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Central Quadrics. §§ 1-15.

1. One of the best known properties (Joachimstahl's) of - any
geodesic drawn upon an ellipsoid (or upon any central quadric) is
represented by the equation

pD = constant = ¥,

where p is the perpendicular from the centre on the tangent plane at
the point, and D is the length of a central semi-diameter parallel to
the direction of the geodesic through the point; the quantity k is
constant along the geodesic. '

But an equation of precisely the same form characterizes lines of
curvature upon central quadrics, the difference between the two
arising in the value of the constant % for the particular curve. Yot
-even this difference disappears when the equation is used in a form

d -

current along the curve. The property, thus stated, does not dis-
tinguish between a geodesic and a line of curvature; it might,
indeed, belong to curves of other classes passing through the point.
A question is thus suggested as to the curves which are determined
by either of the equivalent equations

pD = constant, % (pD)=0.

2. Taking the quadric in the form

E N
a B " v

and denoting the tangential direction of the curve through 2, y, z,

by I, m, n, so that.
l, m n=a, vy, ¢,
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where dashes imply differentiation with regard to the arc s, we have
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we have a+m 3 +n = it ﬁay 7,2.

Again, we have

Boyml g Lo, my oy,
a B "y « B 7
2, 2, 2
that is, l'D—w-{-m'Eﬂ.*.n'-&‘:_l;
a B Y
and 'L+ mm 4+ n'n =0.

There are thus three equations to determine I, m’, n’, and they will
determine these quantities uniquely unless they are not independent
of one another.
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When. we solve them, we have, as the coefficient of I’, the ‘quantity

Dl m ml,
ﬂ’~ﬁ,'7
rz ¥ =
av Bv v
L, m =n

which is equal to

——{wmn(/3-v)+ynl (=) bsim (=)} = fj‘ o, say.
The value of %el' is
I 2= LITE S T
Now "‘+’;§J+—,_—%(%ﬂ+”+:)+’—za§i+$§
)

and therefore the coefficient of —p*D* is

G-y r- G (B e D

Also the quantity —D*mn (‘—1—— ) is equal to —p*0® multiplied by

)ee(L- 4

I3
(3-3) 5+ (55 55

v B

Hence the whole expression for D ol is

afy
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. mn g, ny(my  nz\ __ _ luay
But +ﬁ7yz_ﬁ(l3+ )— B’
mn mz (my  we\ _ _ Imzs,

and ﬁy+ z’—y(ﬁ+7) o

and therefore

D oor= P { _(_1...‘_) ’.’L’E-(l-l)lﬁﬂ_(l_}_)lm_‘}

aBy y B/ a a y'B B aly
= —p'D* ;
so that, as D does not vanish, we have®
or =-0 %’, %
and similarly om'=—0 %!, —%
o' =—6 %’, %

which are the equationst of a geodesic through =z, y, .

But, if © vanishes, the equations do not determine I', m’, »’. In
that case, we have

amn (3=7) +ynl (y—a) +lm (a—B) = 0,

or, what is the equivalent,
23— Y (y— 2 (a=PB) =
2 (=) + L (y—a)+ £ (a=P) =0,

This, together with
Iz my + l

a

l’+m +n—lJ

* See Salmon's Solid Geometiy, 3rd edition, p. 353, note,
t Frost’s Solid Geometry, 3rd ad p 314.
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suffices to determine the (two) sets of values'at z, y,z for I, m, n
That these two sets correspond to the lines of curvature can be seen
easily as follows. The direction of either of the lines of curvature is
normal to a confocal ; so that, if ¢ be a root (other than zero) of the
equation s

St it =t

the direction cosines A, g, v of the line of curvature, that is normal
to the ¢ confocal, are proportional to

x y 2
a—9’ B—9¢’ y—¢

Hence % —y+L (‘y—a)+-—(a B)

is proportional to
B=7)(a—9) +(r—a)(B—9) + (a—B)(r—9),

that is, it vanishes; and

= |&

+

2, WX
+

RN

. . 2 2
tional to ,
s proportionalte o Y Ew=9 T yo—9)
that is, to
1 P ys 2 28 i P
= My 2 _(Z +Z)¢,
9 {"—¢+H—¢ y—¢ (a + b 7)}

so that it vanishes. Hence the two sets of values, determined for
1, m, n, correspond to the lines of curvature.

Consequently, the equation
d
—(D)=0
determines either a geodesic or a line of curvature. When taken in the

form pD=H,

it determines either a geodesic or one of the lines of curvature
according to the value of k.
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The only exception is when both sets of equations, viz.,

and 0 =0,

are satisfied. This circumstance occurs when the geodesic, deter-
mined by the former, touches a line of curvature, determined by the
latter ; at the point, [, m, » have the same values. And, in fact, the
quantity k, which is the parameter of a geodesic, can be equal to
the parameter of some line of curvature, which accordingly is touched
by the geodesic.

4. But, though the discrimination between the geodesic and the
line of curvature cannot be made by the explicit form

d -

it can be secured by introducing into the differential equation the
ellipsoidal surface-parameters. Denoting these by A, and A, the roots
(other than zero) of the equation

2Ly 2
a—0 + B—0 + y—0 1

1 _ M
P ey’

' = A (a—X)(a—)y),
y' =B (B—N)(B 1),
Z2=T(r=2)(v—2),
where, if O denote.  (a—8)(a—y)(B—7),
then OA=a(B-v)
O0B=4(r—q),
ar =y («—p)

we have, as usual,



256 Prof. A. R. Forsyth on

they satisfy the equations

a+B+r=0, A, B, T_y
« B v
Now —2§=Ai{(ﬁ).%+(::x)l%},
st ([0 () )
g =GR (=20
Hence 4= (2%—:)’4- (2%)24- (2d—:)?I
=(%)={a i+ (@) 2{asm)
and 4,(”;+1;+z$)
=(Z) ==+ (@)= {5
But, taking pD =1,
we have %,=w§+%+§c
1A
P afy’
s0 that 93 +§+§= ;l'f:'k. =)\T8>§’
say, where 3-‘=‘-2§‘1;

and, in the case of an ellipsoid for which a>f>7,
a>d>y.

Thus the second equation is

IR = R

[Feb. 13,

;
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Now
AN _a(B=y)a—)  3(y—a)B— ?ta_,_v(a—ﬁ) y=A
a—X\ 0 a-n' O A= O r=A
— )‘l (XI—A“))
(a")‘l)(ﬁ“)‘l)(')’_)‘l),
e S W )
a—-k., (a=2)(B=-N)(y~1)’
s 11 u—Kl A=A
a a—)\, (ﬂ— 1)(ﬁ A1)(')'_'xl)
sAah A=Ay
aa=);  (a=N)(B-A)(v—X)
.. _ A=A '
Hence, writing 2dAl - { (ﬂ—}‘l) (6"'*1) (r— l) }
_ )kz—)\x . . )
2an, = { (a-&)(ﬁ—m(y—x,)-} P

the equations are
%)’ (d_‘b)’ =
M ( ds A ds) — 1
() ()2
ds ds AAg
Introducing & quantity RA, defined for A =X, and A = A, by the

equation
RA ==X (a=N)(B—N) (=N (3-N),

we have, on solving these equatinns

1— Z = (A —\) (‘1“ )

ds
and therefore T (—N)? (d&)’ = -)%: R,
so that 1(y=-)) d)\- A’ LV R,
Similarly, L (—=N) Q’: J BX,.

VOL. XXVIL-—NO. §51. s
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dA AdA )
C tly, Mad L Ad
onsequenty 2V R\, * 2V EA,
_ay o dy gt
2VRA, 2VERMA
ds  _
AN )

the final form of the differential equations; it agrees with the form
given by Weierstrass* in 1861, obtained by other considerations.

5. These have been deduced on the supposition that the two
o . dA, dA,

t 1 i, 2
equations involving —-, —
the curve under consideration be a line of curvature, we have either

could be solved properly. If, however,

A, = constant or A, = constant.

When A, is constant, dA, vanishes; and so § = A,. Thelength of the
Aa ()‘1"5)

arc is given by
{ (a=A)(B—N)(v—2)

Similarly, when A, is constant, dA; vanishes; and so & =A, The
length of the arc is given by
i
} dA,.

From the earlier investigation it appeared that the equation
pD = constant represcuts either a geodesic or a line of curvature; it
consequently follows that the proper equations of a geodesic are

—_ 1

=3

ds

o

A (A —9)
(a—N))(B =) (y—X\)

ss=3%{

AN NN o
2V A, 2VIA,
dA dX,
—! o 2 —=du },
2V RN, 2V RA,
-5 _
AlAi -

RA

where

A (a=2)(B=A)(y—A)(-A),

¥ Ges. Werke, t. 1., p. 262.
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and A, A, are the (non-zero) roots of

2 4 A
a—ﬂ+ﬁ-—ﬂ+'y—-8— 1.

6. When the given quadric ic an ellipsoid, a, B, y are all positive ;
take ‘
a>f3>y>0.

Let A, determine the confocal hyperboloid of two sheets, and A, the
confocal hyperboloid of one sheet ; then we have

a>M>8, B>A>y.

Further, du must be real, and therefore both R\, and EA, must be
positive. Taking account of the limits between which A, and A,
must lie, we find that RA, is positive if A, > &, and that R\, is positive
if A;<d; so that

A S>>,

The only condijtions other than these to which 8 is subject are
a>d>y.

They are covered by what precedes; hence the whole set of con-

ditions is

B

a>z\1>{5}>h,>7>0.
Three cases occur, according as
(1) =5,
(i) 8< B,
(ur) &> 8.

As regards the form of the curve, we have

ot = By

rh=-

In the first case, when &6 = 3, we have
pPDr= ay;

the geodesic passes through an umbilicus, and therefore also through
the centrally opposite umbilicus.
s 2
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In each of the other two cases, the geodesic touches a line  of
curvature. At any point on its course, we have

2 — oy
FEa
go that o =)‘—1'%’.

When & geodesic touches a line of curvature on a hyperboloid of one
sheet, D is the same at the point of contact as for the line of curva-
ture, that is, D" = A,; and hence at that point

5:)«,

<f.

Hence, in the second case, when 6<3, the geodesic touches a line of
curvature lying on the confocal one-sheeted hyperboloid ; and it
undulates between the two lines of curvature that constitute
the complete intersection of the ellipsoid and the confocal
quadric.

When a geodesic touches a line of curvature on a hyperboloid of
two sheets, D is the same at the point of contact as for the line of
curvature, that is, D* = X,; and hence at that point

s =
> B.

Hence, in the third case, when 6> f, the geodesic touches a line of
curvature lying on & confocal two-sheeted hyperboloid ; and it andu-
lates between the two lines of curvature that constitute the complete
intersection of the ellipsoid and the confocal quadric.*

In the case of the oblate spheroid, for which a = 8, the first of the
above classes gives rise to the meridians; the second of them gives
rise to the non-meridianal geodesics, the course of which is well
known; the third of them gives rise also to the meridians, as a’
limiting form.

Likewige for a prolate spheroid.

* ¢f. Cayley, Coll. Math. Papers, Vol. v1., No. 425.
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7. The differential relations of the geodesics can be replaced by
expressions in terms of periodic functions.

(1.) In the first case, when & = 8, the geodesics pass through the
umbilici. As we take the lines of curvature from 4B to UC, which
lie on hyperboloids of one sheet, the quantity A, increases; and as we

¢
U U

take the lines of curvature from OB to UA, which lie on hyperboloids
of two sheets, the quantity A, decreases. Hence at P, for the geodesic
UP in the direction UP, we have '

dA, is negative, dA, is positive.
Also we take

“/ﬁ—x = (Al_ﬁ) {)‘1 (‘1-)‘1)(’\1—7)}l = ()‘1“[3) vy,

VE, = (B=2) M (@A) =)} = (B=N) Vi
Moreover at U we have A, = 8, A;, = 8. Hence at P the equations of
the geodesic UP in the direction UP are

m 6 46 ("6 db _
ao_ﬁ VO ,,ﬁ—ﬂ +vO
n 1 dp (1 48
L -6 v6 ), B—6 v6

s= [ v
- "AlAi

= 2u ,

where u is chosen so as to vanish at U, and the arc s is measured
from U.

The first two equations can be replaced by

g do
a9 _ o,
ot Ve
280 = — |48
23u = LJG‘
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where 6 has continuous real values from A, to A, and in the former
the principal value of the integral is to be taken, The first expresses
the relation between A, and A, along the geodesic; for the explicit
form of the relation, elliptic integrals of the third kind are necessary.
In the second equation, the integral is elliptic of the first kind.

(11.) In the case when d </ and the geodesic undulates between the
two lines of curvature that are the complete intersection of the
ellipsoid and a confocal hyperboloid of one sheet, the equations can
be replaced by expressions involving hyperelliptic functions. We

h
ave a>A>B>8>0>y>0;

and we take a= r + j‘h i—f’_
8 2 \/ Iy

N[
= + —t
“ L ,(, 2+ Ro

wheve e is an arbitrary constant; it is unnecessary to associate an
arbitrary constant with . Now introduce two new quantities, viz.,

M A 0_7
a—yu=u=| +{ —'=db
Y ' L j 2+ Rb

a—Lu=u, =rl+5 _‘B
8 2\/138

these quantities %, and u; being the arguments of the hyperelliptic
functions in Weierstrass’s theory.* We take

a’O) 0,1, a’!, a’aa a’l =a, pa ay Y 0;
und then we have

(“— D(a=A) _ (‘In_A Na,— "))
(B—a)(y—a) (a'l—a'o)(aa"ao)

%_(B M=) _ (a=A)a—=A) _ 563
2 -

= alz (uyy 2g),

ﬂ

a,l: (1, ug),

(a=B)(y—B) (%—ar)(as—a,) A—

(=A)y=2) _ (@—=A)ay—A) _ ;
k4 (y— a)(?"‘B) (as—ay)(a;—a,) 7[3 2 a (1, g).

® Ges. Werke, t. 1., pp. 133-152, pp. 297-355 ; thespecial cace required is given
by n = 2.
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Thus the equations of a ggodpéic are given by
z=a aly (a—vyu, a—fu)

y =‘ﬁ (g—-_—-é)' al, (a = yu, a—fu)

z=y r) aly (a—yu, a—Pu)

where a and d are the arbitrary constants which can be determined
by assigning any two points on the ellipsoid as points through which

a geodesic is to be drawn and u is the parameter of the curve so
drawn,

Acai M — (at"hlxag—‘)‘al
g By ~ (a—a)(a—ay)
= al: (215 %)

1 v, 1 o

=1+
a,—ay 8u, as—0ay au,’

where U is the integral-function defined* by the equation

U=r‘+r(—":2ﬂ}%ﬁde.

8 v

Thus A, =By +y 2L +620.

(Rl

But al = aUd wy + aUdu,, in general,
. Oy Ou,

= ( +B ) du, in the present case;
LE L

and therefore

= — M\ du

_ o7
== frdu- (’au, M au,)
= dU—Lydu.

* Weierstrass, /.c., pp. 337-346.
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Consequently
s= [U—ﬁ'yu],

the right-hand side being taken between the values of u at two
points on the geodesic, expresses the length of the arc between those
points.

[Added March 16th, 1896.—The result can be obtained also as
follows :—By the equations in § 4, we have

dx, dA,
9v RN, _ 2VERA, _ |
X = =X ! =4, say,
so that du = (\=2) 8.
Now dU = ('\"ﬂ)(ﬁ_)’) dA, + (N"‘ﬁ)&"?’) d,
2v/RA, ! 2V ERA,

=0 {AA=B) (M=7) -\ (=B (=7}
=N (M —N,) 0+8y (A —\,) 0

= =A\Ndu+Bydu

= ds+ By du,

as before.]

(111.) In the case when 8> and the geodesic undulates between
the two lines of curvature that are the complete intersection of the
ellipsoid and a confocal hyperboloid of two sheets, the result can
similarly be expressed in terms of hyperelliptic functions. We now
h . :

ave a>A>38>8>\>y>0,
and we take a,9, B, v, 0 = ay, a,, ay, ay, a;

Then introducing

L Ay 0_7

“ J +j, 2/ b
o [n 63

’ f. ), 2v/Rb

80 that U, = a—yu, U, =a-—0ou,
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we easily. find

z=+va (a—g) al, (a—yu, a—du)

’

y=+vB (i:g)ial,(a—yu, a—ou)

2 = yaly (e —yu, a—du)

In these expressions @ and 8 are the two arbitrary constants; they
can be determined by any two points through which the geodesic
passes. And u is the current parameter of the geodesic.

To find the arc, we introduce the integral-function U, where

v=[+ [ ST

and then the arc between any two poirts is equal to
[7-pr],
between the limiting values of « that determine the two points.*

It has been assumed throughout that- a>f>y. Special cases
arise when a = 3, viz., an ob] te spheroid, and when § =y, viz, a
prolate spheroid. The corresponding formule then belong to elliptic
functions.t

8. If numerical approximations are desired, they can be obtained,
as pointed out by Weierstrass in his paper already quoted, by using
the double theta-functions. The Abelian functions, that occur in
the preceding solution, are expressible as quotients of these theta-
functions in forms substantially agreeing with results first given by
Rosenhain ;} and when once the parameters, being. small quantities
for a surface nearly spherical, are determined, expansions can be
obtained to any degree of accuracy required.

* For the umbilical geodesics, see a paper by Cayley, *‘ On the Geodesics on an
Ellipsoid,” Coll. Math. Papers, Vol. vi1., 478. For the general geodesics on an
ellipsoid, the paper by Weierstrass, referred to in § 4, should be consulted ; also
two papers by Cayley, Coll. Math. Papers, Vol. vm., 508, 511.

%‘or the case of an oblate spheroid, see a pnper by the author, Messenger oj’
Mathematws, Vol. xxv. (1896), pp. 81-124.

1 *“ Mémoire sur les fonctions de deux variables et & quatre pénodes,” Meém. des

Savans Etr., t. x1., p. 361 ; the memoir is dated 1846.
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9. When the given quadric is a kyperboloid of one sheet, we have
«a>0>0>y.
The roots of the equation

2y 7
n—0+p'--0+ y—0" 1

must correspond to an ellipsoid and a hyperboloid of two sheets.
For the former, we have
7> Ay

both of course being negative ; for the latter, we have
a>N> 6.
In order to have real geodesics, both BA;, and RA, must be positive.
The former is positive if §<A,, the latter if §>A;; so that
MN>O>A.

Combining the inequalities, we have
a>m>ip>g>7}>M.

There are seven cases, viz.,

(1) 6>B8>0>9,

() é=B8>0>49,

() B>6>0>9,

(v.) B>8=0>y,

(7.) B>0>6>y,

(i) B>0>3=4y,

(vir.) B>0>y>0.

10. To discriminate these cases, we consider the configuration of
the surface in the immediate vicinity of z, y, z, and compare it with
the central section by a plane parallel to the tangent plane at the
point. The generators are parallel to the asymptotes of the central
section ; the angles between the generators are bisected by the lines
of curvature, which are parallel to the axes of the central section ;
and that angle between the generators in which the ellipsoidal line
of curvature lies corresponds to that angle between the asymptotes
in which the real part of the curve of the central section lies, say, the
enternal angle of the asymptotes.
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Now, by § 4, we have

and in the present case X, is positive, A, is negative. Hence, when ¢
is positive, D* is.negative; and the direction of the geodesic lies
within the external angle of the generators. When & is zero, D is
infinite ; and the direction of the geodesic is one of the generators.
When 3 is negative, D is positive; and the direction of the geodesic
lies within the internal angle of the generators.

If a geodesic can cross the principal section in the plane z =0, we
have there
A=

Now, at any point,

M- (2 g

T Dds

a _ 2VEL dN_ 2vVERA

ds M—d)' ds A=)’

where the positive value has to be assigned to the real radicals
V'RA, and vRA, that is,

VEN = VA (a=A) (A =B) (A —7) (4 —8),
VEN =V =N (a=A) (B—=A) (7 —A) (3—A,).
Substituting and then making A; = v, we have

dz {P(Y—Al)}.J
—_—_= . vV —=y(a— — d—v).
&= y=N) 7 (a=7)(B—7)(0—7)
Now I' is negative, as is also y—\;; thus the first radical on the
right-hand side is real. Again —y, a—y, B—¢ are positive ; hence,

and

if é>v, the value of %_ is real. In this case, the geodesic crosses
the principal section under consideration.

If =1y, then Z——Z: 0 at the point; in this case the geodesic
touches the principal section but does not cross it.

If 8<v, then 3—:: is imaginary ; that is, the geodesic cannot meet

the principal section.
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11. In the figure, @,@; and G, @; are the generators at the point O
they give the directions of the geodesics corresponding to & =0.
This is Case (1v.)

The lines B, B; and B, B; are lines equally inclined to the genera-
tors; they give the directions of the geodesics through O correspond-
ing to d = B. This is Case (1L.). : -

For any direction lying within the angles B,OB; and B OB;, we
have 6>B. Thus Case (1.) gives geodesics through O whose direc-
tions lie within one of the two regions marked (1.) ; one special line
is the geodesic which touches the hyperboloidal line of curvature
through O, the value of § then being A,.

For any direction lying within one of the angles B,0@,, B;0®,,
B;0@;, B{0G;, we have 3>8>0. Thus Case (m1.) gives geodesics
through O whose directions lie within one of the four regions.
marked (1ir.).

The lines C, C; and C,;C; are lines equally inclined to the generators ;
they give the directions of the geodesics through O corresponding to
8=1y. Thisis Case (L.).

For any direction lying within one of the angles C,0G,, C{0G;,
0,0G,, C;0G;, we have 0>&>y. Thus Case (v.) gives geodesics
through’ O whose divections lie within one of the four regions
marked (v.).

For any direction lying within the angles C,00; and 0,0C], we
have §<y. Thus Case (viL.) gives geodesics through O whose direc-
tions lie within one of the regions marked (VIL); one special line is.
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the geodesic which touches the ellipsoidal line of ¢urvature thirough
0, the value of 8 then being A,.

Geodesics through O whose directions lie within (but not on the
boundary of) either of the angles 0,00, and O;OC; cross the
principal elliptic section of the surface when they are continued.

The two geodesics through O whose directions are the lines 0,0,
and C,C; at that point touch, but do not cross, the principal elliptic
section.

Geodesics through O whose directions lie within (but not on the
boundary of) either of the angles C,0C; and 0,00; do not meet
the principal elliptic section of the surfad. Each of them touches
an ellipsoidal line of curvature, determined by the value of &; and
extends, on either side of this point of contact, towards infinity away
from the principal elliptic section. By this extension of the geodesic
is implied a curve at every part of which the characteristic geodesic

- property is possessed; but the length of the arc of this curve between
any two points of it is not necessarily the shortest surface-distance
between the two points.

12. The course of the geodesic can be indicated by expressing the
coordinates of any point on it in terms of a single parameter. The
expressions in Cases (1), (1), (¥.), (ViL) require hyper- elliptic
functions as in two of the cases on the surface of the ellipsoid; in
Cases (11.) and (v1.), elliptic functions and elliptic integrals of the
third kind oceur; in Case (1v.), the expressions are algebraical.

13. When the given quadric is a hyperboloid of two sheets, we have

a>0>8>y.
The roots, other than zero, of the equation
AN S

aﬂﬁﬂyd

must correspond to an ellipsoid and a hyperboloid of one sheet.
For the former, we have
7> A,

both of course being negative; for the latter, we nave

B>A > 7.
In order to have real geodesics, we must have RA, positive, a con-
dition which is satisfied if é <A,; and we must have KA, positive, a
condition which is satisfied if 6> Ay, so that

A >8>,
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Combining these inequalities, we have

a>0>8>\> {’3’}}7\?.

There are three cases, viz.,
(1) v=4,
(i) y>39,

(m) y<é

14. The cases are similar to those that occur in the ellipsoid.

The first represents a geodesic passing through an umbilicus, but,
with a single exception, not through the other umbilicus on the same
sheet ; beyond these points, it extends towards infinity.

The second represents a geodesic touching one ellipsoidal line of
curvature and extending towards infinity in both directions.

The third represents a geodesic touching one line of curvature that
lies upon a confocal hyperboloid of one sheet and extending towards'
infinity in both directions.

The last two require hyper-elliptic functions for the explicit
expression of the variables along the course of the curve; the first,
for the same purpose, requires elliptic integrals of the third kind.

15. It is unnecessary to consider, in any detail, geodesics on a cone
or cylinder ; their characteristic equation for such a surface can be
deduced from the property that, when a developable surface is
developed, the geodesic gives rise to a straight line on the developed
surface. Thus, for instance, on a cone we should have

r8in ¢ = constant;

where the constant is the parameter of the geodesic, r is the distance
of any point on it from the vertex of the conme, and ¢ is the angle
between the direction of the geodesic at the point and the generator
through the point.

Non-CenTrAL QuUADRICS.  §§16-22.

16. When the quadric is paraboloidal, its equation can be taken in

the form
}i + E’. = 4.
a ¢
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When the paraboloid is elliptic, we have
a>c>0;
when it is kyperbolic, we have

a>0>c¢.

The confocal paraboloids are given by
A Ay
okt c—k 4@=h),

a cubic equation in k for each point z, 3, z. One root is zero ; let the

others be %, and k,, of which k,'is assumed the greater. Then O, k,
k, are the roots of

4 (a—k)(c—k) (z—k) =1 (c—k) —2 (a—k) = 0.

It is easily seen* that the roots are separated by «, a, ¢, —.
Hence in the case of the elliptic paraboloid we have

wo>k>a>k>c>0;

k, determines an elliptic paraboloid and %, a hyperbolic paraboloid.
And in the case of the hyperbolic paraboloid, we have

o>k>a>0>c¢>k;
k, and k, determine elliptic paraboloids.

17. The intersections of the confocal surfaces are lines of curvature
on each of them.

Consider first the elliptic paraboloid.

B

* Frost’s Solid Geometry, p. 158.
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Its intersection with the confocal elliptic paraboloid is a curve
one quarter of which is AB; when this curve is orthogonally pro-
Jected on the plane of yz, it becomes the ellipse

s 2

ab=a) " o(h—0)
This curve is the whole of the real ‘intersection with the confocal
-elliptic paraboloid. o

The intersection with the confocal hyperbolic paraboloid consists
-of two curves. One half of one of them is CD, the other half of it
being on the negative side'of the plane zz; and the other curve is
the reflexion of this curve in the plane of zy. When these curves
are orthogonally projected on the plane of yz, they become the two
branches of the hyperbola

y __ 7
a(a—k) c(k—c)
‘The two real curves constitute the whole intersection with the con-
focal hyperbolic paraboloid.

Now consider the hyperbolic paraboloid. Its intersection with the

.confocal elliptic paraboloid determined by k, consists of two curves;

=4,

= 4.

.one is QOPR ..., and the other is the reflexion of this curve in the
plane of zz. When these curves are orthogonally projected on the
plané of yz, they become the two branches of the hyperbola
¥y 2
a0a=a) " 5(a=0)

‘These two (real) curves constitute the whole intersection.

=4.
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The intersection with the confocal elliptic paraboloid determined
"by k, consists of two curves; SPT..., SP'T"... are halves of them,
the other halves being their reflexion in the plane of zz. - When
these curves are orthogonally projected on the plane of yz, they
become the two branches of the hyperbola

9 3

Y 2 —
a(a—ky) + ¢ (c—¥k,;) -

These two (real) curves constitute the whole intersection.

—4.

18. Take any point on a paraboloid and consider the geodesics
through the point. If I, m, = denote the direction of the curve there,
if p be the perpendicular from the vertex upon the tangent plane at
the point, and if D denote the length of the chord through the
vertex parallel to the geodesic direction, then* we have

Ia?
#D
constant along a curve. And, by an investigation similar to that con-
tained in §§ 2 and 3, it can be proved—the analysis is not reproduced
here—that the equation
d ( I\ __
a0) =

determines upon the paraboloid either a geodesic or one of the lines
of curvature through the point. If then the quantities %, and &, be
introduced, the lines of curvature are given by

ak _ o dh_g.

ds ds
X
the equation :;s ( }%L]—)) =0,
3
or !,% = constant,

when transformed, will then represent a proper geodesic. Now
K
4

3 2
m | on
—_— + -—-
e ¢

=1+ 2
—1+4:a,’+

m'
P
4

.
2

12
D

¢ Frost's Solid Geometry, p: 320.
VOL. XXVIL=—NO, 552. T
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hence the equation characteristic of geodesics is
m | ¥ 2\ _
(; + ..c_)(l + o + 74?’) = constant
= -;l-— say.
b ’

Further, it is only upon the elliptic paraboloid that the umbilici
are real. They are given by

B =a—c =0 5=2Vc (‘?—0);

also, for any direction in the tangent plane at an umbilicus, we have

—21+ Pz,
c
so that l=mn4/%=C
. c
£ 2 s
Thus L =l=l_m,
a—c¢ [ a
3 3
80 that ﬁ+i-'=l
a
.5 _a
And 1+4a,+40, 5

()

If therefore b = ¢, the geodesic passes through an umbilicus.

19. To use the parameters of the confocal paraboloids, we have

2 +__z.’_7c_.4(¢_;k) =4,_ﬁ‘_.k_lM

a—k —E)(c—F)
so that y’=4"($'ﬂ‘_”_—_"ﬁ2),

c—a

JEPR A Clond 51 Cnd Y ;

U—C
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b }
and then z= i% + 2;
=k +k—a—c.
With these values, we have
1+ _L 2 _kk
4 ac'’

so that the equation of the geodesic is

myn_a 1 _ f
a ¢ Kk, kR’
where fz%g;

and f = a for a geodesic that passes throngh an umbilicus.

Now 1, m, n, =Z—:’, %, %-j, respectively ; thus
— dky  dk,
=t
N {\/a_—k_a dk, \/a ky %}
“Ve—a a—k, ds a—Fk, ds
_ [ o=k, \/ k,%}
—"—Va.-c{ c—k, —ky ds

Substituting these values in
B4+ ni=1,

k, (k, k,) d’u k,!k,-—k,) dk, ’= .
wotnd Rk (B e () =1

_and substituting them in

?l‘:.}.'_“’.—_L

a ¢ bk’

(ky—ky) dk, (ky—k) deY _
wotnd Sl ()4 B(e— R\ d z) =ik

Let K, =% (kl"a)()"l_c)("’l—f)] .
K, = ky (ky=u) (ky—¢) (ky—f)
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dky

- 1 3
then, when these equations are solved for (%’:1) and (ds) y we have

.\ ak
ky (k,—ks) Es.l =K,

dks

ds =K,

ky (ky— ki)

Hence the equations of a geodesic upon a paraboloid are

kydby | Fydky _ o)
VE, TR, =
dk, , dk _
VKT VR =™
ds
- k—l’:’ = rluJ

which correspond -in form to "those obtained in §5 for a central
quadric.

It would have been possible to deduce these results from the
results in the case of a central quadric by changing the origin to a
vertex of the latter-and then passing to the limiting case, in which
two of the semi-axes are made to increase without limit subject to
the customary conditions.

20. In the case of the elliptic paraboloid, we have
Ek>a>k>c>0.
Hence, in order that the geodesics may be real, we must have
k> f,
k< f,
that is, Li>f>k;

and therefore the aggregate of conditions is

k> (‘;)>k2>c>0.

There are therefore three distinct classes to consider, viz.,
(1) f=a,
() f<a, °
(ur) f >a.
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They correspond to the three classes in the case of an unruled central
quadric. :
For the first of these classes, we have f =a; the geodesic passes
through an umbilicus (but not through the other umbilicus) in the
finite part of the surface.
To discriminate between the other classes, a simple method is to
trace the course of a geodesic through the variations of &, and k,.

We have
Chdhy | kdh

VK, VK,
dk, |, dky _
W7 AV
dk, _ k dky _ k-
and therefore d_ul =i_% v K,, = = 419.— %, vk,

Thus k,, for finite values of %,, can be a maximum or a minimum,
only when K, =0; and, for 11 other values, K, must be positive.
The only possible roots of K, are

| k=g, kh=f;
and, for values of k, that are not roots,

. (ky—aY(%,—f) .
must be positive.

Hence when f>a, the only possible root is k, = f; and all other
admissible values of k, must be greater than f. When f<a, the only
possible root is k, = a; and all other admissible values of &, must be
greater than a.

Again, k, can be a maximum or a minimum only when K, =0;
and, for all other values, K, must be positive. The only possible roots

of K, are b=, k=1f;
and, for values of k, that are not roots,

(ky—c)(la—f)

‘must be negative.

Hence when f>a, the only possible ront is k= c; all other
admissible values of k, must lie between ¢ and a. When f<a, both
k,=c¢, ky=f are possible roots; all other admissible values of k,
lie between ¢ and a. _

Moreover, k, = ¢ refers to the (confocal) parabola in the: plane :=0,
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lines @,G; and G,G; are the generators through the pomt P; these
give the geodesics corresponding to Case (1v.).

The lines 4;4,, 4,4; give directions through P oun the surface that
determine the geodesics corresponding to Case (IL.).

The lines C,Cj, C,C; give directions through P on the surface that
determine the geodesics corresponding to Case (v1.).

Every geodesic through P belonging to Class (1.) has its direction
at P lying within (but not on the boundary of) one of the angles
A, PA, APA;

Every geodesic through P belonging to Class (111.) has its direc-
tion at P lying within (but not on the boundary of) one of the
angles 4,PG,, 4,PG,, A\ PG, 4;PG;.

Every geodesic through P belonging to Class (v.) has ite direction
at P lying within (but not on the boundary of) one of the angles
C, PG, G,PC,, CPG,, G;PC,.

Every geodesic through P belonging to Class (v11.) has its direction
ab P lying within (but not on the boundary of) one of the angles
C,PC, C,PC,.

Every geodesic through P that has its direction at P lying within
(but not on the boundary of) one of the angles C,PC;, C;PC; will,
when produced, cut and cross the principal section of the surface by
the plane z = 0.

The two geodesics through P having O,PC; and C,PC; as their -
directions through P will, when produced, touch, but not cross, this
principal section of the surface.

And, lastly, no geodesic through P having its direction at P lying
within (but not on the boundary of) one of the angles C,PC;, C,PC;
can, however far it may be produced, meet this principal section of
the surface.

The differential equations of Classes (1.), (111.), (v.), (VI1.) require
the introduction of elliptic integrals for their integration; those
belonging to Classes (11.) and (111.) can be integrated by logarithmic
and circular functions; and those belonging to Lla.ss (1v.) can be
integrated by algebraical functions.



