations formed by retaining

xl • Xn*p-U ^n+p + l j
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supposing xx ... xn+p so chosen that in the first equation the coefficient of

d(yx jfH)

that is, the determinant
d (a?j . . . cop

does not vanish. Theii in the i+ 1th equation we shall have a Jacobian

which does not occur in any of the others. Therefore the m—(«+_p) + 1
equations thus formed are independent.

Also in a matrix

we know that, if the n determinants, formed by combining the first m
columns with each of the last n columns in turn, all vanish, then all
the determinants vanish, provided

n at, m

is not zero. Applying this to (21), we learn that, if the m—(n+p) + 1
equations formed as above all vanish, then every equation of (21) is
satisfied—viz., there are only m—(n+p)-\-l independent equations in
the system. So that (22) is proved.

10. Suppose now we have a system of q equations each of the form (7).
We might take auy of the equations involving all the independent
variables, and find the most general solution it admits of the form (20);
then, by substitution in the other equations, determine the limitations
imposed upon <(>, v^ ... up. But it is more convenient generally to
adopt another course. We reduce the given system as nearly as
possible to the form of (21) when expanded as explained above. Each
equation will contain a Jacobian not occurring in any of the other
eqnations. In these Jacobians we shall have n—1 independent vari-
ables (say a|p+1 ... ajp+n.i) common to all; and q (say rcp+n ... a?,,,)
each of which occurs only in one. The other Jacobians must not
involve these q independent variables, but may contain any of the m—q
others. This arrangement is alwnys possible if there be a general
solution of the form (20).

Having made this arrangement, let the q independent variables, each
of which is characterised by occurring in one and only one equation of
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the system, be indicated by ajm_ff+1, a5m_,+a, ... xm; or, what is the same
thing, by xntpi asn+p+i, ... xn+P+g-i- To distinguish the equations of the
given system conveniently, let that which contains »„,.,+< or a?n+p+<_i
be called the tth equation of the system.

Suppose now that the first equation of the system is reducible to

and let the as's be so arranged that the coefficient of

is not zero. Divide the equation throughout by this. coefficient, and
indicate the new coefficient of the Jacobian formed by writing Xj for

xifP in the above by i-P?+p>
wherg the " 1 " to the left indicates the number of the equation.

We have then
, pi p» PP i _ x

 d(ui •" "*)
:3zijri*pt -rijri*pi > \*i*Pi 1 — AiT7~—~:—~—\«

d (ajj ... xp, xUp)
But «i ... up satisfy the equation

d (n, n, ... up) _ Q

)... xp, Xi.p)

identically. That is, they satisfy the equations

^ • + ' dxj 1^+*dxj +*Fi» dxp + d*up~
( i = l , 2, ... n).

The n equations (15') are not sufficient to determine w, for they do not
say how u depends upon xn+p+l ... xm. To supply this knowledge we
form from each of the remaining q — 1 equations of the given system
one other equation for u. From the tth equation, for instance, we get

Pi du , , TJP • dn . du n

dx1 dxp dxm.q+i

( t = 2 , 3 , ... 2 ) .
It is here tacitly assumed that the coefficient of

does not vanish j but the coefficient in question being

it appears that this is no new assumption.
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If in (15*) i take all values from 1 to n, and in (15") all values from 2
to a [the value n in (15') and 1 in (15") would give the same equation],
we get a system of n+q—1 independent equations involving TO inde-
pendent variables. These1 can at most have m—(n + q)+l, or p
solutions. Thus, if ux .,. up exist, they are determined by (15'), (15"),
or by integrating the p expressions

dx{ — i P l + p ^ l + p — - . . — lPn+j>dXn+p — » P | . + P + 1 ^ n + p + l — • . . — qPmdXm = 0

( i s s M , . . . * ) . (17').

In order that (17') shonld have p integrals, certain conditions involv-
ing the differential coefficients of the P's must be satisfied, as (lb"). In
order that the .P's not included in the above system (17'), or (15'), (15"),
may be consistent, they must satisfy certain algebraical conditions.
Of these latter, one is obviously that jPk+p is the same for all values
of j , Jc having one of the values 1, 2, ... n — 1, n—l+j.

If any of these conditions be not satisfied, then there are less than
p values of u ; and there is, consequently, no general solution of the
given system of the form (20). Bub the kuovvledge of p' (p'<J>)
values of u enables us to simplify the system, reducing the number
of independent variables by p'.

Binomial Equations.

11. The most general form of this equation is

m) [ pd (tH ... un, n,,t, ... um)
) d( ) '[ p

d(xt ... a-m) d(yx ... ynt xn+l

which, by (5), reduces to

P being a function of x, y. I have not been able to obtain a general
solution of this equation; bub it is easy to get, in two distinct ways,
as many solutions as we please.

12. In (24) let us replace xx... a'B by a new set of independent varu
ables |x ... £„. Then wo have

= p
d(a5i... xn) d(£, ... ln) ' d (;«, ... xn)

Say now we attributo to y, . y,,_i any values whatever in terms of
a?j... x,,, and replace ^ ... £,,_i by these values. Then the last-written

equation becomes ^ " l>] • §= = P * (25).
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Lastly, take any convenient value for £„ such that the left-hand
member does not vanish. By means of these suppositions

d(x1 ...xH)
becomes a known function of a1, ... xn\ while P is a given function of
Vx •" y«» *i ••• «V Both these quantities may therefore be expressed in
terms of yn, £x ... £,; so that (25) is an ordinary differential equation
which gives the value of yn under the supposed conditions.

As an example, take * tyv y*\ - 1 (26).
d {xu <e,)

Let ns find the form of y, when yx = x\ + xt.
Transform to new variables

xl

Then (24) becomes 2 (l + -̂ f-) ^ = 1;

= o (x, + ojj) + tan"1 —

Or, again, take

Suppose now that yx = —. Take for now variables
S B ,

Then (24) becomes 2 -^ • ^ = as, ( y , - l ) ;
aj, erf,

•whence — i - J . e 8 .

13. It is evident that by attributing thus various forms to y, .. yH.t
we can get as many solutions as we please, and that these solutions
include all possible solutions of (24) in their number. But the process,
though convenient in some cases, is not of much use when y,.. . yn are
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restricted to certain forms, and we do not know what the forms may be.
In such cases we may get eolations of (24) ; but yx ... yn.\ may have
been chosen so as to violate some of the other conditions, and the
solutions are useless. It becomes desirable, therefore, to employ a
method which does not imply a knowledge of the form of yx ... yn_v

This will be now indicated by means of the same particular example,

f £ 4 (26).
Now we have

d (y» ya) _ i&uJLd . <*(.yi» ?/») <* (y
d ( ) d ([ 'J d ( l ' l ) d (

l*\
d (a?,, asa) d (y[, y'J d (yl', yl) d (»„ a?,)

so that (26) will be satisfied if each of the determinants in the middle
tenn of the last equation is unity. And, moreover, y^, y^ will be
particular values of yv yv Now assume

dx1 dx%

d (#1. #3)

Then y[n) - ft (xt),

<f>u ^ being arbitrary functions.

In just the same way we should get

Continuing in this way, we shall get expressions of very great
generality for y,, ys. But no solution thus obtained will be a general
solution; nor can we even say that these solutions will include every
possible solution, since we do not know that the forms attributed to yu

say, include every possible form of function of xu xt.
The manner of dealing with the more general equation

d.(ih — ?/») — j
(2(25, ... Xn)

is precisely similar. The results may be in certain cases extended to
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the equation (24), when P is a product of a function of yt ... yn by a
function of â  ... xn. For we have

_ d(yx ... yn) > d(y[ ... y'n) # dQ/'i'--- y»)
^ (yi y ) d (y'{.. ^ ) d (#, ... a;,,)'

Now let y'{ ...y'n be particular solutions of

d(y'{ ... ?/;') __ ^- .
d (»! .. aj»)

and yj ... yj, be particular solutions of

Lastly, let us find as general a solution as possible of

d(y\ ... y'n) _ 1#
d ( i ' )

By eliminating y', y" from these results we shall get a solution of
(28) of considerable generality.

We have already met with examples of systems of simultaneous
binomial equations ; for instance, (14) is such. These, however, in all
cases in which their general solution has been attained, are included in
the next class of equations. It will be convenient to defer the con-
sideration of them.

Equations with Selected Terms.

14. The last class of equations with which we propose to deal only
include certain selected terms of the general equation

These selected terms are distinguished by the circumstance that by
replacing one of the independent variables in each Jacobian by one of
the independent variables excluded from it, we arrive at one and the
same Jacobian, which may or may not actually occur in the equation.

For convenience we will call the dependent variables v^ ... wn; and
will suppose the defining Jacobian of the equation to be

d(ux ... un)
d(yi-t/n)'

The remaining independent variables we shall indicate by a?,... a£,
BO that there are in all n +p independent variables. The general form
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of the Jacobian which can occur in an equation of the class we now
consider is

d(ux ... ut ... if,) .

viz., one of the y's is replaced by one of the as's. The most general
form of the equation itself is

... un) | yp< rfpt, ... u( ... tin) _
i d( .. xj ... y n )

A reference to (5) will show that
... un) . d(ux ... «,,) _ ^_ dy{

) * d ( ) ? 'd (y, ... xj ... yn) * d (y! ... yn)

Thus (29) reduces to

V?M = P ( i = 1 ... 7i, ; = 1 ... w) (30),

which is a partial differential equation of the first order—involving
only Jacobians of the first order.

If it should happen that all the i's in (29) or (30) were the same,
then (30) would be a partial differential equation with one dependent
variable. It is to this circumstance that the form of (15), for instance,
is due.

Suppose, however, that the t's are different. Say we have r different
y's and s different *'s in (30): let these be y, .. yr, as, ... x,. Now
choose r new dependent variables 17,... ijT functions oiyl ... yn} xx ... xm1

and m new independent variables £, ... £„, functions of x1... xmt so that,
if possible, (30) may reduce to the form

^ (31).

The general solution of this equation is

„ _ „ 4-n —

where <plt... $r-\ &re r—1 arbitrary functions of (£, ... |m) (see "Mes-
senger of Mathematics," vol. vii., p. 107). This is also the general
solution of (30), if after the differentiations ^ ... >?r, £1.. ?m be replaced
by their values in terms of a, ... ajm, y, ... yn. Also the solution, of (29)
inay be written

»M«i, •••» u», yr*u ••-, yM Vk(—)*M = 0 (32),

where Au AB ... Ar =

For ?<j, tt2,... ««„ = 0 are solutions of (30).
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A simple example of this class of equation is afforded by

d fa, Uf, Uz) d fa, M,, 7tj

If we write xt = »/„ xt = »;„ a?4 = vv

d fa, ut, «,)
d (*„ #4, #„)'

The above becomes

d fa, ty t^) , d (tit, tf|, ut) _ d (nlt n,, ut) __ Q

i di;. . dn. d\
whence -rr + -— —r

- a ? , , - * , = = A,, A5, A9 say,

where ^,, <pt are arbitrary functions of xv x6, as8. The solution of the
given equation is, therefore,

15. There is no special difficulty as to simultaneous equations. As
an example we may take the equations left in a previous article, viz.,

d (flu It) = Q d (t}v rjt) + 7/̂  djrfujjt) _,
d(ylfxt) ' d(yt,xt) Xid(yvyj

d (yuxt) xt'd{yvyt) '

^ (flu Vt) + t? (7n >?«) _ / .Vi + M?\ ^ (?lt nt) _ Oj

^ (a,, yt) d (y,, »,) \aj, x ,V d (yM y,)

<̂  (fli, fit) + ^ (?n Vt) V\_ d (rjvJh) _ o.
d (a^, ic,) d (a;,, a;,) aj,a;8' d (yM y,)

From these, taking ylt y, as new dependent variables, and writing only
independent equations,

^ 1 = 0, ^!-^!-& = 0,
dxt dzl dxs a?4 .'
dyi,y_t_0 dy1dy1 Vl xqt_Q

ete, «i cue, rfa;, xx xxxt
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From the first pair we get

and then, from the second pair,

These lead to the general solution found in Art. 7.

O/i the Relation between the Functions of Laplace and Bessel.

By Lord RAYLEJGH, M.A., F.R.S.

[Read January 10, 1878.]

In § 783 of Thomson and Tait's " Natural Philosophy" a suggestion
is made to examine the transition from formulae dealing with Laplace's
spherical functions to the corresponding formulas proper to a plane.
It is evident at once from this point of view that Bessel's functions are
merely particular cases of Laplace's more general functions; but the
fact seems to be very little known. Of two valuable works recently
published on this subject,* one makes no mention of Bessel's functions,
and the other states expressly that they are not connected with the
main subject of the book; other mathematicians also, to whom I have
mentioned the matter, have been unaware of the relation. Under these
circumstances it may not be superfluous to point out briefly the cor-
respondence of some of the formulas.

The Bessel's function of zero order Jo is the limiting form of
Lcgendre's function P,,(/i), when n is indefinitely great, and ft
( = cos 0) such that n sin 0 is finite, equal say to z. The simplest
proof of this assertion is perhaps that obtained from Murphy's series
for Pn. Thus (Todhunter, § 23),

(!)•

• "An Elomentary Treatise on Laplace's Functions, Lame's Functions, and
Bessnl's Functions." By I. Todhunter. 1875.

" An Elomentary Treatise on Spherical Harmonics and subjects connected with
them." By the Rev. N. M. Ferrers. 1877.


