1878.] On Partial Differential Equations of the First Order. 41

On Partial Differential Equations of the First Order with several
dependent variables. By H. W. Lroyp Tanner, M.A.

[Read January 10th, 1878.]
-1, Let Y1y Yy oorve Un
be n functions of m independent variables

Tyy Tgy veveen Loy

m being not less than . The equations proposed for consideration in
the present paper are those involving the differential coefficients

%(i:l, ey j=1, ... m).

It is desirable to show that such equations can always be reduced to a
certain standard form, and this will be done in Arts. 2—4. Before
attempting the transformation in question, it is desirable to express
the given equation as far as possible in terms of Jacobians. For
instance, if the expression

Sy By _ Ay Ay
de, " de, da,  dz,

occurred in the given equation, we should regard it, not as composed of
two terms of the second degree, but as a single term

4 ()
a (2, %)
of the first degree. Similarly, the determinant

de,” day” " de,
s
i
. .
dml’ ves o0 d_c'

would be regarded as a single term of the first degree, and will be in-
dicated as usual by the symbol

dlm ... u.)
_ . d(z ... 2,)
It will be assumed that this preliminary reduction has been effected ;

for, though not essential, it has & very important influence upon the
formal simplicity of the transformed equation.
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Reduction to the Homogeneous Form.

2. By a homogeneous equation we understand one which has the fol-
lowing properties :—

(1.) All the Jacobians involved are of the n'* order; n being the
number of dependent variables. -

(2.) The equation is algebraically homogeneous with respect to these
Jacobians.

(8.) Besides the Jacobians the equation involves only the independ-
ent variables,

It may be added that the common degree of the terms of the homo-
geneous equation is never greater than the degree of any of the non-
homogeneous equatmns to which it is equivalent.

Suppose we are given an equation, or a system of equations, involving
n dependent and m independent variables : but it is not assumed that all
of these variables are present in each equation. Let uy, ... 4, .be n
independent fanctions of 2, ... 2., ¥ ... ¥»; such that

are particular solutions of the given equation or system of equations.
It will be shown that the transformed system in which u, .. u, are
the dependent variables, and &, ... @, %, ... ¥, the independent vari-
ables, will be composed of homogeneous equations.
Differentiate any one of the equations (1) with respect to any z;

we get

dug , dw  dy, du, dy, _

oty ey =0

—du _ du dy, du dy, o
or 2y dy, +"'+dy,,' da, T 2).

Now we know that, if
Cy = a,ﬂbu+ aﬂbﬁ +...+ a!,.b,v',

then Cis Ciay v Cin | = @1y Bizy vee @in | X | bity bygy -ov Dia
Caty Cg2y «oo Cn Azty Aggy voo (g bzh bﬂ) v b2n
On1y cn‘.l) vet Cup Ay Qyay vos Qup bnh bu” vee bnn

Comparing this with (2), we have

@y w)) Ay w) Ay ...y,
( ) ad(&... &) —d(yly") d(ElE) ............ (3),

where ¢, ... £, represent any n of the m quantities =, ..
A gimilar result is obtained when some of the Es are 1ep1acod by
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some of the y’s. For we have identically

duy _ dug du, g
dy, dy,'o+'"+dg/,'l+'"+dy,.'0

du, dy, du; dy du, dy,
= TN Iy vonenenarees (4
Cdy, dy; dy; dy; dy. dy, (4,

if we regard the y's as mutually independent, so that % vanishes un-
less ¢==j, when it is unity. %

Now take r equations (2), the » values of ; being called ¢, ... £,;
and n—r equations (4), calling the selected y’s, »,.,, ... #,. In these
n equations let u; be replaced by u, ... u,, in succession. Then we
have »! equations which give

(_),d (o oo By Upyy on %) A (0 .00 ) ) ANy e Ny Myay oo M)
d (El ces Eﬂ Nrsl oo ')n) d(’h .- ’Tu) d(El . E,., Nes1 oen 'I,.)'

Here, n,... n, and y, . y, are the same qnantities arranged in
a different order. Let this arrangement be such that one order may
be reduced to the other by an even number of transpositions. If this
be not the vase, it is only necessary to transpose a single pair of
h - Ny OF Of 7,y ... 7, to bring it about. Then we have

a (uy ... Un) = d(u, ... u~,.).
d ('h oo 'lu) a (y ... f/n)
Also, in'virtue of the hypothesis as to the values of Lz-‘, we have

J

d (n, cor NMypy Nesn ﬂn) = d("l e 7)')
a (E] ‘e En Nrsl oos 7ln) d (El ve. Er)’

as may easily be seen by wriling it in the form of a determinant. Hence

Y d(u]..."l.l,,-, Urs) -o0 Uy) = d(ul vee u") i(ll . ”')
(=) TG o ) Ay A6 ),

an equation which includes (3) as a particualar case.

In the second factor on the right side of (5), », ... n, may be any r
of the n variables g,...y,; and & ..., may be any r of the m
variables 2, ... #,. Thus this factor is any Jacobian of the »*" order:
that is, since » may have any value from 1 to # inclusive, it is any
Jacobian of any order that can be formed from g, ... ¥, with respect
to #, ... z,. By (5), then, any such Jacobian is expressed as a ratio
between two Jacobians of the n** order; the denominator always being

d!u! cee Un)

, == A, say.
a (% e Yu) r 5
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If, then, we substitute in any of the original equations from (5), we get
an equation in which all the Jacobians are of the n'® order.

Again, each term of the transformed equation is of degree zero with
respect to these Jacobians: but if in the original equation any term is
of the 7*" degree, the denominator of the corresponding term in the
transformed equation is A”. Suppose the degree of the original equa-
tion to be r. 'Then we can clear transformed equation of fractions by
multiplying by A" But by this the transformed equation is made
algebraically homogeneous, of the 7" degree.

Lastly, the transformed equation, besides the Jacobians of u, will
involve only the variables @, .. @, #, ... ¥» which are the independent
variables of the transformed equation.

But these characters are just those by which we defined the homo-

geneous form of equation—so that the required redunction has been
effected.

8. In some cases—more especially when the equalions are linenr—
another method is applicable, which involves a change in the dependent
variables only, not iucreasing the number of independent variables.
Suy, the original equation bas the n dependent variables vy, ... v,
and the m independent variables , ... #.. Suppose also that, when
7 ... n, are taken as dependent variables, the equation becomes
homogeneous; 7, ... n,, being functions of z, ... 2, ¥, ... y,, such that

a(m...n)
(Y, ... Yn)

does not vanish. Then we may write

51{1_« dn; dn dn; d’/u dn, dz, dn, dzn
dz;  dy, dz,+ """" +dy,, dz; | dzy da; da, +dz... ds;’
since (—i-—— vanishes unless ¢ = j, when it becomes unity.
Ty

From these equations we infer, by a generalization of the rule for
multiplying determinants, that

dlm...n) _ sd(m ... ) d(v...v.)
B ARk o BT e A R ©),

where & ... £, are any n of @,... %m; ¥, ... v, are any 7 of ¥ ... Yy,
§ ... & ;* and the sign of summation includes all the different sets of
the v's. The second factor on the right-hand side reduces to a

* If any v wero an z not included in ¢;-.. ¢, tho second factor on the right-hand
side wou.lt{ vanish identically.



1878.]  Partial Differential Equations of the First Order. 45

Jacobian of the +*® order when v, ... v, include 7 of ¥, ... ¥, and n—r
of El vee En-

Suppose that the y-equation is linear : say it is

d(?/] coe yu) ‘ d (."l "'yn) —
Pd(;‘l 5 + P TE 15:.)+""" =0 vrvereeeres (),

and let the n-equation be

adln ... n,) cd(ny ... n) _
Qd(fl e &) +Q d(ﬁl ;")'I' 0.

the second equation differing from the first in not involving any
- Jacobians of an order lower than the n'*. The left-hand side of (7) is,
O i n (dg) g
—d(m ... { o ¥n) gty }
To o Tt YiEeT

+ terms involving y-Jacobians of lower orders.

crovnaencae (1),

Comparing with (y), we get
L_Q_
PP = e
Hence, as we are not concerned with the absolute values of @, @ ...,
bat only with their ratios, we may say that in the n-equation the co-
efficients @, @, ... are equal to the coefficients of the corresponding
y-Jacobians in the given equation (y). By comparing the coeflicients
of the lower Jacobians in (y) with those in () after the application of
(6), we get a system of cquations for n, ... n,. If we can get n parti-
cular solutions of this system, the transformation is effected.

4. As an example, consider the equation

d0nw) L 2yum) (s . 9 _ % . Y
d(@,2,) d(@pm) 2, do, @ de

+(;".\.+£i3/i)‘i"_!+a'/_l_‘_ll'_:+_"/:_=
2 wx) dz, ¥ de, @z,

We have to find n,, n; so that, if poésible, the above may reduce to

d(n.m) , d(mng) _
d (2, 23) + d(;, 2y) 0

A comparison of coefficients gives the following equations for 7, n, :

r’(r}l. nY _ d (m. m) Y d (0. n) _

Ay 0 d@nT) Ay 4)

d(n, my) +d(m- n) _ Y d(mm) _ g
d@,y) d@nz) 2 dWny)
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d (my 1) | d (m,, 1) .__(}Lz +g:,y_,) d(mn) _ g
d(zy, 9)  d(yn ) 2 3/ A y)
d(ﬂn n) , d (’711 ’72) __.1/1_ . d(ﬂn ’73) = 0.
d(zy, 7))  d(2, ) =2 (% 3s)

These equations will be solved in. the sequel. For the present it
suffices to give a particular solution,
M=oYy %= 2
which is verified without difficalty. The given equation is therefore
equivalent o

&1lxﬁ22m a’a,’[i) + d{% 1+ Y za!z) =0.

d (z,, ;) d(zs, )

The above example will illustrate an important point, na.mély, that
even when the complete reduction sought is not attainable, yet the
number of terms may be considerably reduced, and the equations pro-
portionally simplified. For suppose the second member of the original
equation to be Y instead of zero; then the 5-equation would be of the

form d (m, ) + d(ny m) _ H

. d(z,25)  d(2;7)
Thus the seven terms of the original equation would be reduced to
three. ‘

. Another point of importance arises. If the y-equation of the last
example be transformed into a homogeneous equation by the general
method, the new equation will consist of seven terms. Suppose now
that the change of variables above indicated be made in the new equa-
tion. ‘This will reduce to two terms, thus showing that in a homo-
geneous equation a change of the independent variables may cause a
considerable simplification. To this point I hope to return hereafter.

5. The results of the preceding Articles enable us to confine our atten-
tion to homogeneous equations. We shall further restrict ourselves to
linear equations—viz., equations which are included in the form

d(yy o ya) _
ZP. T(H e IR ¢ ) §

where z, ... 2, are any n of the m independent variables; P is any
function of ..., ; and the sign of summution extends to the

Tn [m=n terms which can be formed by taking different sets of
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Of this equation (7) we shall discuss three cases :
1) When it consists of a single term, or is reducible to this form.
2) When it consists of two terms, or is reducible to this form.
3) When- -only certain specified terms occur.
Under each case will be discussed tle systems of simultaneons equa-
tions corresponding thereto.

Single Term Equations.

6. The simplest form of the general equation (7), in which, namely,
only one term occurs, is
d(

d(w, z..)
The general solution i8¢ (3, ... ¥u) =0 cevreereieereereerenrannnene (9),

| RO - %

where ¢ is an arbitrary function, involving, besides its expressed argu-
ments, any quantity not explicitly involved in (8). If, for instance,
% ... Y &re functions of 2, ... @, @, ... s, the solution of (8) may

be written B (Y1 Ymr Barr ove Bm) erererererennrrennnene. (10).

Let us now seek the conditions under which the general equation (7)
is reducible to this well-known form— viz., when it may be written

d('l/ cos Yus ul"'uﬁ)— = A
d (z‘l n..-: ------ ﬂsm) - 0 (m_ n+p) o "”"“.(11).

wip

This implies on equations of the form

_ d(u ... %p)
P=z%A T (s s Bong) ceernnssrsensanssasns (12),
|atp

—==_ coefficients P are expressed in terms
e lp
of p+1 independent quantities A, w, ... %,. The former number is
greater than the latter, so that the P’s are subject to certain conditions
when the transformation is possible, save when either 7 or p is zero or
when n=1. In the f:jrst case there is no dependent variable; in the
second case the equation is (8) itself; in the third case we have only
one dependeht variable, or the equation is & common partial differential
equation of the first order, . Except in these cases the P's mast satisfy
certain relations whxch it is our object to discover. Supposing these
relations to‘be: satlsﬁed we then require the forms of %, ...u, To
attain the former we might eliminate A, %, ... 4, from the equations
(12), and find w, ... u, by solving the s'ystem formed by eliminating A ;
‘but we prefer to avail ourselves of the peculiar form of (12), and to
make use of an artifice by means of which both ends may be attained
without difficulty.

by means of which the
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It is convenient to assume that i ... £, are the same as z, ... @,,
but arranged in a different order. Lt £, ... &, be so chosen that in

Bl o B0) s (18)
TN

is not zero, and let the equation be divided throughout by this co-
efficient.

Consider next the p Jacobians formed from (13) by replacing E,,. by
& E L& 1espect1ve]y Let the coefficients of these Jacobians in (7)
be denoted by P,,,, P,d, ... 5, respectively, the suffix denoting the
£ of (18) which is removed, the index denoting the ¢ which replaces it.
Then a comparison of (7) and (11) gives

d(u .. '"'e?
a ... )

PP o= ___(___“pl_
#el d(&, e -h pol)

eos

(7) the coefficient of

1= A

dg'u_,]' e Up)
. &)

equations which may be conveniently expressed in the form

q(u .. %)
+ Py FPoy oo p1l=aLh )
. p+ly :F 1 y 1y d(E] ] Ep,])
which is meant to imply that the i* member on the left is equal to the
determinant formed on the right by erasing the i* constituent of the
denominator.

Now th t __(.’ﬂv_z)
ow the equation aG o E

is identically satisfied by u = u, 4, ... .. This equation may be
written

du d(u...w) du a (U ... u,) ¥
a5 A b)) dE d(B & . E)

Gu Ay ... w) 0,
&, 4G . L)

or, because of (14),

du
+ dE‘, dEp +1

This, then, is an equation which must be satisfied by u, ... u,; but
evidently it is insufficient of itself to determine them, since it gives no
information as to how they depend upon £,,;...£,.. To supply this
deficiency we form other equations, starting in each case with the

P P 4P

P+l p dE p+l dE ——=0.
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Jacobian (18), but replacing, for one equation &,,,, for another £,,s, and
so on. Thus we form a system of » equations, viz. :

du du | du b

Bport = By gp ot A Bpoy g b g = 0
d: ,d d
AU = P;,,£+ ...... + P, d: + dE:fa_ 0L .15,
_pl du » du du _
Aau =P, — dfl +P,,,,, i, dE,,.,. = OJ

which must be satisfied by «, ... %

But the system (15) comprises » equations, which are mutually in-
dependent, since each contains a differential coefficient not occurring
in any of the others: there are m+p independent variables. Hence
(15) cannot have more than p common solutions, nor can it have so
many, unless, identically,

AP, =AP, (i=1..p;ns=p+l,...p+%) e (16),
the A’s being as defined in (15).

When these conditions are fulfilled, the common integrals of (15)
are given by integrating

dE.l_ poldEpyl—P:w;szpoz P:nn dsp«u‘ =0
.dE,—P:,ldE,,,.—............. -P,,.,dz,,,. =0( an,

B O/ P:,.,df,,,, =0.

which then are reducible to p exact differentials. It does not follow,
however, that the p integrals of (17) wmay be put for %, ... %, For
these integrals are determmed from a knowledge of np+1 of the P’s,
Lot p

lalp =7
u, ... u, are the p integrals of (17), then the remaining P's are
determined without ambiguity from the P's used in (15) or (17).
These other P's must therefore satisfy certain conditions which may be
determined either by forming other equations similar to (15), and ex-
pressing that all such equations must be consequences of (15), or by
making use of the known relations between the determinants of the

and without any referonce to the remaining

1; and if

mntrix : Al .o )
. oGy ... a,,w,)

Bnt practically it is most convenient in any given case to remember
that the integrals of (17) inclnde all the values of % which can be nsed
fn. (11); a.nd by comparison with the given equation (7) to determine

VOL. IX.—NO. 127. E
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how many, and which, of these integrals are suitable for our purpose.
If there be p integrals of (17), and all of these be suitable, the general
solution of (7) will be

O Yy oor Y Uy e %) =0 i (18),
%, ... 4, being in this case -the p integrals of (17). If, on the other
hand, there are less than p integrals of (17), or all the integrals are not
available, then we get a solution,

(o Un Uy y) =0 i, (19),
where p’'< p. This is not a general solution, for, as will appear in the
sequel, it will satisfy not only (7), but p—p’ other differential equa-
tions. .

The knowledge of this, solution is however useful, as it enables
us to reduce the number of indepeudent variables by p”. This i3 effected
by taking a new set of independent variables, say £ ... £., of which p’
are to be u, ... u,, say £ =u,, ... §, = u,; for clearly

A oY Wy W) . _B( e Yu)
Ay Uy Gyt o Epin) B (Epar oo Epan)’
and 80 on; 8o that of the new independent variables only &,.1 ... §y.n
will remain.

7. A few simple examples may be useful.

Suyn) _dlnug) _dln.ys) 4l w) _ o
d(zy ) d(@y3) d(v3) d(g )

Letusiput §=a, =2, §=m (=2,
Then Pi=0, Pl=-1,
Pi=-1, P,=0.

Thus (17) become
db,+di, =0, & 4& or z;4+a,=u,;
d&+ dE =0, _ &+, or @yt = u,
Hence the required solution is
¢ (mtoy 2t+a, Yo 92) =0

[It scems worth while to show @& posteriori how such an integral
equation satisfiés the proposed differential equation; viz., the integral

equation is Y= ¢ (v 2,25 23+ 2)),

so that dy, = Ady,+ B (dz,+dz,) + C (dzy+ dz)) ;
i dyy — 490 dys _ 49

.6, i b el L

dys _ 4 % Ay _ g dy .
m=aghen, | b= aghio;
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or, eliminating 4, B, C,

dyy _dyy  dyy _dyy

dz, dry _ du, da, ]

Ty dy, = A
dz, dxy du, de,

The equation of Art. 4, viz.,
d (n, ng)  d(m, ﬁa)
. + =0
d (2, 2,) * d (23 )
is found in the same way to have for its solution
¢ (u,+s my n) =0,
so that the general solution of the y-equation of that Art. is
¢ (e +2y vyt 7yn 23%5) = 0.
As a third example, take

d_(.’/u_ ?lzt_la) + fl({/n_ Ya 31) + d_('!/u Y :Vs) =0.
d (z,, Z3, ag) A (@ 2y @) A (2 @ ¥)
Here let ti=a, Li=x, =2,
L=z, L=2, §{=uz,

On trying, we find that every P} vanishes; so that (17) would bocome
dt, =0, d&E=10, d&=0;

or u, =2, Uy = &y, Uy = Ty

But without trial we know at once that these cannot be available ;
for, if they were, ay, 2. 2, would not occur amongst the indepcndent
variables of the proposed equation. [Cf. (10).]

This, then, is an equation not soluble in‘the form (18) or (19). By
another method we shall get its solution hereafter (Art. 14).

- 8. In the preccding paragraphs it has been assumed that the P's do
not involve the dependent variablos. It may happen, however, that we
have to deal with an equation which is ‘homogeneouns’ except in this
respect, and the trouble of reduciug to the homogeneous form may be
avoided in many cases. Suppose, then, that some or all of the P's
involve g, ... ., so that the same will be true of ... u, Now, in
forming the detorminant

AWy oo Yoo 1y .. 1)
d(ry, Furp)

we differentinte u, ... u, as if tho y's were constant. For let any con.
stituent of the determinant be :

du; o dug dy, du;" dy,
da;  dy, d.r,+"'"'+dy.. de U e (19).

E 2
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In the same column we shall have the constitnents
d.'t/’ d.z‘j’ ..... dz,-
Multiply the rows in which these constituents occur by
_du_ du —duw 20
a Tag T gy, s (20)

respectively, and add to the row to which (19) belongs. This, of course,
will not affect the value of the determinant, and it will reduce (19) to
du;
dz;’

But observing that the multipliers (20) are the same for all values
of j, we find that all the constituents in the row of (19) are similarly
reduced. Applying the same in turn to all the rows involving u, we
get the result announced—viz., that in forming

d(yl cor Yny Uy -ee ul’)
d (-Tl ........... xnﬂ!) ’

we may regard ¥, ... ¥, as constants when occurring in % ... %,.

Hence, in seeking the integrals of (15) or (17), we may regard any y
which occurs in the coefficients as a constant.

Simultaneous Mononomial Equations.
9. These equations have for their general solution

(W Yty o) =0 oo (20)
but n+p is now less than the number of independent variables. The
system of differential equations which has (20) for its general solution
may be written A
Ay o Yty .o W) 01
d(w—‘————l————ll S S 0 (m>n+p) .coovvnnnee. (21).

Let q be the number of independent equations that can be formed
from (21). Then we have

g= '"—(”“‘P)*l} RO ¢ &
or m+1l=n+p+q et rereene

For if we take the equations fornied by retaining

2y eennn Laep-1> Lnapy
T enen Zuip-1y Tuipely
Ty ceeenn zyto]’—l’ Tty

2y el Duep-1y Lmy
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SUPPOSING &, ... &4,p 50 chosen that in the first equation the coefficient of
A (241 vor Tpan)

d(u, ... u,)

that is, the determinant
d (7, ... @)

does not vanish. Then in the 7+ 1" equation we shall have a Jacobian

i (.’Il cor Yn-1r .'/u) ,
d (‘cpol e Bpinaly xp#"*‘)

which does not occur in any of the others. Therefore the m—(n+4p)+1
equations thus formed are independent.

Also in & matrix
Uy By eeenne @1, men

amol,l) -------- amol,mon

we know that, if the n determinants, formed by combining the first m
columns with each of the last #» columns in turn, all vanish, then all
the determinants vanish, provided

a’mol,l ----- a’mn,m

is not zero. Applying this to (21), we learn that, if the m—(n+p)+1
equations formed as above all vanish, then every equation of (21) is
satisfied —viz., there are only m— (n+p)+1 independent equations in
the system. So that (22) is proved. '

10. Suppose now we have a system of g equations each of the form (7).
We might take auy of the equations involving all the independent
variables, and find the most general solution it admits of the form (20);
then, by substitution in the other equations, determine the limitations
imposed upon ¢, % ... %, But it is more convenieut generally to
adopt another course. We reduce the given system as nearly as
possible to the form of (21) when expanded as explained above. Each
equation will contain a Jacobian not occurring in any of the other
equations. In these Jacobinus we shall have n—1 independent vari-
ables (say @,,i ... @y,n.1) common to all; and q (say @, ... 2,)
each of which occurs only in one. The other Jacobians must not
involve these ¢ independent variables, but may contain auy of the m—gq
others. This arrangement is always possible if there be a general
solation of the form (20).

Having made this arrangement, let the ¢ independent vm‘mbleq each
of which is characterised by occarring in one and only one equation of
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the system, be indicated by Zm_gs1, Tm—gss o Tm; OT, What is the same
thing, by Zu.p @aspsly o+ Taspsg-1. T distinguish the equations of the
given system conveniently, let that which contains @,_g,; Or @y,p.e-1
be called the i* equation of the system.

Suppose now that the first equation of the system is reducible to

QY oo Ynithy o W) 0,

d(z, ... ..... Dyrp)
and let the #'s be so arranged that the coeflicient of
4 (%1 . Yn)

d(erp oo Tarp)
is not zero. Divide the equation throughout by this.coefficient, and
indicate the new coeflicient of the Jacobian formed by writing 2; for
#;,, in the above by 4 ,Pf,,,
where the 1" to the left indicates the number of the equation.
‘We have then
£, Pl F1Phy ey — Ph, 1= A’«T@%;T?:)
But u, ... u, satisfy the equution
d_(2, Wy ... %) =0
d(z ... 2 i)

identically. That is, they satisfy the equations

d ' d
P, j" + 1B, St i P, Z" 7 =0....05)
¢G=12..2).

The n equations (15") are not suﬁicient to determine u, for they do not
say how « depends upon 2,.,,; ... #,. To supply this knowledge we
form from each of the remaining ¢—1 equations of the given system
one other cquation for 4. From the ¢*" cquation, for instance, we get

1 du . du du  _ "
£ m-gei d—fL'l+ ------ + "Pm-q¢| d.'l.", + dm,,,,, = 0 ...-..-..(15 )

| (=23 .. 9.
It is here tacitly assumed that the coefficient of
ad(y, ...v.)

d(zlop [XR) znqlop, mu-lopn‘)

does not vanish ; but the coofficient in question being

A, G0 . %)
MNTG )

it appears that this is 110 new assumption.
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If in (15) ¢ take all values from 1 to x, and in (15”) all values from 2
to ¢ [the value # in (15) and 1 in (15”) would give the same equation],
we get a system of n+g—1 independent equations involving m inde-
pendent variables. These can at most have m—(n+g¢)+1, or p
solutions., Thus, if u, ... u, exist, they are determined by (15'), (157),
or by integrating the p exptessions '

¢ [} (] )
dml—lPlép dxhp—"'_l n+p d‘tnﬂ!—!Prnpﬂ dxnnnl—'-"_qu dxm =0

(=12 ..p. e a7).

In order that (17°) should have p integrals, certain conditions involv-
ing the differential coefficients of the P’s must be satisfied, as (16). In
order that the P’s not included in the above system (17'), or (15), (157),
may be consistent, they must satisfy certain algebraical conditions,
Of these latter, one is obviously that JP;,,. is the same for all values
of j, k& having ome of the values 1, 2, ... n—1, n—1+j.

If any of these conditions be not satisfied, then there are less than
p values of u; and there is, consequently, no general solution of the
given system of the form (20). DBut the knowledge of p’ (p'< p)
values of % enables us to simplify the system, reducing the number
of independent variables by p’.

Binomial Fiquations.

11. The most general form of this equation is

d(u ... u, Pd (g oo Uy Wy oen W)
d(z ... 2,) (Y e Yns Tuar ov- T) |
which, by (5), redaces to

alyy ... Ya) _
A T (24),
P being a function of #,y. I have not been able to obtain a general
solution of this equation; but it is easy to get, in two distinct ways,
as many solutions as we please.

12. In (24) let us rcplace =, ... 2, by a new set of independent varis
ables £ ... £,. Then we have

Al Wy (.. p) ¢ ... E) _p
d(@ ...2,) d(& ... &) d@ ... 2) )

Say now we attributo to ¥, . y,., any values whatever in terms of
®, ... ., and replace & ... £,_, by these values. Then the last-written
d(£| fen En) . % i P 0 \

equation becomes Ty & = P, (25).



56 Prof. H. W. Lloyd Tanner on [Jan. 10,

Lastly, take any convenient value for £, such that the left-hand
member does not vanish. By means of these suppositions
Cd( L E)
dz, ...z,)
becomes a known function of #, ... #,; while P is & given function of
Yy oo Ym % ... o. Both these quantities may therefore be expressed in

terms of y,, & ... £,; so that (25) is an ordinary differential equation
which gives the value of y, under the supposed conditions.

d (9 ¥3)

As an example, take T 0 %) — 1 e (26).
P T (s ) (26
Let us find the form of y, when y, = 2; + ;.

Transfotm to new variables

£1=2’:+“’:; Ea=£’“-

o
3
Then (24) becomes 2 (1+ :;’ ) g—g: =1;
1
o _1
d&; 145

2y, = ¢ (&) +tan"'§,

= ¢ (2 +2)+tan' 2,
)

Or, again, take LA D) = 21 Yy— T3 Y-

Suppose now that y, = a:& Take for new variables
1

L= ‘ﬁ‘» & = 2,2,
3

Then (24) becomes 24 . dyy 2, (y3—1);

zy, dé
dy &
o s _ —-1) = Ss —1):
dE, z! (Z‘ls 1) E\ (yl 1) s
2dy, _ 8 g
y|—1 a 3
_ z, e;:.'
whence Yy=1+¢ (x—) e’
3

18. Tt is evident that by attributing thus various forms to g, .. y._,
we can get as many solutions as we please, and that these solutions
include all possible solutions of (£4) in their number. But the process,
though convenient in some cases, is not of much use when ¥, ... y. are
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restncted to certain forms, and we do not know what the forms may be.
In such cases we may get solutions of (24); but ¥, ... y,., may have
been chosen 80 as to violate some of the other conditions, and the
solutions are useless. It becomes desirable, therefore, to employ a
method which does not imply & knowledge of the form of y, ... y,_;.
This will be now indicated by means of the same particular example,

d( 19 J8) o
ﬁ% O (26).

Now we have
d (ﬂn ¥ ) d (yllz) dln 1) (7(1/2"), Ya )) =1;
a (2, 23) —d @, y2) A, ya) a (2, 25)

so that (26) will be satisfied if each of the determinants in the middle
term of the last equation is unity. And, moreover, ', ¥ will be
particular values of ¥,, y3. Now assume

dy(") =0 dy J(») dy"')

da;l =" dw, d/.v, =1 . (27),
so that . 93) =1.
' d (x,. 25)
Then ¥ = ¢ (3),
(") = 4" (zi) ¢ (Z’)

¢1, ¥, being arbitrary fanctions.
In just the same way we should get

W=l = {he- 285t

YO0 = g, {5} — Y
? D)

_\p,{\pl( ’)—'P (:v)} —¢ (2) ¢ 5"2{\!‘1(‘53)‘? (:c)}

Continning in this way, we shall get expressions of very great
generality for g, ys. But no solution thus obtained will be a general
solution; nor can we even say that these solutions will include every
possible solution, since we do not know that the forms attributed to y,,
say, include every possible form of function of z,, Zy

The manner of dealing with the more general equation

a0 ... y) =1

d (2, ... T)
is precisely similar. The results may be in certain cases extended to
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the equation (24), when P is a product of a function of g, ... y, by a
function of =, ... ®,. For we have

LACTETE Y R 28
Ty = T & s (28),
Q) A ) | AGE )

W v AW ) A )

Now let ¢ ... y» be particular solutions of

au . Yn) — X;

d(z .. )

and v ... y, be particular solutions of
ﬂu - :') = ..1_.
d(y,...9) Y

Lastly, let us find as general a solution as possible of

(Y1 ... ¥n) — 1,
Ay

By eliminating g, 4" from these results we shall get a solution of
(28) of considerable generality.

We have already met with examples of systems of simultaneouns
binomial equations ; for instance, (14) is such. These, however, in all
cases in which their general solution has been attained, are inclunded in
the next class of equations. 1t will be convenient to defer the con-
sideration of them.

Equations with Selected Terms.

14. The last class of equations with which we propose to deal only
include certain selected terms of the general equation

(. Yn)
EPd(El b 0
These selected terms are distinguished by the circumstance that by
replacing one of the independent variables in each Jacobian by one of
the independent variables excluded from it, we arrive at one and the
same Jacobian, which may or may not actually occur in the equation.
For convenience we will call the dependent variables 4, ... %,; and
will suppose the defining Jacobian of the equation to be

d(u, ... u,
a(p - .'/n)'

-The rema,ining independent variables we shall indicate by =, ... 2;,
g0 that there are in all n+p independent variables. The general form



1878.] Partial Differential Equations of the First Order. 59

of the Jacobian which can occur in an equation of the class wé now
consider is

d(y .. .Uy,

a(y, ... @ ... y,.) !

viz., one of the y’s is replaced by one of the @'s. The most general
form of the equation itself is

d( %, «d(qg t
paly . t)  spr G0yt M) 29).
ay . .'/n)+ i a(y ... .'/n) (29)

A reference to (5) w11.l show that

ad(uy ... ... u,) . d(u, ... u) - dy,
A oo ¥ oY) A(Y - Yn) d:u,
Thus (29) reduces to

d . .
zzg‘-gﬁ—: =P@G=1..27=1..m) ucrcroe...(80),

which is a partial differential equation of the first order—involving
only Jacobiaus of the first order.

~ If it should happen that all the ¢'s in (29) or (80) were the same,
then (80) would be a partial differential equation with one dependent
~ variable. Itis to this circumstance that the form of (15), for msbance,
is due.

Suppose, however, that the ¢’s are different. Say we have r different
y's and s different 2’s in (80): let these be %, ..y, @ ...2,. Now
choose 7 new dependent variables », ... n, functions of 3, ... Yay 2, ... Ty
and m new independent variables &, ... £, functions of @, ... @,,, so that,
if possible, (30) may reduce to the form

dn,  dn, dn,
T

The general solution of this equation is
d gfp 91’ e j‘irdz
A&, . E)

where ¢,, ... ¢,_, are r—1 arbitrary functions of (§, ... £,) (see * Mes-
senger of Mathematics,” vol. vii, p. 107). This is also the general
solution of (30), if after the differentiations n, ... n,, & ... £, be replaced
by their values in terms of #, ... Zm, ¥, ... yu. Also the solution. of (29)
may be written .
‘p" {u’l! veey Uny Yraly oo Yns M (—)h Ak} =0 cvieeirinenn (32),
k=1, ..rn

S SROTRUURY (1) §

My —Ngy sy 0 =

where By By oo By = dd< e ¢£-)' .

For ,, ug, ... %, = 0 are solutions of (30).
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A simple example of this class of equation is afforded by
d (2, @y, 3) d (“':a 4‘41 zy) d (2 “’m zg)’
If we write Comy=ny, Zy= Ny =Ty
n=b, a=& =4
The above becomes

() | d (i, Uy ) _ A (0, %,%) _
d(m g &) (&, ng n)  d(m & )

d’h dn, dﬂ’
whence dE, + = & =0,
or 7, —_—1yy =Ny = M
A T AR A
t.6, Ly =Ty —Ty = 4 (¢ ¢)_ = A, Ay, A, oy,

d (2, %y, 74)
where ¢,, ¢, are arbitrary functions of @,, @, @, The solution of the
given equation is, therefore,
¥ {w, ty, 4y, 2,—4,} =0,
Yy {th, g, Uy, 73+ 85} =0,
Vs {1y U, Uy, 2,+4,} = 0.

15. There is no special difficulty as to simultaneous equations. As
an example we may take the equations left in a previous article, viz.,

d (’71’ 'h) =0 d ('hq ’71) ,&d_('_ha "i) = 0
a (41, 2,) T d(y,, -’”a) 2, d (% %)

d(mm)  d(mum) 9 d(mm)
d (z, 1) d(./u 2) @ d (Y 9) ’

d ('ln ’73) + d('hs ’h) (711_,_-’”17/1) d !’h. ’7: = 0
d@n ) dynes) \&y 22/ d(y, 4s)

d (m, ) + d(”v ’h) y: d ('ln ’h)
d(@, @) d(zy2) @, d o)

From these, tuking ¥,, ¥, a8 new dependent va.rmbles, and writing only
independent equations, .

dys Ay _dyy_yy
de, 0, dz, dzy %—0,.

‘_Zyl_*_!/_a:o ay, 41/_ ,L+‘°s!ls 0.
dey 2 ' dx dw. Ty %
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From the first pair we get
Y= — ‘P (1 t2),

a.nd then, from the second pair,
) 1
— Tg —_—
h=— oy -P (3’1"‘%)'*' 2 Y (”1'*,"”3),
-2 1
2, Yst+ 2 ¥ (2,1 2,).

These lead to the general solution found in Art. 7.

On the Relation between the Functions of Laplace and Bessel.
By Lord Ravueien, M.A., F.R.S.

[Read January 10, 1878.]

In § 783 of Thomson and Tait’s * Natural Philosophy’ & suggestion
is made to examine the transition from formule dealing with Laplace’s
spherical functions to the corresponding formule proper to a plane.
It is evident at once from this point of view that Bessel's functions are
merely particular cases of Laplace’s more general functions; but the
fact seems to be very little known. Of two valuable works recently
published on this subject,* one makes no mention of Bessel’s functions,
and the other states espressly that they are not connected with the
main subject of the book; other mathematicians also, to whom I have
mentioned the matter, have been unaware of the relation. Under these
circumstances it may not be superfluous to pomt out bneﬂy the cor-
respondence of some of the formuls.

The Bessel’s function of zero order J, is the limiting form of
Legendre’s function P,(u), when n is indefinitely great, and u
(= cos 8) such that = sin 0 is finite, equal say to z. The simplest
proof of this assertion is perhaps that obtained from Murphy’s series
for P,. Thus (Todhunter, § 23),

P,(conb) = cos"‘-g— {1-—- ( ’1' tan %)’+ (’—21"—;1— tan? %)’_ }

® ¢ An Elomentnry Treatme on Laplace’s Functions, Lamé’s Functions, and
Bessol’s Functions.” By I. Todhunter. 1875.

“ An Elementary Treatise on Spherical Harmonics and subjocts connected with
them.” By the Rev. N. M. Ferrers. 1877.



