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Central Quadrics. §§ 1-15.

1. One of the best known properties (Joachimstahl's) of any
geodesic drawn upon an ellipsoid (or upon any central quadric) is
represented by the equation

pD = constant = kl,

where p is the perpendicular from the centre on the tangent plane at
the point, and D is the length of a central semi-diameter parallel to
the direction of the geodesic through the point; the quantity k is
constant along the geodesic.

But an equation of precisely the same form characterizes lines of
curvature upon central quadrics, the difference between the two
arising in the value of the constant k for the particular curve. Yet
even this difference disappears when the equation is used in a form

current along the curve. The property, thus stated, does not dis-
tinguish between a geodesic and a line of curvature; it might,
indeed, belong to curves of other classes passing through the point.
A question is thus suggested as to the curves which are determined
by either of the equivalent equations

pD = constant, — (pD) = 0.
as

2. Taking the quadric in the form

a (5 y

and denoting the tangential direction of the curve through #, y, z,
by I, m, n, so that

I, m, n = x\ y\ z,
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whero dashes imply differentiation with regard to the arc e, we have

a9 /3* y' ~ f '

a p* y "~1>"
ZOJ . ray . n£ «

h -fH = U,
« p y

P + m 9 + w8 = 1 .

From these we have

Ix . «M/ , nz

^ P 7 - _ 1 dp
^L + jt+fL P (fo'
o8 /S' ^ y2

ZZ' , ram' , nn
"7 " jF y 1 d^#

Z2 ra2 n 2 I> <fo 5

a (5 y

whence, if we use the characteristic equation in the form

J L ^ + _ L ^ = o

- p ds D ds '

we have I hm——+n = — £-rX—*— y— -C— z.
a p y a2 /3a ^ y

Again, we have

Ix' , my' nz' Vx my , nz __ n

o /i y a p y

that is, t \-m —r2 + » — = — 1 ;
a /3 y

and VI + ra'ra + n'n = 0.

There are thus three equations to detennine V, ra', n', and they will
determine these quantities uniquely unless they are not independent
of one another.
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When we solve them, we have, as the coefficient of V, the quantity

I m n
a /3 y

*., M-, JL
« /3 ' y

which is equal to

—jr- \xmn{fi — y)+ynl (y—a)+zlm (o—/
ctpy

The value of —%- 01' ia

] = - ^ - 0, say.
- apy

Now ^ 4 . ^ + ^ - - l - / ^ +

)3 V a /J / y \ a y I

and therefore the coefficient of —p'JD1 is

Also the quantity — D3m» ( -^ J is equal to •^-p2lP multiplied by

D*Hence the whole expression for —rr- Qt isa(iy

mn
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_, ,. . mn , , v* ny /my , nz\ InxyBut -^ y*+ — yz*= -f[-£ + —) = # .

and m* . m»j mz (my , nz\ Imx
/3v v8 v \ P v / ayfir

Imxz
ay

and therefore

M 1 \lmz\

so that, as D does not vanish, we have*

and simiUrly

Ir a

9m' = —

3. If 0 does not vanish, we have

V TO' TO' ]?_

_£_ JL _£. ^*8'
a /3 y

which are the equations! of a geodesic through *, y, z.

But, if 6 vanishes, the equations do not determine V, m', n. In
that case, we have

xmn (3—y)+ywZ (y—o)+zZm(a—j3) = 0,

or, what is the equivalent,

-«)+ - («-/3) = 0.

This, together with

+ ma + n% = 1

• See Salmon's &o/t<? Geometry, 3rd edition, p. 353, note,
t Frost's Solid Geometry, 3rd ed., p. 314.
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suffices to determine the (two) sets of values at $, yvz for I, m, n.
That these two sets correspond to the lines of curvature can be seen
easily as follows. The direction of either of the lines of curvature is
normal to a confocal; so that, if 0 be a root (other than zero) of the
equation

the direction cosines A, /*, v of the line of curvature, that is normal
to the <f> confocal, are proportional to

Hence iL (0_ y ) + . JL ( y _ a ) + . l ( a _ /
A fi v

is proportional to

fl3-y)(a-*) +

that is, it vanishes; and

\x (iy vz
o /> y

a?onal to — + -5-

that is, to

so that it vanishes. Hence the two sets of values, determined for
Z, m, n, correspond to the lines of curvature.

Consequently, the equation

±w = 0

determines either a geodesic or a line of curvature. When taken in the
form ,

it determines either a geodesic or one of the lines of curvature
according to the value of Jc.
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The only exception is when both sets of equations, viz.,

V _ m' _ n p%

"~~ ~~ ~~ ~ ~ ia»

JL JL JL **

a ft y

and G = 0,
are satisfied. This circumstance occurs when the geodesic, deter-
mined by the former, touches a line of curvature, determined by the
latter; at the point, I, m, n have the same values. And, in fact, the
quantity A;, -which is the parameter of a geodesic, can be equal to
the parameter of some line of curvature, which accordingly is touched
by the geodesic.

4. But, though the discrimination between the geodesic and the
line of curvature cannot be made by the explicit form

it can be secured by introducing into the differential equation the
ellipsoidal surface-parameters. Denoting these by A, and Xj, the roots
(other than zero) of the equation

y

we have, as usual, —5- = -7P3,
f a/3y

z
3 = r(y-AI)(y-A2),

where, if Q denote (a — /3)(o—y)(/3—y),

then D A = o ( / 3 - y),

r=y(«- /3)
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they satisfy the equations

A+B+r = o, A + _B+_T = 0
a /3 y

a-Xj

ds l \ /3-X,/ d a ^ ^ - X , / d« j '

y-\) ds \y-Xj ds ) '

a a — Xj ) \dsf ( a a— X,

But, taking pD = A;2,
1 *% *J *3

we have T5 = ~ + ^r + —*
Xr a fi y

so that
o ft y X,Xa&

4 X,Xj*

say, where 5 = -—•;

and, in the case of an ellipsoid for which o > ft > y,

Thus the second equation is

XtX2 \ ds f (. et a—X, ) \ ds I ( . a a — \ t



1896.] Geodesies on Quadrics, not of Revolution.

Now

,c A a—X. a(B — y) a— X,

257.

= + °) P—K . y(q-/3) y-X,
a-X, D a-X, a P-K D y-xl

a—X,

A a—

—X,)

X,—

A _ \ \ \

( \ _x )*
Hence, writing 2̂ At = ] ' \ . r-. \ \

C (a—Xj)(/3—X,)(y — X,) )

the equations are

ds J

Introducing a quantity EX, defined for X = X, and X = Xt by the
equation

EX = - X ( t t -X)(/3-X)(y-X)(a-X),

we have, on solving these equations

and therefore

so that

Similarly,

\ ds )

VOL. XXVII.—NO. 5 5 1 .
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Consequently,
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ds j

~ KK "
the final form of the differential equations ; it agrees with the form
given by Weierstrass* in 1861, obtained by other considerations.

5. These have been deduced on the supposition that the two

equations involving ——', -—-? could be solved properly. If, however,
as ds

the curve under consideration be a line of curvature, we have either

Xt = constant or Xj = constant.

When X, is constant, dAl vanishes ; and so ^ = Xj. The length of the
arc is given by

( o 0 O ( r M J
Similarly, when Xj is constant, dA9 vanishes ; and so 8 = X,. The
length of the arc is given by

From the earlier investigation it appeared that the equation
pD = constant represents either a geodesic or a line of curvature; it
consequently follows that the proper equations of a geodesic are

X, fZX, X.2 d\.7

i ' 2

r4-rr = du

where

= du

= - \ (a_A)(/3-X)(y-X)(3-X),

tff, t . I. , p . 262.
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and A,, X, are the (non-zero) roots of

6. When the given quadric is an ellipsoid, a, /3, y are all positive ;
take ., n

a>/3>y>0.

Let A, determine the confocal hyporboloid of two sheets, and Â  the
confocal hyperboloid of one sheet; then we have

a>\l>fi, /3>Aj>y.

Further, du must be real, and therefore both B\t and B\3 must be
positive. Taking account of the limits between which Aj and A4

must lie, we find that B\ is positive if Xl > 8, aud that i?Aa is positive
if A, < 8 ; BO that

The only conditions other than these to which $ is subject are

They are covered by what precedes; hence the whole set of con-
ditions is

Three cases occur, according as

(i.) * = A

(ii.) 3 < A

(HI.) a > p.

As regards the form of the curve, we have

In the fii'st case, when $ = /3, we have

the geodesic passes through an umbilicus, and therefore also through
the centrally opposite umbilicus.

s 2
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In each of the other two cases, the geodesic touches a line of
curvature. At any point on its course, we have

so that *=*&'

When a geodesic touches a line of curvature on a hyperboloid of one
sheet, D is the same at the point of contact as for the line of curva-
ture, that is, J5J = Xj; and hence at that point

3 = X,

Hence, in the second case, when c</3, the geodesic touches aline of
curvature lying on the confocal one-sheeted hyperboloid; and it
undulates between the two lines of curvature that constitute
the complete intersection of the ellipsoid and the confocal
quadric.

When a geodesic touches a line of curvature on a hyperboloid of
two sheets, D is the same at the point of contact as for the line of
curvature, that is, Di = X2; and hence at that point

Hence, in the third case, when o>/3, the geodesic touches a line of
curvature lying on a confocal two-sheeted hyperboloid ; and it undu-
lates between the two lines of curvature that constitute the complete
intersection of the ellipsoid and the confocal quadric*

In the case of the oblate spheroid, for which a = /3, the first of the
above classes gives rise to the meridians; the second of them gives
rise to the non-meridianal geodesies, the course of which is well
known; the third of them gives rise also to the meridians, as a
limiting form.

Likewise for a prolate spheroid.

• Cf. Cayley, Coll. Math. Papers, Vol. vi., No. 425.



1896.] . Geodesies on Quadrics, not of Revolution. 261

7. The differential relations of the geodesies can be replaced by
expressions in terms of periodic functions.

(i.) In the first case, when <S = /3, the geodesies pass through the
umbilici. As we take the lines of curvature from AB to UG, which
lie on hyperboloids of one sheet, the quantity X, increases; and as we

c

\ —

\

take the lines of curvature from OB to UA, which lie on hyperboloids
of two sheets, the quantity X, decreases. Hence at P, for the geodesic
UP in the direction UP, we have

t?A9 is negative, d\t is positive.

Also we take

= 03-X8).{XJ

Moreover at U we have \ = (3, X, = )8. Hence at P the equations of
the geodesic UP in the direction UP are

6 dO

_ du_
s ] x ; x

where M is chosen so as to vanish at U, and the arc s is measured
from U.

The first two equations can befreplaced by

« d6 Q

/3 ye '
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where 0 has continuous real values from X, to A,, and in the former
the principal value of the integral is to be taken. The first expresses
the relation between X, and A, along the geodesic; for the explicit
form of the relation, elliptic integrals of the third kind are necessary.
In the second equation, the integral is elliptic of the first kind.

(ir.) In the case when d</3 and the geodesic undulates between the
two lines of curvature that are the complete intersection of the
ellipsoid and a confocal hyperboloid of one sheet, the equations can
be replaced by expressions involving hyperelliptic functions. We

e t > A , > / 3 > 8 > A 2 > r > 0 ;

and we take a = I 4- — 7 =
J, J; 2SR6

where a is an arbitrary constant; it is unnecessary to associate an
arbitrary constant with u. Now introduce two new quantities, viz.,

pi f»«
a—yu = « . = + 1

a-(3u = iu = P'+ [''

these quantities «, and u3 being the arguments of the hyperelliptic
functions in Weierstrass's theory.* We take

a0, a,, a,, a3, a4 = a, 0, 5, y, 0;

und then we have

x* _ (a-\})(a—A9) _ (q0-\1)(o0-A,) _ ,s, x
( ) ( ) ( ) ( )

til al\ („„ „,),

• (?e«. JTerAe, 1.1., pp. 133-152, pp. 297-355 ; the special care required is given
by n s» 2.
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Thus the equations of a geodesic are given by

al0 (a—yu, a —flu) '

263

x =

E)
= 7 E )̂

where a and 5 are the arbitrary constants which can be determined
by assigning any two points on the ellipsoid as points through which
a geodesic is to be drawn and u is the parameter of the curve so
drawn.

.in.

= al\ («,, us)

= 1 | 1 GU | 1 dU
a l ~ ~ a 4 OWj O-i — &i OM,

where TJ is the integral-function defined* by the equation

Thus

But

Mj OM,

= — dux + ^— duv in general,

= — ( y — +/3-— ) du, in the present case;
V 0% OM,/

and therefore

= dU—0ydu.

* WeieretrasB, I.e., pp. 337-346.
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Consequently

the right-hand side being taken between the values of u at two
points on the geodesic, expresses the length of the arc between those
points.

[Added March 16th, 1896.—The result can be obtained also as
follows :—By the equations in § 4, we have

— r — • = T-1 =
A, —A,

so that du = (A,—A,) 0.

Now dU=

, say,

= 6 {A, (X,-i8)(A.-y)-^ (At-/8)(A,-r)}

as before. 1

= — X, X, du + fly du

= ds+(iydu,

(in.) In the case when 5>/3 and the geodesic undulates between
the two lines of curvature that are the complete intersection of the
ellipsoid and a confocal hyperboloid of two sheets, the result can
similarly be expressed in terms of hyperelliptic functions. We now

a > X, >&> (S >\ > y > 0,

and we take a, S, /3, y, 0 = aQ, av av as, a4.

Then introducing

e-s

so that ux = a—y«, «s = a—t
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we easily, find

)= >/a(-—-5) alo(a — yu, a

y =

a p

^i)
z = yals(a—yu, a—$u)

In these expressions a and 8 are the two arbitrary constants; they
can be determined by any two points through which the geodesic
passes. And u is the current parameter of the geodesic.

To find the arc, we introduce the integral-function Z7, where

' J l R02V.R0

and then the arc between any two points is equal to

[U-fiyuJ,

between the limiting values of u that determine the two points.*

It has been assumed throughout that" a>/3>y. Special cases
arise when a = /3, viz., an oblate spheroid, and when (3 = y, viz., a
prolate spheroid. The corresponding formulae then belong to elliptic
functions.f

8. If numerical approximations are desired, they can be obtained,
as pointed out by Weierstrass in his paper already quoted, by using
the double theta-functions. The Abelian functions, that occur in
the preceding solution, are expressible as quotients of these theta-
functions in forms substantially agreeing with results first given by
Rosenhain;% and when once the parameters, being, small quantities
for a surface nearly spherical, are determined, expansions can be
obtained to any degree of accuracy required.

* For the umbilical geodesies, see a paper by Cayley, " On the Geodesies on an
Ellipsoid," Coll. Math. Papers, Vol. vn., 478. For the general geodesies on an
ellipsoid, the paper by Weierstrass, referred to in § 4, should be consulted ; also
two papers by Cayley, Coll. Math. Papers, Vol. via., 508, 511.

t For the case of an oblate spheroid, see a paper by the author, Messenger of
Mathematics, Vol. xxv. (1896), pp. 81-124.

J " Memoire BUT les fonctions de deux variables et a quatre p^riodes," Mini, des
Savant Etr., t. xi., p. 361; the memoir is dated 1846. . . . . .
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9. When the given quadric is a hyperboloid of one sheet, we have

a > /3 > 0 > y.

The roots of the equation

J? i y*- , ^ = i -
a^e fi-e y-e

must correspond to an ellipsoid and a hyperboloid of two sheets.
For the former, we have

y > X,,

both of course being negative ; for the latter, we have

a > Xi > /3.

In order to have real geodesies, both JR\, and E\ must be positive.
The former is positive if 8 < Xv the latter if $ > A,; so that

x, > a > x,.
Combining the inequalities, we have

There are seven cases, viz.,

(i.)

(II.)

(in.)

(IV.)

(••)

(VI.)

(VII.)

$ > /3 > 0 > y,

5 = /3 > 0 > y,

/S > 5 > 0 > y,

0 > $ = 0 > y,

/3 > 0 > 5 > y,

/8>0>a=y,
0 > 0 > y > 5.

10. To discriminate these cases, we consider the configuration of
the surface in the immediate vicinity of x, y, z, and compare it with
the central section by a plane parallel to the tangent plane at the
point. The generators are parallel to the asymptotes of the central
section; the angles between the generators are bisected by the lines
of curvature, which are parallel to the axes of the central section;
and that angle between the generators in which the ellipsoidal line
of curvature lies corresponds to that angle between the asymptotes
in which the real part of the curve of the central section lies, say, the
internal angle of the asymptotes.
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Now, by § 4, we have
1 3

and in the present case A, is positive, \3 is negative. Hence, when 8
is positive, Ds is • negative; and the direction of the geodesic lies
within the external angle of the generators. When 8 is zero, D is
infinite ; and the direction of the geodesic is one of the generators.
When 8 is negative, D1 is positive; and the direction of the geodesic
lies within the internal angle of the generators.

If a geodesic can cross the principal section in the plane z = 0, we
have there x

A
Now, at any point,

dT* ds \y—V ds \y-\J ds '

a n d d\, _ 2 ^ , d)±= 2v^RA,_
ds ^ ( ^ - A , ) ' ds A,(A,-A,)'

where the positive value has to be assigned to the real radicals
, and v/jRAj, that is,

Substituting and then making A, = y, we have

dz {r(y-A0}» / rr^ TTZ
(

Now r is negative, as is also y—A,; thus the first radical on the
right-hand side is real. Again — y, a—y, /3—y are positive ; hence,

if 5 > y, the value of — is real. In this case, the geodesic crosses

the principal section under consideration.

If 5 = y, then — = 0 at the point;
as

touches the principal section but does not cross it.
If a<y, then f? ia

as
the principal section.

If 5 = y, then — = 0 at the point; in this case the geodesic
ds

If 8 < y, then — is imaginary; that is, the geodesic cannot meet
ds
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11. In the figure, QXG[ and G%G'2 are the generators at the point 0 *>
they give the directions of the geodesies corresponding to £ = 0.
This is Case (iv.).

x

The lines BXB{ and B3B'2 are lines equally inclined to the genera-
tors ; they give the directions of the geodesies through 0 correspond-
ing to 5 = p. This is Case (n.).

For any direction lying within the angles BXGB% and B[ OB'2, we
have £>/3. Thus Case (i.) gives geodesies through 0 whose direc-
tions lie within one of the two regions marked (i.) ; one special line
is the geodesic which touches the hyperboloidal line of curvature
through 0, the value of S then being \x.

For any direction lying within one of the angles BXOGX, B30Gif

B*0G*,B[0Q'u we have /3>S>0. Thus Case (in.) gives geodesies
through 0 whose directions lie within one of the four regions
marked (in.).

The lines Gx G[ and (7S G^ are lines equally inclined to the generators;
they give the directions of tne geodesies through 0 corresponding to
B = y. This is Case (vi.).

For any direction lying within one of the angles 0,00,, C[OG'U
GtOG9, G2OG3, we have 0>B>y. Thus Case (v.) gives geodesies
through 0 whose directions lie within one of the four regions
marked (v.).

For any direction lying within the angles G1OC'i and C,0(7[, we
have 8<y. Thus Case (vn.) gives geodesies through 0 whose direc-
tions lie within one of the regions marked (vn.) ; one special line is
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the geodesic which touches the ellipsoidal line of curvature through
0, the value of 8 then being Xj.

Geodesies through 0 whose directions lie within (but not on the
boundary of) either of the angles GxOGt and 0[0G't cross the
principal elliptic section of the surface when they are continued.

The two geodesies through 0 whose directions are the lines 0,0[
and Gt G'i at that point touch, but do not cross, the principal elliptic
section.

Geodesies through 0 whose directions lie within (but not on the
boundary of) either of the angles C,OG't and 0%0G'2 do not meet
the principal elliptic section of the surfa5e. Each of them touches
an ellipsoidal line of curvature, determined by the value of 8; and
extends, on either side of this point of contact, towards infinity away
from the principal elliptic section. By this extension of the geodesic
is implied a curve at every part of which the characteristic geodesic
property is possessed; but the length of the arc of this curve between
any two points of it is not necessarily the shortest surface-distance
between the two points.

12. The course of the geodesic can be indicated by expressing the
coordinates of any point on it in terms of a single parameter. The
expressions in Cases (i.), (in.), (v.), (vu.) require hyper-elliptic
functions as in two of the cases on the surface of the ellipsoid; in
Cases (n.) and (vi.)» elliptic functions and elliptic integrals of the
third kind occur; in Case (iv.), the expressions are algebraical.

13. When the given quadric is a hyperboloid of two sheets, we have

o > 0 > P > y.

The roots, other than zero, of the equation

a-d (3-0 y-0

must correspond to an ellipsoid and a hyperboloid of one sheet.
For the former, we have

y > X2,

both of course being negative; for the latter, we have
/3>X1>y.

In order to have real geodesies, we must have i?X, positive, a con-
dition which is satisfied if B < X,; and we must have ZvXj positive, a
condition which is satisfied if § > X^ so that

x, > a > Xj.
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Combining these inequalities, we have

a>0>(3>\1>

There are three cases, viz.,

(i.) y = », .

(II.) y > 2,

(m.) y < 9.

14. The cases are similar to those that occur in the ellipsoid.
The first represents a geodesic passing through an umbilicus, but,

with a single exception, not through the other umbilicus on the same
sheet; beyond these points, it extends towards infinity.

The second represents a geodesic touching one ellipsoidal line of
curvature and extending towards infinity in both directions.

The third represents a geodesic touching one line of curvature that
lies upon a confocal hyperboloid of one sheet and extending towards
infinity in both directions.

The last two require hyper-elliptic functions for the explicit
expression of the variables along the course of the curve; the first,
for the same purpose, requires elliptic integrals of the third kind.

15. It is unnecessary to consider, in any detail, geodesies on a cone
or cylinder; their characteristic equation for such a surface can be
deduced from the property that, when a developable surface is
developed, the geodesic gives rise to a straight line on the developed
surface. Thus, for instance, on a cone we should have

r sin <p = constant;

where the constant is the parameter of the geodesic, r is the distance
of any point on it from the vertex of the cone, and <j> is the angle
between the direction of the geodesic at the point and the generator
through the point.

NON-CENTRAL QUADRICS. §§ 16-22.

16. When the quadric is paraboloidal, its equation can be taken in
the form , ,

•i- +1 = 4*.
a c
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When the paraboloid is elliptic, we have

o > c > 0 ;

when it is hyperbolic, we have
a > 0 > c.

The confocal paraboloids are given by

271

+-£- = 4 (z-fc),
a—k c—k

a cubic equation in k for each point x, y, z. One root is zero ; let the
others be kx and kit of which &,is assumed the greater. Then 0, ku

k% are the roots of

4(a-A;)(c-fc)(aj--&)-t/s (c-k)-z>(a-k) - 0.

It is easily seen* that the roots are separated by op., o, c, — oo.
Hence in the case of the elliptic paraboloid we have

oo>A;1>a>A;j>c>0;

&! determines an elliptic paraboloid and kt a hyperbolic paraboloid.
And in the case of the hyperbolic paraboloid, we have

fc, and k3 determine elliptic paraboloids.

17, The intersections of the confocal surfaces are lines of curvatu]"e
on each of them.

Consider first the elliptic paraboloid.

• Frost'8 Solid Geometry, p. 138.
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Its intersection with the confocal elliptic paraboloid is a curve
one quarter of which is AB; when this curve is orthogonally pro-
jected on the plane of yz, it becomes the ellipse

Qt ^ « J | m • Of) C ( A! | *~~ C)

This curve is the whole of the real intersection with the confocal
elliptic paraboloid.

The intersection with the confocal hyperbolic paraboloid consists
•of two curves. One half of one of them is CD, the other half of it
being on the negative side of the plane zx ; and the other curve is
the reflexion of this curve in the plane of xy. When these curves
are orthogonally projected on the plane of yz} they become the two
branches of the hyperbola

The two real curves constitute the whole intersection with the con-
focal hyperbolic paraboloid.

Now consider the hyperbolic paraboloid. Its intersection with the
confocal elliptic paraboloid determined by &, consists.of two curves;

one is QOPB..., and the other is the reflexion of this curve in the
plane of xz. When these curves are orthogonally projected on the
plane of yz, they become the two branches of the hyperbola

a (&, — o)

These two (real) cnrves constitute the whole intersection.
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The intersection with the confocal elliptic paraboloid determined
by A;2 consists of two curves; SPT..., S'P'T'... are halves of them,
the other halves being their reflexion in the plane of xz. When
these curves are orthogonally projected on the plane of yz, they
become the two branches of the hyperbola

|| = !
a(a—kt) c(c—ka)

These two (real) carves constitute the whole intersection.

18. Take any point on a paraboloid and consider the geodesies
through the point. If I, TO, n denote the direction of the curve there,
if p be the perpendicular from the vertex upon the tangent plane at
the point, and if D denote the length of the chord through the
vertex parallel to the geodesic direction, then* we have

constant along a curve. And, by an investigation similar to that con-
tained in §§2 and 3, it can be proved—the analysis is not reproduced
here—that the equation

ds Kp'DI

determines upon the paraboloid either a geodesic or one of the lines
of curvature through the point. If then the quantities k\ and kt be
introduced, the lines of curvature are given by

ds ds

the equation - I — — I = 0,
ds Xp^D/

or --'-— = constant,
p D

when transformed, will then represent a proper geodesic. Now

. I m* , n*
4 — = — + -- - ;

D a e

* Frost's Solid Geometry*, p. 320.
VOL. XXVII.—NO. 5 5 2 . T
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hence the equation characteristic of geodesies is

a c

Further, it is only upon the elliptic paraboloid that the umbilici
are real. They are given by

as, = a—c, y! = 0, zx = 2 >/c (a—c) ;

also, for any direction in the tangent plane at an umbilicus, we have

so that

Thus

so that*

And

hence for

V
a—c

a

V"

= nyj

n*
c

+ ^ =
c

—c
c

1 - m 5

a

2
a

a
c

& geodesic through an umbilicus t

a
c

1 _
a c

Jf therefore b = c, the geodesic passes through an umbilicus.

19. To use the parameters of the confocal paraboloids, we have

j£_ +_f! 4,(x^k) i
a-k c-k • (a — k)(c—k) '

,, , * Aa(a — k.)(a — fc»)

so that y1 = 4 -^ l-^ u ,
c—a

a—c
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and then x = %- + ~
4a 4c

, + ,—a—c.
With these values, we have

so that the equation of the geodesic is

m* , r^_ ac 1 /
a c b &,&, /c,A-j'

where / = ~;
o

and / = a for a geodesic that passes through an umbilicus.

Now Z, m, w, = —-, -f-, — > respectively; thus
as as as

as as

a—k, dkt

^V a ( /a—k« dk,
c^iVa^^

__ — / s ( !c—k% dfcj lc—kx dk%)
V a—c ( Vc-fei ds V c—fc8 a*s ) ",

Substituting these values in

we find

and substituting them in

a c

( a - A;,)(c—it,) \ dsj {a—k^^—k^ydsJ ^k '

Let K, = fc, (fcl-a)(A;1-c)(fcl-

T 2
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then, when these equations are solved for f-j1) and (-r-* J, we have

2* /1A • 1* \ *̂"*i / TT
fC* f A?* — A / j 1 • • • •' SSS «v • * * • !

as

Hence the equations of a geodesic upon a paraboloid are

K\ CLK\ , n/qCtrfCt) |-\

= du

du j

•which correspond in form to those obtained in §5 for a central
quadric.

It would have been possible to deduce these results from the
results in the case of a central quadric by changing the origin to a
vertex of the latter-and then passing to the limiting case, in which
two of the semi-axes are made to increase without limit subject to
the customary conditions.

20. In the case of the elliptic paraboloid, we have
&, >a > k2 > c > 0.

Hence, in order that the geodesies may be real, we must have

*. >/,

that is, hx > / > A2;

and therefore the aggregate of conditions is

There are therefore three distinct classes to consider, viz.,

(ll.) / < a,

(in.) /> a..
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They correspond to the three classes in the case of an unruled central
quadric.

For the first of these classes, we have f =a-, the geodesic passes
through an umbilicus (but not through the other umbilicus) in the
finite part of the surface.

To discriminate between the other classes, a simple method is to
trace the course of a geodesic through the variations of kx and &,.
We have

and therefore ^ - , - i - JKU ~* = ^A
du «, — k1 du « , — Kg • ;

Thus ku for finite values of &„ can be a maximum or a minimum,
only when Kl = 0; and, for all other values, K^ must be positive.
The only possible roots of Kx are

fcx=a, & , = / ;

and, for values of kx that are not roots,

must be positive.

Hence w h e n / > a , the only possible root is fc,=/; and all other
admissible values of fc, must be greater than / . When f< a, the only
possible root is kx = a ; and all other admissible values of kl must be
greater than a.

Again, fca can be a maximum or a minimum only when Ki = 0;
and, for all other values, K% must be positive. The only possible roots

°f ^ a a r e k -c k -f-

and, for values of fc2 that are not roots,

(fc2-c)(7c2-/)
must be negative.

Hence when / > a , the only possible root is kt = c; all other
admissible values of kt must lie between c and a. When f<a, both
k2 = c, fca = / are possible roots; all other admissible values of A\,
lie between c and a. '

Moreover, &* = c refers to the (confocal) parabola in the- plane *=0,
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lines #,(?!'and OtO'3 are the generators through the point P ; these
give the geodesies corresponding to Case (iv.).

The lines A[AV A%A2 give directions through P on the surface that
determine the geodesies corresponding to Case (n.).

The lines CXG[, G^O'i give directions through P on the surface that
determine the geodesies corresponding to Case (vi.).

Every geodesic through P belonging to Class (i.) has its direction
at P lying within (but not on the boundary of) one of the angles

Every geodesic through P belonging to Class (in.) has its direc-
tion at P lying within (but not on the boundary of) one of the
angles AXPGU A2PGV A\PQ'U A'2PG^.

Every geodesic through P belonging to Class (v.) has its direction
at P lying within (but not on the boundary of) one of the angles
CXPGU G2PCV ClPG'u G'2PG'2.

Every geodesic through P belonging to Class (vn.) has its direction
at P lying within (but not on the boundary of) one of the angles
CtPCi CtPO{.

Every geodesic through P that has its direction at P lying within
(but not on the boundary of) one of the angles CiP(7a, OiPCa will,
when produced, cut and cross the principal section of the surface by
the plane z = 0.

The two geodesies through P having GxPCl and G^PC'i as their
directions through P will, when produced, touch, but not cross, this
principal section of the surface.

And, lastly, no geodesic through P having its direction at P lying

within (but not on the boundary of) one of the angles OJPOJ, G%PG[
can, however far it may be produced, meet this principal section of
the surface.

The differential equations of Classes (i.), (in.), (v.), (vn.) require
the introduction of elliptic integrals for their integration; those
belonging to Classes (II.) and (in.) can be integrated by logarithmic
and circular functions ; and those belonging to Class (iv.) can be
integrated by algebraical functions.


