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ON CLOSED SETS OF POINTS AND CANTOR'S NUMBERS

By W. H. Youxe.
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1. In a paper on * Sets of Intervals” (Proc. London Math. Soc.,
Vol. xxxv., p. 245) we classified the points of a segment (4, B), in
which a set of intervals is given, into (1) internal, (2) simple end-
points, (3) semi-external, and (4) external points of a set of intervals,
and proved certain properties of the external points, and that the semi-
external points are at most countably infinite.

The set of external points by themselves is an unclosed set. The
theory of unclosed sets is far more incomplete than that of closed sets.
In the first part of the present paper I propose to deal exclusively with
closed sets. It is an important fact that

By adding the sema-external points to the external points we get

closed set of points. (1)

For, if P is either an internal point or an ordinary end-point of intervals,
a neighbourhood of P can be found so small that it contains no semi-
external or external points, for such neighbourhood can be taken entirely
within either one or two of the intervals; hence P cannot be a limiting
point of the set of external and semi-external points; this set is therefore
closed.

Similarly, of course,

The set obtained by adding all the end-points of the black intervals

to the external points vs closed. (2)
The extra points added are isolated points, whose limiting points were
included before.*

The set (1) is none other than the first derived set of the set (2).

2. Closed Sets and their Complementary Intervals.

The latter theorem is for many purposes the more valuable of the two,
since it has an important converse, which is an immediate result of the
investigations into sets of intervals.

* Loc. cit., p. 253.
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It may be expressed as follows :—Any set of nom-overlapping intervals
8y, Oy, ... om the strarght line defines a closed set of points, viz., all those
points which are not internal to any of the intervals. The converse is
that any closed set of points, which does not consist merely of the whole
segment (4, B) under discussion, defines a set of intervals such that the
whole segment (4, B) consists of the internal points of those intervals and
the points of the given set. This may be expressed more shortly by saying
a closed set of points is always complementary to a set of intervals—open
intervals, of course. This close connexion between closed sets of points
and sets of inftervals suggests that the theory of sets of intervals may be
used to develop the theory of sets of points.

Certain classifications can be made at once. It is evident that, +f a
set of intervals is dense everywhere, the complementary points are dense
nowhere, and vice versa ; while, if the set of intervals be not dense every-
where, the complementary points certainly fill up some partial segment,
and wice versa. If the given set of points contains any such whole
segment, its potency is evidently ¢, and the process of derivation leaves
that segwent unaltered. Hence, from the point of view of the succeeding
articles, the case when the intervals are dense everywhere and the com-
plementary points dense nowhere is the only interesting case, and it will
in future be assumed that this is the case unless the contrary is expressly
stated.

8. Potency of a Closed Set of Points.

The first question to be answered is as to the potency of a set of points.
The theory of sets of intervals enables us to answer this question fully for
a closed set of points. A closed set of points s either finite or countably
infinite or has the potency of the linear continuuwm.

This follows from the last section, and loc. cit., Theorem 4 and § 28.

Two cases can be at once disposed of in detail :

If the set of complementary intervals consist of a finite number only,
the closed set ts finite, and vice versa. (Loc. cit., Theorem 2.)

If the content of the set of intervals be less than 1L* the set of points
has the potency c¢. (Loc. cit., Theorem 3'.)

There remains over the case when the set of complementary intervals
is not finite, but has the content /. In this case the potency of the points
may be a or ¢, and it depends entirely on the “ultimate set™ (loc. cit.,
Theorem 4) which of these will be the case. We shall return to the
discussion of this ultimate set in § 6.

¢ [ being the length of (4, B).
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4. Content of a Closed Set of Points.

I propose now to give the following definition of the content of a closed
set of points :—The content Ip of a closed set of points is defined as 1—1I,,
where Iy is the content of the complementary intervals.

We notice that this definition agrees with our fundamental notions
when the set of points is dense everywhere in a partial segment. The
investigations of the paper on *“ Sets of Intervals” show that the content, so
defined, is always >0 and <!, and that, while it cannot be 0 if the
set be dense everywhere in any partial segment, it is possible that the
content of a set which is nowhere dense may be greater than zero ; indeed,
it is possible to construct such sets with content as near the maximum
as possible. This maximum !, the length of the segment (4, B) in which
we are operating, can only be attained when the set consists of all the
points of the segment (4, B). The content of a finite or countably infinite
closed set of points is, by Theorem 4, always zero; but these are not the
only sets of content zero: for instance, H. J. S. Smith’s sets of the first
kind have zero content.

The following is the fundamental property of the content and might
have been taken as the definition and the above deduced from it:
historically, this is what was done :—If we determine a finite number of
non-overlapping intervals, such that every point of a given closed set is
internal to one of the intervals, the content of these intervals is always
greater than Ip, but may be made as near as we please to Ip, by taking
the intervals small enough.

First, it is obvious from our theory how to constuct such intervals.
We only have to take any small quantity e, and determine the finite
number % of black intervals >e. These leave over a finite number of
complementary intervals, and, if we lengthen each of these at each end by
as small a quantity as we please, we get such a finite set of intervals as
we are in search of.

Secondly, suppose we have in any way determined such a finite set of
intervals d,, dy, .... Then we must be able to fix a limift ¢, such that all
the black intervals < e of the given set lie inside the d-intervals, and all
the black intervals > e lie entirely or partially outside them.* Suppose
any one of the intervals d, to overlap at one or both ends into a black
interval >e.  Then, without freeing any but internal points of this
black interval, we can ensure, by curtailing d, if desirable, that the distance

* For otherwise we could determine a sequence of the black intervals having a single limiting
point, external to all the intervals ¢, or an end-point of one of them, which is inconsistent with
the hypothesis, since such a point must be a point of the given set.
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of the end-point of the overlapped piece from the overlapping end-point of

d, should be less than 4:’_ i The content of the overlapped parts being
now less than § T 1.e., less than 4o, and, the content of the black
1 2T+2

intervals < e being denoted by R(e), the content of those parts of the
black intervals that lie outside the intervals d, will now lie between Iy— E(e)
and I;—R(e)—%o. Hence the content of the intervals d, will lie between
I,+R() and Ip+R(e)+30. '

Now, if we diminish the length of each interval d,, e must decrease
without limit.* R(e) can therefore be made as small as we please by
sufficiently decreasing the lengths of the intervals d,.. Hence we can
choose the lengths of the in ervals d, so that the sum of them, though
always greater than Ip, may differ by less than any assigned quantity
from I,. Q. E. D.

It may be remarked in this connexion that it is not possible to deter-
mine an infinite set of non-overlapping intervals such that each point of a
closed set is internal to one of the intervals, and no interval is free of
points of the set. For an infinite set of intervals has always at least one
external or semi-external limiting point, and such a point would by the
second assumption be a limiting point of the set and therefore belong to it,
contrary to the first assumption.

Another form of the preceding, used by Hankel and Cantor as the basis
of their original definitions, and frequently very useful, is the following: —
If we enclose each point of a closed set of povnts i a small interval of
which it is the middle point, the limit of the sum of the fintte number of
non-overlapping ntervals filled up by these small overlapping intervals,
when the lengths of these latter are indefinitely decreased, vs the content
Iy of the set of points.

In a note on “Sets of Overlapping Intervals”t I showed, in fact,
that such a set of overlapping intervals enclosing all the points of a closed
set can be replaced by a finite number of them; so that this theorem is
seen to be merely a different form of the preceding.

5. Laimiting Points.

A limiting point of a set of points may be either a limit for the set
when approached from one side only or from both sides. We may express
this difference by speaking of ‘‘limiting points on one side ” and “limit-

# For, if not, let # be the limit of ¢; then, however we construct our intervals d,, there is
always a black interval 2> 4 inside them, which is obviously nonsense.

t Proc. Londun Math. Soe., Vol, xxzv., p. 387.
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ing points on both sides.” If a limiting point be a limit on one side only,
it is evidently an end point of a black interval, and, if it is a limit on both
sides, it is external to the black intervals. Hence we see that the limiting
pownts of a closed set on one side only are the same as the semi-external
points of the black intervals and are therefore, at most, countadly infinite
an number. 'The limits on both sides are identical with the external points
of the black intervals.* The potency of these latter, if not zero or a natural
number, 1s @ or ¢, and may be any one of these when the set is dense
nowhere; when it is dense everywhere in any partial segment the potency
is evidently always c.

6. Derived Sets, Deduced Sets, and the Nucleus.

We shall denote by E a set of points, and by E,, E,, ... the successive
derived sets of E. If E is closed, E, is contained in E and those points of
E which are not points of E, are end-points of abutting black intervals of E.
The connexion between E and E, is, indeed, precisely that of the sets (1)
and (2) of §1. [Whether E is closed or not, E, and therefore all the
successive derived sets are closed.] In passing from the black intervals
of E to those of E, therefore, we amalgamate all abutting intervals of
E. Starting with any particular black interval 6, of E, the amalgamation
process 1s only arrested by the first limiting points to which we reach on
either side of 4,, and we blacken up to these inclusive; let us denote this
black interval of E, by ¢&..

Now we saw (loc. cit., p. 266) how it was possible, systematically and
uniquely, to obtain from a given set of intervals an ultimate set of non-
abutting intervals having the same content, and, with the exception of
at most a countably infinite set of points, the same external points. The
ultimate set is then either such a set as was contemplated in § 28, loc. cit.,
or consists of the whole continuum,t and that, if these external points
were not more than countable in number, the ultimate set of intervals
would consist of the whole infinite straight line.

The closed set of points consisting of the end-points and external points
of the ultimate set of intervals we shall call the ‘ Nucleus of E,” and
denote by Eq. The Nucleus is evidently perfect} (except when E is count-

® Loe. cit., p. 253,

t1In § 7, loc. cit., it was pointed out that it was sometimes convenient to regard the part of
the straight line exterior to (4, B) as black; from our present point of view this is 8o, and this
interval must be considered as one of the black intervals.

1 Dense in itself and closed.
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able, when it evanesces), since, having no abutting black intervals, it has no
isolated points. Let us denote the black interval of E, which contains
any particular interval &, of E by 6%. Then, since in amalgamating the
intervals of E with 6, so as to form &, we blacken out at most two limiting
points, it is evident that &, will also lie tnside 82, though it may, of course,
coincide with it.

Similarly the corresponding interval & of E, lies inside 8% for all
" values of n.

Q(ﬁ') Q(ﬂ) Q\"—’) Q(l)
i 1 i [}
po RWEORD  pe ply Py ph o
Fie. 1.

Let P, P?, ..., P™ be the left-hand end-points of &, 62, ..., 6.
Then either from and after a definite integer m all the P™s coincide, or else
they define a limiting point to the left of all of them. In either case let
us denote the point so obtained by P,

Now P¢+) pw+d are all points of E,, and therefore P’ is a
limiting point of E,, that is, since E, is closed, a point of E,. Hence
P 45 a point of E, for every value of n.

The process of forming from any number of sets the largest set which
is contained in all of them is usually called “the process of finding the
H.C.F. of the sets.” But, as the process is a very important one, we require
a simpler term for expressing it ; and, as the term has not been otherwise
appropriated, I propose to call it * deduction.” Thus: Given any finite
or infinite number of sets of pownts, that set which contains all the points
which belong to every set, and no other points, is called the dedwced set.
If we denote the given sets by E,, E, ..., E,, ..., the deduced set will
usually be denoted by E,,.

We notice that the process of deduction applied to any finite number
of derived sets E,, E,, ..., E, gives us E, and nothing new. The
deduced set of an infinite number of derived sets* is, however, not
necessarily identical with any one of them. It is convenient to give here
the following example, due to Cantor, which we shall have occasion sub-
sequently to refer fo.

7. Cantor’'s Classical Example.

- Let T denote the set of points obtained by bisecting any segment,
and then bisecting the right-hand segment, and so on.

*It can easily be shown that such a set always exists, since &), £y, ..., &, ... are closed sets.



286 Dr. W. H. Youne May 14,

We start with 7' in the segment (0, 1). The corresponding .binary
fractions are 0, 1, '1, "11, *1%1, ..., 1"1, ....

£ o

. . T
£ i

» 1
E " o
Fie. 2.

Now erect at each point ‘1" of T an ordinate of length ». In each of
the black intervals of T place a set of points similar to 7', and at all these
points in any segment ('1", *1"*1) erect ordinates of length ». In the
largest segment these will only be dots. This largest segment we now
leave undisturbed, and in each of the segments between each consecutive
pair of points already marked we insert a set similar to T, and erect
ordinates of length » in any segment (‘1"+!, '17*%). In the segment ('1, *11)
these will only be dots ; this segment is subsequently left undisturbed.

Thus we go on, leaving undisturbed segments in which we have already
inserted dots, and placing in all the rest sets of the type T. At each
stage we erect perpendiculars of length one less than those erected in the
same segment at the preceding stage of proceedings.

We see that this process, carried on ad infinitum, gives us on the axis
a closed countable set of points E. If we draw parallels to the axis at
heights 1, 2, 8, ..., the first, at height 1, will be cut by the ordinates
which we erected in the first derived set E,, the second in E, and so on.
Every successive parallel is cut by the ordinates more and more to the
right, the points ecrowding up to the point ‘1 or 1, which alone is common
to all the derived sets. Thus E, consists of this one point, ‘1 or 1, while
E; contains an infinite number of points.

The binary numbers of our set are evidently all those of the form
1"01"01” ... 01°, where m, m, ..., z are any integers (including the case
when any of these integers are absent, and the corresponding power of 1
drops out), the number of zeroes being at most (m+1).
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8. Returning now to the discussion of § 6, we not unnaturally want to
know whether the set E, is identical with Eg, and it is obvious from the
above that this is not so. In the above example Eq (which is, of course,
evanescent) is the first derived of E,, but it is easy to construct more
complicated examples on the same principle as the above, taking as T a
more complicated set, e.g., the set constructed in the preceding article ;
in this case E, consist of the set T itself. If, therefore, we take the series
of derived sets of E,, the deduced set will consist of the point 1 alone, and
the first derived set of this will be Eq.

It is evident that here again we have not arrived at the most general
case. For we might have taken as T the more complicated set of the last
section, and we should then have arrived at a more complicated E,, which,
however, by an extended process of derivation and deduction, could be
reduced to Eq.

On this principle we can evidently set up whole classes of countable
sets of points, in each of which E, is obtained after a complicated series of
repetitions of the operations of derivation and deduction from the derived
sets. -
Here, however, we are not necessarily at an end. For, denoting the
point called P., by @, (Fig. 1), we get, after deriving F, and then deducing
a new set, another point @), which, by precisely the same reasoning as
before, lies to the right of P®, if it does not coincide with it. If we have
not now come to an end, we obtain another point ¢, and @),, and so on—
a whole sequence of points which will have a limiting point if they do
not all coincide after a time. Such a limiting point we may denote
by Q.. It will evidently belong to all the sets which we have so far
obtained by derivation and deduction ; that is, to the set obtained by
deduction from all these sets, which we may, if we prefer, regard as
deduced from the deduced sets alone.

Starting afresh with this set, we may evidently derive and deduce exactly
as before. Denoting by R, the limiting point just obtained and denoted
by @., we may get a whole sequence of points E,, R,, ... leading to a
limiting point R,, which will again lie to the right of P® if it do not
coincide with it, since by none of our processes of amalgamation have we
blackened out & more than countable set of external points.

Furthermore, having realized to ourselves any particular series of the
operations of derivation and deduction, we can easily, on the principles
laid down in the examples, construct a set of points in which that series of
derivations and deductions can actually be performed, and give a set which
either is Eq, or which leads to Ea when we subject it itself to the opera-
tions of derivation and deduction.
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9. Special as this mode of constructing examples may seem, it can
now be proved quite easily, by the principles established in the paper on
‘“ Sets of Intervals,” that this is quite a general theorem which -may be
enunciated as follows :— -

The Nucleus Eq of a given closed set of points E can always be obtained
by means of a finite or countably infinite series of the operations of deriv-
ation and deduction.

For let us consider a black interval (P?, Q% of the ultimate set, and,
starting with any interval &, of E inside it, let us form the successive
intervals 6(,1), é‘f’, ... of all the derived and deduced sets possible. The
left-hand end-points P,, P,, ... of these
form a countable set of points with all pa  p p, P, P
sorts and varieties of limiting points as Fie 3.
in our examples, and may need all the
letters of the alphabet, and of many alphabets, and all the indices over and
over again to characterize them in their natural order. But they have the two
properties :—(i.) they lead always to the left, (ii.) they never pass P®. There
are, therefore, only two possibilities :—(a) we can assign a point P to the
right of P® such that there is no one of the points P,, P,, ... to the left of P,
while no such point can be assigned more to the right than P; or (b) P?
itself is the only point which can be so assigned. Whichever of these
cases is true, we will first show that, as we amalgamate our intervals, we
can assign a definite stage of proceedings at which the point P has actually
been reached, and is no longer a mere limit to which we continually
approach.

To show this, let P, be the left-hand end-point of &8, Then either P,
coincides with P or lies to the right of it. In the former case we have proved
our point. In the latter case we bisect (P, P,) at M,. Then we can
assign one of the derived or deduced sets, which we
may denote by E®, whose corresponding black 5™ 5 3, »,
interval 67 extends beyond M to the left. Let P, Fio. 4
be its left-hand end-point, which either coincides
with P or lies between P and M,. We now reason with respect to P, as
we did with respect to P,. In this way either we determine a finite
number of the sets E;, E?, ..., E™, ... chosen from among the derived
and deduced sets on these principles, and such that the black interval o
has its left-hand end-point at P, which proves our theorem, or else we
obtain & countable set E,, E®, ..., E™, ... and a corresponding set of
points Py, Py, ..., P,, ... having P as sole and only limiting point, and
such that P, is the left-hand end-point of é‘f."), and therefore the first point
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of E™ at which we arrive in passing from P, towards P; so that P, is
certainly not a point of E™*V, Let E“ denote the deduced set of E,,
E®, ..., E™, .... Then there is certainly no point of E® to the right of
P; but we know that the black interval 6’ does not extend beyond P, hence
P must be its left-hand end-point, so that we have determined a definite
stage at which P is reached, as was asserted.

Now let us suppose that P lies to the right of P®. Similarly we deter-

I_H ) | {
PP, Q P Q Qe

Fia, 5.

mine a point ) actually attained and never passed on the right of d..
@ may coincide with @®. Now, if from the black intervals of E lying in
(P%, P) we choose one and enlarge it by amalgamation as we did ¢, we get
a definite black interval (P,, @,) actually attained, but never surpassed,
during the processes of derivation and deduction.

Now P, may coincide with P®, but @, cannot coincide with P, because,
if it did, one single derivation would amalgamate the abutting intervals
(P, @) and (P, @), contrary to the hypothesis that P could not be passed
starting from &,.

Continuing this process in the segments (P?, P,), (Q,, P), (@, @), one at
least of which must actually exist, viz., (§),, P), we ultimately get a set of non-
abutting intervals, dense everywhere in (P%, Q%), since the intervals of E
were dense everywhere in (P?% @%. But by § 28, loc. cit., we know that
such a set of intervals has a more than countable set of external points in
(P% @%. These external points are, however, certainly external points
of E by our construction, and E has at most a countably infinite set of
external points in (P?, Q9. (Loc. cit., p. 267.)

Thus this is impossible ; P must coincide with P?, and @ with @°, and
both P? and @ are actually attained at a definite stage of proceedings.

We have still to show that we can assign a definite stage of proceedings
at which every (P%, Q% has been attained. If this were not possible, then,
choosing any one of the sets obtained by derivation and deduction, and
calling it E,, we must be able to assign an interval of Eq, say 6), o, which
has not not yet been actually attained. By what has been proved, however,
we can assign a definite stage at which &, o has been attained. Let us
denote by E, a definite set which has d;, o as a black interval. E, is then
certainly obtained from E, by derivation and deduction, since Ej4 could not
have occurred previously to E,, by the hypothesis that &, o is not yet
attained at the stage of E), and is attained at the stage of E,.
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So we go on, and form a simply infinite series of sets E,, E,, ..., E,,
from a corresponding series of the black intervals of Eq, viz., &, q, 2 a,
.~y 6y, 0, ..., where &, o does not belong to E,, but does belong to E,,,.
Now it follows that, for all values of %, 8, o Will belong to the deduced set
of E,E,..., E,, ....

We might, then, have started with this set as E\ ; since then every one
of the countably infinite set just dealt with, (3, o, s, q, ...), would already
have been attained, we should have to seek a 6(21'),, among the remaining
black intervals of Ego. At the end of another infinite set of processes
we should get to another set, which we might have taken originally as
E®. Since the whole number of intervals of Eq is countable, we cannot
go on putting aside countably infinite sets of intervals without exhausting
them after at most a countably infinite series of steps. Thus the deduced
set of E, B, ..., E®, ... must coincide with Eq.

The theorem 1s now proved, and may be restated as follows :—

Any closed set of points E can be reduced by a finite, or at most count-
ably infinite, series of the operations of dertvation and deduction to one of
two forms :—(1.) no pownts at all, (i) a perfect set. This set, using the
word n a somewhat extended sense if (1) be the case, we call the Nucleus
and denote it by Eq. Eqg has the same content (in the first case zero) as E,
and, with the possible exception of a finite, or at most countably infinite,
set of points, the same external points as E. (i) occurs +f, and only if,
the set E be countable.

The following is also an immediate consequence of our reasoning : —

Gwven any finite or countably infinite. series of the operations of dertv-
ation and deduction, a countable set of points can be constructed on
which this series can actually be performed, giving at each stage of pro-
ceedings a new set of points, which evanesces at the last of the processes.

10. Cantor’s Transfinite Numbers of the First Potency.

We notice that the ideas of derivation and deduction, and of the
possible series of these operations which lead from closed sets of points to
their Nuclei, gives us a conception of sequence which, though perfectly
definite, goes beyond what we can qualify by means of the ordinal
numbers first, second, third, and so on. Even if we use a whole alphabet,
or many alphabets, to distinguish the new sets which arise, we find the
symbols at our disposal inadequate, and the idea of sequence which we
possess becomes hazy in a mist of symbols to which our minds are not
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accustomed as expressing sequence. Beyond the ordinary series of ordinal
numbers, first, second, ..., or, which comes to the same thing, only is
more restricted, the sequence of letters of the alphabet, our mind is
accustomed to the sequence expressed by the points of a straight line in
their natural order, or, which is the same thing, the sequence of all the
numbers rational and irrational : e.g., all the points of the segment (0, 1)
of the z-axis, or the sequence of all the numbers from 0 to 1 expressed in
any scale of notation, for instance, the ternary scale.

The potency of these numbers is ¢, and the question is whether we
can employ some or all of these numbers, in an ordinal sense, to qualify
the sets of points obtained from every conceivable £ by derivation and
deduction. It is, of course, quite easy to do so in any special case.
Given, in fact, any finite or countably infinite series of the operations of
derivation and deduction in their natural order, we know that we can, as
in the examples, set up a countable set of points in the segment (0, 1) on
which that series of operations can actually be effected. We might then
choose the corresponding binary fractions as indices of the correspond-
ing E’s.

For instance, to be more precise, taking as basis the example of §7
(seeFig. 2),'we could denote the derived sets by E.q, Ewsz Las, ... ; the set
deduced from these by K. or £, ; the derived sets of E, by L7, L
vovy B, ... 5 and the set deduced from these by E.m.

Proceeding on this principle, generally the derived sets of £y» will be
denoted by E.gmor, Eagimow, .., Eagworn, ... ; and the set deduced from
these by E.jgm+.

Further, the set deduced from all these, or, which comes to the same
thing, from E.p, Eans, ..., Eane, ... will be denoted by £.y..

As we proceed further, the general form of the index is "1*01"0 ... 017,
where m, n, ..., z are any integers (including zero, and, if zero, the corre-
sponding figure is to be altogether omitted) and the number of zeros
which occur between the 1's is at most m-+1. These numbers present to
our minds the same idea of sequence as the operations themselves, and, if
we should speak of the '1°0100111-th set, we should know at once what
was meant, and where the set occwrred in the sequence under dis-
cussion.

But, although in any special case, however complicated, we can assign
guch a set of binary fractions, and the notation is a very convenient one
for such purposes, the method does not permit us to discuss simultaneously
two or more special cases, since sets which we recognize in our minds as
the same, ¢.e., having the same place in their respective sequences counted
from the beginning, will in the two cases have different indices, while, on
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the other hand, the same index will sometimes refer to sets which we
recognize as distinct.

The question as to whether it is possible to assign a system of fixed
numerical indices to the E’s so as to characterize the order of the whole
set of them in every conceivable case has not been answered. A pre-
liminary step would be to determine whether n,, the potency of all the E’s,
is greater, equal to, or less than that of the continuum. If it were greater
than the continuum, the above question would certainly have to be
answered in the negative. It has been proved* that the potency is not
greater than c¢; it is still an open question whether or not it is equal
to c.

Before proceeding to the proof of this theorem, however, I propose to
describe the notation introduced by G. Cantor, and which for-the earlier
sets of the series is so convenient and obvious that it has met with
universal acceptation.

The derived sets of E are denoted by the indices 1, 2, ..., n, ..., the
deduced set of these by w; the derived sets of E, by o+1, w42, ...,
o+, ..., and the deduced set of these by w+w or w.2; and so on. The
set deduced from E,, E,,, ..., E,, has the index «?, that deduced from
Eg, E, ..., E, . the index «*, that deduced from the E’s with indices
o, @, ..., 0 the index »**, and that deduced from the E’s with indices
«’, 0, 0, ... the index «*”. For the set deduced from the sets with

indices w*, w®, =", ... the notation breaks down, but the principle can
be carried on ad nfinstum. This prineiple, or more properly these two
principles, are—(1) to every number a there is a nezt number, which shall
be denoted by «+1; (2) to every infinite set of numbers there is a next
number, which shall be called a *“ limiting number " (Limeszahl).

Following out these principles, if we have obtained any Cantor number
3, then the set which is got by performing on g that operation which led
from E to E,, a being any Cantor number, will be denoted by B+a. We
notice that, if a precedes B8, Eg,, is different from E, and from any set
preceding Eg; but, if a follows B, then Eg,, is the same as Eg. Hence
the Cantor numbers do not follow the commutative law: that is,
a+B # B+a.

Similarly, 2.0 5= 0.2. Since E. , means that we derive E, twice,
viving K, ,, then twice more, giving E 3 and so on; finally E, , we
obtain by deduction from this series, but this is none other than E,, so
that 20 = w. Generally a8 = Ba.

The 1deal symbols defined by these two principles are called Cantor’s

* F. Bernstein, Inaug. Diss. : ‘‘ Untersuchungen aus des Mengenlehre,”” Gottingen, 1901.
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““ transfinite numbers of the first potency.” Cantor uses the notation n
or Aleph-eins for the potency of his numbers of the first potency, while w,
or Aleph-null denotes the potency of a countable set of points ; this nota-
tion we shall keep.

11. Order represented by Diagrams. Ordinal Types.

F. Bernstein has pointed out that the idea of sequence, or, to use
Cantor’s expression, of ‘““ordinal type,” is nothing more than a dis-
continuous function of two variables, and may be graphically represented
by means of the diagram of a rectangular trellis, so familiar in the theory
of numbers.

If we take any countably infinite set, whether it be of points on the
straight line, or of the operations of derivation and deduction, or anything
else, and arrange them in countable order, say E,, E,, ..., E,, ... (this
may generally be done in a variety of ways, but we choose out one
particular arrangement), the idea of the natural order of these E’s is
cdmpletely emhodied by giving a law by which we can say whether or no
E; came after E; originally. E; could, of course, only coincide with E;in
the one case if 1t did in the other, 7.e., if 4 =3. Unless we can’give such
a law, we cannot speak of a ‘ natural order ” at all ; vice versa, given such
a law, we can determine the position of any element £; with respect to any
other one Ej, and so can always say whether or no it lies between any two
assigned elements : this is what we mean by saying we know the unatural
order, or the ordinal type.

The diagrammatic representation of the natural order depends on the
customary representation of the pair of integers (¢, j) by means of the
cross points of a rectangular trellis, so that the point (5, 7) is the
point whose coordinates are < and j. Kach such point (z, ;) we mark
with a black spot if E; comes before E;(in symbols, if E; < E;), and
with a small circle if 7 = <. It is obvious that in this way we have a
diagram such that the reflection of any black spot in the line of small
circles is a trellis point which has not been spotted. We may therefore,
if we prefer, use only the wedge-shaped diagram bounded by the small
circles, as it gives us all the information we require.

We may transform this diagram into a numerical representation by
interpreting the black spots by the figure 1, and the unspotted trellis-
points by 0, and reading the columns in order. Prefixing a point and
interpreting in the binary scale, we get a binary fraction corresponding to
each diagram, and vice versa. A given Cantor number will in general be

N “)
Voo
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represented by a variety of diagrams ; hence n; < ¢.  Fig. 6 is one of the
diagrams representing the natural order of the derived and deduced sets
up to E.: inclusive, the countable order being obtained from the diagram

@ o 1 2 3 4 5
20 o+1 o+2 o0+8 w+4
3o  20+1 20+2 2w+3
40 So+1 8w+2
50  4wo+1
6w
the columns being read in order, thus

o @ 1, 2, 2, «+1, 30, 8, 0o+2, 2w+1, 4o, 4, w+38,

o

Fie. 6.

The number equivalent to the diagram is
111 001 1011 01001 000001 1101011 01001001 ... .

If we start with any generic binary fraction, or, which is the same thing,
with any generic diagram, we shall not in general have a corresponding
Cantor number. The only sets whose ordinal types are Cantor numbers
are such as have a definite first element, and such that every element has a
definite element immediately following it, as is seen by means of the sets
of derived and deduced sets. Such sets are said to be * well ordered”; a
set which corresponds to a generic binary fraction is said to be “ simply
ordered.” For instance, the binary number ‘1 11 111 ..., or ‘i, or 1,
represents the natural order of the negative integers ..., —n, —n+1, ...,
—2, —1, in the countable order —1, —2, ..., —n+1, —n, ..., the
corresponding diagram having dots at all the trellis points. This ordinal
type is denoted by Cantor by w*. Thus the potency of the ordinal types
of all simply ordered sets is less than or equal to c.
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A simpie proof of G. Cantor’s enables us to go further and assert that
this potency is ¢. Denoting by II a set whose ordinal type is that of all
the negative and positive integers, we take corresponding to any given
binary fraction .e, e, ¢ ..., where the ¢’'s are either ones or zeros, the
simply ordered set got by inserting a set II between e, isolated points and
¢, isolated points, then another set II, then e, isolated points and so on.
It is easily proved that no set so obtained could be obtained in that order
from any different ternary fraction. Hence ¢ is less than or equal to the
potency of the ordinal types of all the simply ordered sets. It follows
then by a theorem of Cantor’s proved by Bernstein and by Schroder, and
later by Zermelo, that ¢ is the potency of the simply ordered sets. This
is the last word which has so far been said on this subject; it was to be
hoped that a further investigation of the connexion between the set of
simply ordered sets and the partial set of well ordered sets would lead
to a determination of wN;, but so far this is not the case.

12. Contents of Closed Sets of Points.

In amalgamating the black ‘intervals of E-to form those of E,, E,,
..., Eq, we blacken out at most a countably infinite set of limiting points ;
hence, by Theorem 3’ of the paper on “ Sets of Intervals,” all these sets of
black intervals have the same content. Thus we see the operations of
derivation and deduction leave the content unaltered.

In dealing with the content of closed sets of points, we need therefore
only consider perfect sets, since Eq is always perfect, unless it evanesces,
i.e., unless the set E is countable. H. J. S. Smith’s sets of points of the
first kind give us examples of sets of points of potency ¢ and content 0.
They are not themselves perfect, but their first derived sets are perfect,
.e., Eq is the first derived set. This set was set up in § 14, loc. cit.,
and in the ternary case consists of all the binary fractions interpreted in
the ternary scale; in the general case it consists of all the (m—1)-ary
fractions interpreted in the m-ary scale. Cantor’s perfect set of points
with zero content (loc. cit., § 28) consists of all the ternary fractions which
do not involve the figure 1.

H. J. S. Smith’s sets of the second kind have positive content, which
m—1 and m—2

m m—1
adopted. The law of construction of the set Eq or E; for such a set was
proved (loc. ctt., p. 260), and runs as follows in the case m = 8.

, where m is the base of the scale

always lies between
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Let . e, | egeq| ... | € pnen-tyi+1 €4fntn=yi+2 --- E{ncn+1y) | dENOLE ANY ternary
fraction, and let A, denote the conditions that for no positive integral
value of » < n all the figures from é;(r¢-1+1 0 €4r¢r+1)), both inclusive,
should be 2's.

Then the set of numbers in question consists of all the ternary frac-
teons which violate the conditions A, for some value of n.

We have in this way got types of closed sets with contents ranging
from O to I, the latter not inclusive. A closed set of content ! is
necessarily the whole continuum (4, B).

This follows at once from the definition, since a set of intervals of
content zero is an impossibility, unless the whole set evanesces.

[Note—A proof by Schoenflies of what I have called the * Theorem of
the Nucleus,” based upon the amalgamation of abutting intervals, which
mvolves, however, the properties of well-ordered sets, but avoids the use of
Cantor’s numbers of the third class, appeared this year in the Gattinger
Nachrichten. The idea of amalgamation as such, and of its application
to the simplification of the proof in question, was, I believe, new when
I communicated my paper on ““Sets of Intervals” to this Society on
November 13th, 1902. (See p. 246, lines 4-9, and p. 267 ; also §§ 14-16.)
The present paper had, as there indicated, been written at the same
time. ]



