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where the area of integration includes the whole of the region through
which «i varies.* ,

Finally it may be noticed that the preceding methods are applicable
in two dimensions, when we replace as and y by any conjugate functions
a, /3 of xy. By this transformation the scope of the analysis may be
considerably increased, but to enlarge upon this would take us too far
from the principal subject of the paper.

The Solution of Partial Differential Equations of the Second Order,
with any number of variables, when there is a general first in-
tegral. By H. W. LLOYD TANNER, M.A.

[Bead IZth January, 1876.]

In the first part of this paper it is proved that any equation of the
second order which has a first integral

PJ« l t ...... un\ = 0,

consists of— . —- + 2"*1 terms. One factor of each of these is the
2 i(n}a

determinant .• == —%- )

or a minor of this determinant. The other factor is a function of the
derivatives of u{ ... un, whose form is specified for each term.

In the second part we form —-. linear equations of the first
|n+JL \n-l ^

order which serve to determine Ui ... un. Of these equations n, and
only nf are independent, and their coeflicients are expressed directly
or indirectly in terms of the coeflicients of the given equation of the
second order. There is always a second set of equations corresponding
to another first integral; but, except possibly in one case, there are not
more than two first integrals. The general theory is then applied to
the case of two variables, and the results agree with those given by
Boole; but with the advantage that here there are no irrelevant equa-
tions to be removed, and there is no need to consider special cases of
some of the coeflicients vanishing.

In the third part we consider the theory of the second integration.

* Math. Tripos, 1870, Jan. 21, 1-J- to 4, Question x.
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If there be only one first integral (as distinguished from two identical
first integrals) we can only obtain as many particular solutions as we
please.

If two first integrals occur, it is shown that the arguments of the one
furnish the equations required for the integration of the other. But in
this case it is suggested that the equation should be solved by the
method employed by Imschenetsky in the case of two variables.

If the two first integrals be identical, the complete primitive is
obtained by equating to constants the different arguments of F ; hence
finding the values of pi ... pn1 and integrating the expression

dz—pidxi... —pndxn}

which is then an exact differential.

The dependent variable being z, the n independent variables Xy... asn,

we shall write pt for -p , and ay for z .

By -j— we shall indicate the result of differentiating u with respect.

to x{ explicitly involved in u; by (r—) we indicate that the differentia-
\dXiJ

tion is with respect to x{ as it occurs explicitly, and implicitly in z;

in —̂— (a notation suggested by Imschenetsky •) the differentiation is
with respect to «,-, however it occurs. Thus, if u be a function of
...PJ ... xt... 2, we should write

d. u . du .
+

(du\
\dxj

. du . du
+Pi -7- +-J--

' dz dxt
I. On the Genesis of the Equation.

(1.) Let Mj... un represent n mutually independent functions of
as,... xn, z,pi ...pn. Then, representing by F an arbitrary function, the
general form of a first integral may be written

F K.. .*O =0... (1).
Differentiate this with respect to Xi... xn, and from the n equations

thus formed eliminate the arbitrary functions -f- ... -— ..., which are
dux dun

equivalent to n — 1 only since the equations are homogeneous. The
resulting equation will be the general form of the equation of the
second order which admits of a first integral (1). This form is

•And De Morgan, Biff, and Int. Calc., p. 90.
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= 0. (2),

where +(£)•
d ,uk _ duk duk , ,duk

dxi dpi dpi dpn

(2.) In order to reduce this determinant to a more convenient form,
we make use of the following generalization of the theorem implied in
the rule for the multiplication of determinants. If

{mm

the determinant (cn ... cnn) vanishes when m is less than n\ but if m
be not less than n its value is

2(ou ... a^j) (ba ... bjn) (3),

where the 2 extends to all the different products that can be formed by

giving the n quantities i ...j,n different values between 1 and m in-

clusive. Hence the number of terms is ,—-=—, which, when m = n
\n I ta — n

reduces to 1.
The determinant on the left of (2) is* a particular case of this. For,

i, j being any numbers not greater than n, it is only necessary to put
_. du, j _g

for all values of i,j to make the two determinants identical. Now the
last condition is satisfied identically if we assume

&„•,.,- = 0, unless,; = % when bn+jJ = 1.
The value of m must be 2n. It cannot be less, for we require the

equation a<i2fl= ( T ~ 0 ' ^ cannot be more, for all the J's of the form\dznl
bin*i,i vanish identically in virtue of the last condition, and the fact
that j is less than n. Hence in the expansion of (2) there will be
|2n

Jl?F t erms-
(3.) Let us now seek to determine the constitution of these terms.

From the theorem quoted it is clear'that each term will be the product
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of two determinants. The first or o-determinant will involve only the
derivatives of ux ... un. We shall write these determinants in the form
^_l"i ... Uj ... un) w n e r e ^he jp is pUfc j n brackets to indicate that the

symbols (-=- I are used, and it is placed under the w, to show that the

differentials -^- do not occur, (—) taking their place. We shall oc-
dpj \dxil

casionally find it convenient to write the determinants in the form

3 "' \ the upper line showing thep's which do not occur, the lower

line the a's by which they are respectively replaced, the original deter-

minant being
(lit ••' Ui • • • W n

- * - 1 - *

(4.) The second factor of each term is a determinant involving only
the quantities ... «y ..., unity and zero.

To determine the general form we may write down such a term as
the following:—

Uj ... un) 8u...8ln

0 ... 1 ... 0

the second factor being written down by a reference to (3) and the
values subsequently assigned to the Vs. In this second factor remove
the Ith column to the front and then the f* row to the top. It is,
therefore,

(-)'•> 1, 0, 0, ...0

which is the minor of («M ... «,„,) formed by erasing the tth column and
j01 row, and affected with the sign (—)'+i.

Again, suppose the first factor is or

M 111

where we assume k>j\ K>I. In the second the factor the ? [ row

vanishes, with the exception of the quantity common to it and the
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£ column, which in unity. By bringing these rows and columns to

the edges, we find that the second factor is the minor of («u ... 8nn)
formed by erasing the rows jt k, and the columns t, r, and affected
with the sign (— )l+«*'*\ The assumption as to the order of/, k, i, *
does not affect this result; for interchanging t«: (say) is simply equiva-
lent to interchanging two columns in each of the determinants; viz.,
it changes the sign only of both factors, so that the product is unaltered.

This process is clearly general. Hence the s-factors in the expan-
sion of (2) are the minors that can be obtained from («n ... snn) including
this determinant itself and unity as extremes. The coefficient of the
minor formed by erasing the rows/, k, I..., and the columns i, K, \ ...
is the Jacobian

( —) d ( . . . Us . . . Ut. . . . tit ...)
V l —7~ / \ 7~\—\»

where j , k, I... and t, «, \ ... are in ascending order of magnitude.
It is easy to verify that this gives the same number of terms as we

obtained before. For there are «-j—*=-j- [ minors of the r01 order,

since these may be formed by retaining any r rows and any r columns
of the »; and

which agrees with the result given at the conclusion of Art. 2.

(5.) Let us now take account of the fact that #<, = «,-,-, or that the deter-
minant (flu ... 8Hn) is symmetrical. The symmetrical minors of the r^

In
order are of the form (»«, ... «« .. ««), and there are 7—7=— of them,

| r | w rsince any combination r together of the n suffixes may be taken. Alto-

gether, then, there are l+n-\ ^——'- 4* ... + n + l , or 2n symmetrical

minors. The coefficients of these are of the form
d (... Uj ... uk .. )
d (... (m,) ... M ...)•

The sign is (—)2 (>**+••) or positive.
All the other terms in the expansion of (2) involve nnsymmetrical

minors. These occur in pairs: for the minor formed by erasing the
rows/, k, ... and the columns 1, r, ... is identical with that formed by
erasing the rows t, K, ... and the columns/, k, ...
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1 C \— 7Taking each pair together, we have —. \ r,—ji—2" > terms involving

unsymmetrical minors of (5U ... «„„), and the coefficient of each will be
of the form

_ ) , • • * • . . . • • • « j d ( ... Uj ... uk . . . ) + d{... u, ... u. . . . ) ) #
(•

(6.) These results enable us to write down the form of the equation of
the second order which includes all that admit of a first integral of the
form (1). For instance, in the case of three independent variables,
this is

U 813

+ 2U, -2U,

13 23

where, if /* be any indeterminate multiplier,

= O...(4),

—

n — .GO)1

• «3)

3is ^ I d ((aj,) . (x3) . pt) """ d ((#,) . ^ a . (ajj)) i '
&c. = &c.

That the given equation of the second order should be of the general
form indicated by the equation (4), regarding therein the coefficients U
as arbitrary, is necessary, but not sufficient to ensure the existence of a
general first integral. In the case of n independent variables we should

1 1 O.u

flave o * ii ,'i + 2""1 coefficients; but these are expressible in terms of
a 1 \ ft I

n + 1 independent quantities ih...un, fx. Thus the coefficients must
satisfy

1 I2n
~o'Ti—p + 2""1—»—1 conditions.

II. Determination of the First Integral.

(7.) We now attack the problem converse to that discussed in the first
part of this paper; viz., starting with a known equation of the second
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order, we endeavour to find a first integral
F to un\ = 0 (i),

when one exists. This will be accomplished by discovering the n quan-
tities Ui ... Un.

Now the equation

( du \ du du

dxjf dpx dpn(dUy\ du\ du\
dpx dpn

dun dun

dpi dpn
= 0 .(5)

is evidently satisfied when u = v^, ... or un; for then two rows of the
determinant become identical.

In this equation the differentiations are performed with respect to
w+1 only of the 2n quantities Xx... xM py... pn; and since we may form
a similar equation, using any n + 1 of these quantities, there are evi-

dently ,—'
n + 1 In—1

equations of the same type as (5).

(8.) The equation (5) may be written in a more convenient form. It is
evidently homogeneous of the first degree in the derivatives of u. The

poenicient of l~) is the Jacobian dJ^ ' Un\. The coefficient of —,
\dxjl d(pl...pn) dp*

may be seen by interchanging the columns containing ( — ] —
\dxjj' dpr

as

is the same Jacobian with ^ , ^ ... in the place of ^ i , ^? , ....
\dXjl \dxjl dp, dp,

and affected with a negative sign. We shall represent, as before, the
result of this substitution by the symbol , the Jacobian

being accordingly represented by the symbol

may then be written in the form

The equation (5)

Concerning the
\2n

du
dp.

= 0 .(6).

w—1
equations of the form (5) or (6), we

shall now prove:—that n of them are independent; that not more than
n are independent; and that the coefficients can be expressed in terms
of the coefficients of the given equation of the second order.
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(9.) Tliere are n independent equations. From (3) we can obtain n equa-

tions by pu t t ing ; = 1 , . . . w, in succession. Now, if •.) ' '"—"(- does

not vanish, these equations will be algebraically independent, for each

will contain a quantity (— V (— \ .... which occurs in none of other
Xdxi/' \dXiJ

equations of the system. But the marked minor in (5) may be replaced
by any of the Jacobians of «i... un, and if the one selected does not
vanish, we get n independent equations by using for the first column
differentials with respect to the n quantities that do sot occur in the
Jacobian. Such a system is always obtainable, since, if all the Jacobians
of Ux... un vanish, the same is true of the coefficients of the equation of
the second order by the first part of this paper.

(10.) Only n of the equations are independent. For we have a matrix,
\a{j\, n + 1 deep by m+» broad (here m = w). The m determinants
obtained by taking in succession each of the first m columns with the
last n colnmns all vanish: i.e., Au A2 ... An*i being the n + 1 deter-
minants (of order n) of the last n columns, we have for all values of y,

aM+u = 0.

But A,, Aa ... An»i do not all vanish (for the marked minor is to be a
Jacobian which does not vanish) : therefore all the determinants of the
matrix vanish. Heuce, if the n equations of Art. 9 be satisfied, the
other equations of the system become identities.

|2n
(11.) If we express that the;

\n-l
equations for u are algebrai-

cally equivalent to n only, we obtain a remarkable series of theorems
which enable us to express the coefficients of these equationsin terms of
the coefficients of the given equation of the second order, and which give
implicitly some of the necessary relations between the coefficients of the
given equation.

a f \
For instance, supposing that , , "*—-~ or does not vanish, let

us eliminate — from the two equations

The result is

hi;

\dzj r

dxk

du

tdu\ _
\dxjl \dxj

r
j
K

J

»

»

r
k
K

k

— = 0 .
d
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Now this must be identical with the equation formed from the deter-
minant whose first row is

or

( du\ du du (du\

dXj/ dpi dpt^i \dasj/

( du\
dxJ ~

r K

jh dp.

for otherwise more than n equations of the system would be independent.

Comparing coefficients, we get, taking r = *,

;
K

j

>

>

i
K

h

=

X (7),

where in analogy with the previous notation we write t K

jh for the

result of substituting (—l) •«• and [-P] .... for -r-1... and -—
\dXjl \dxkl dpt apt

respectively in | |.
Again, from the three equations

(du\ „ r du
\dx~il'

11 (I)--
dp,
du
dp.

= 0,

= 6,

eliminating -^-, —, we obtain the equation
dp rfy

x
j

+

\
J

*

3

J

lju

ixt

>

1

1

r
h
K

k

X
k

•

•

1

c

i

i
\r

\

\

1

> .

" • _ A

dp.

The first three terms of this equation reduce by (7) to

X
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- Compare this with the equation derived from the determinant whose
top row is

( du\ du_ du ldu\ du /du\ du

dZj/ dpi " dpK_\ \dxj* " dj>k_i
viz., with the equation

dz~ \dxj kj dx
r r X
jkl

and we obtain the relation (r = i)

•*
3
K

3
X
3

t

ft
-

K

k

X

ft
-

t

1 .

(

I

K

I

X
I

i ic X
jkl (8).

By an inductive proof precisely similar to the above, we infer
generally that

(9),;
K

3

ft
- 

-

K

h

-Ill}" ( K . . .

jk...

° '" \ in the

the determinant on the left being of the tlh order.

More generally, starting with the determinant i ,

place of the marked minor in (5), we get a series of theorems of the
form

a . . . / 3 i _
~ \\a...b

a...(3K

0
a ... feifc

«... k
a... 6;'

a... bjk ...

(10),

t being the number of quantities i, K, ....
The proof we have given of these theorems ceases to be rigorous

respectively vanish. But the truth of thesewhen or
O . . . / J

a ... b
theorems evidently depends upon the manner in which the derivatives
of i*i ... un are involved, and not upon their magnitudes, and it is
therefore probable that they remain true even in this case.

It is obvious that we can obtain fresh series of theorems either by
expanding (9) or (10) in products of conjugate minors and replacing
these by their values found from the same equations, or we may start
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from a fresh set of equations and combine them in various ways. Thus,
for example, multiplying n + 1 equations by n + 1 indeterminate multi-
pliers and eliminating these multipliers between the 2n equations
formed by equating to zero the coefficient of each term in the sum, we
shall obtain n identical relations.

(12.) Supposing, as before, that 11 does not vanish, let us, in (7), put
t =j, K = k, and write the determinant at length. Thus we get

j
k *

k
j

j
j

k
k - I I jk

jk
.(11).

Now the determinants on the right are known, for they are the co-
efficients (divided by ft) of symmetrical minors of (sn ... s,,H) in the given.

equation of the second order. Also the sum of k is known, since it

is the coefficient of a certain unsymmetrical minor of («n ... «„„) divided by

ft. Hence ft k are two roots of a certain quadratic equation

whose coefficients are given in terms of the coefficients of the equation
of the second order to be solved.

For example, in the equation with three independent variables given

in (4) we find that h
2
3

?-2U,.

Again, supposing that

(10), on

a ... bk

whence,

Thus,

putting t

o .../to
a ... bj

if a = a,

in

a
a

= 2, i =j

a.. . /
a ...

.. & = /3 ,

the equation (4),

3
2

*H

••

» *
3j

W(

are the two roots of the quadratic

b

TJ3-UUSz = 0..

does not vanish, we obtain from

k, the equation

a... ftk
a ... bk

3 can find the

the quantities

a . . . f t
a... b

o ... ftjk
a ... bjk >

) two factors on the left.
12
13 , /

1
1

3
2 are the

roots of the quadratic equation
? - 2Ult.« + U,a. U u - U 1 . U m . = 0.

13

The occurrence of an indeterminate factor ft in these determinations
is immaterial; for the equations for n are homogeneous in ft after sub-
stitution, so that this factor divides out.

(13.) The determination of the values of, say, as far as it is

indicated above, leaves us free to assign to each of these functions one
of a pair of values ; and it is now necessary to examine if this ambi-
guity is limited in any way. In the first place, it is evident that when

we have assigned values to all the determinants «j. I, &c, or

VOL. vu.—NO. 94. a
a ... bk\*
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&c, that the others are determinate, supposing that or a " ,

respectively do not vanish. In fact, a single value of each is given by

(9) or (10). .We shall now show that in general, when

values assigned to them, all the Jacobians

values.

have

will admit of only single

In (8) put i==/, <=£, X=Z. Expand the determinant and transpose

to the right side all the terms such as

values are free from ambiguity. Thus we find that

I

whose-

has a determinate value for each value of I.

Now these equations, and others which we obtain by patting t=4>, 5,

&c. in (9), are not altered if we change all the quantities •% , &o. into

the quantities • ; but they generally cease to be satisfied when some.
J

only of these quantities are thus interchanged. Thus from the equa-
tions (6) we can always form a second set of equations, the solutions
of which will give a second first integral; and in general there are
only two such sets of equations.

I have attempted to form equations such as to admit of more than
one pair of first integrals, by making for all values of I

I
u.\

In all cases I have found, however, that, though two pairs of integrals
were obtained, yet in virtue of these very\ conditions they were iden-
tical ; but I am not prepared to prove that such is always the case.

(14) The theorems (9), (10), and others allied to them, serve also to
indicate the necessary relations existing between the coefficients ot the
given equation of the second order. In fact, if we express these co-
efficients in terms of Jacobians of Hi... un, as in the first part, we shall
have a system of equations between which we can eliminate w,, &c,
leaving a series of necessary relations between the original coefficients.
But besides these relations, which do not involve the derivatives of
the coefficients, there are also others which are necessary to insure that •
the n equations (6) should haven common integrals. These conditions
are very complex in form and do not invite a direct investigation.

It may,, however,, be noted that one of the conditions that the n
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. forequations should have n + 1 common integrals is that

all values of j , h. This implies that the quantity

dz—pidxi... — pndxn,

which is the differential of the w-fl01 integral, is in this case an exact
differential; a result which will be verified hereafter.

But the expression of these conditions is fortunately not necessary
for our purpose. To find a first integral we take any set of n equations
(5) which are independent. If these have not n common integrals
there is no"first integral. If they have, substitute them for î  ... «„ in
(1), and find if the equation ia satisfied by this integral. It .is gene-
rally convenient to render our trial integral as free from ambiguity as
possible by means of the theorems (9) or (10) as explained above; but
if this be not done a comparison with the original equation at once
serves to remove all inadmissible ambiguity.

(15.) It may be well to illustrate the results obtained by an application'
of them to the general equation with two variables,

= 0.

The arguments of the first integral of this equation satisfy the four
equations

2
<«•

where mi + mi = 2S.

These equations reduce to two, provided

WiWa = RT—UV,

so that mu m, are the roots of

These results agree exactly with those given by Boole (Supp. Vol.,
chaps, xxviii., xxix.), making allowance for different notation. It may
be interesting to notice that in chap, xxviii. Boole makes use of (a),
(ft) except when U=0, when he employs (a) or (/3) with (y), and
when V=0 , when either (y) or (5) is used with (/3). In chap. xxix.
equations (y), (S) are used; but the case of V=0 , when they become
identical, is not specially mentioned.

Q2
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III. Determination of the Second Integral.

(16.) In order to integrate the non-linear differential equation of the

first order F K ... un\ = 0 ....(1),

we must find n — 1 functions of pu &c. such that, v representing any
one of these quantities,

Now, in general, the values of. v will depend upon the particular
form of F, and in this case the general method for obtaining a second
integral is to assign to F a particular form and then integrate We
thus obtain as many particular solutions of the given equation of the
second order as we please.

But it may happen that the equation (12) is satisfied independently,
of the form of F. In order that this may be so, we reqnire that the

coefficients of the arbitrary functions -r—. —» &c» should simul-
dui du2 «

taneously vanish. This gives for v the n equations obtained by putting
h successively equal to 1, 2 ./. n in the equation

i-i (. \dxil dpi \dzil dp{ )

Now, if from these n equations we eliminate n — 1 of the quantities
dv Id/o \ ,, ,i ldv\% , • Idv \ . .•
lp~: \Tx)> 8 ay a11 t h e \Tx)s e x c e p f c H^,) ' w e g e t ^ e q u a t l 0 U

Buch as II"©- yi dv
r

But this equation is simply (6) with

= 0.

substituted for and

we therefore conclude that, (1) being one of the first integrals of the
given equation, the equations for integrating (1) are simply those
which express that the arguments of the other first integral are con-
stant; and in the particular case in which the two first integrals be-
come identical, that the arguments w, ... un equated to constants will
yield values of j>x ... pn which render

dz— pidxx ... ~pndxn

an exact differential, so that a complete primitive can be found.
(17.) As an example of the simpler case we take the equation
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»i x2 xs — Pi x%x% *22» *28

«0, %

— XiPiXl

-xlz2pa

«11» *13

*13> *33

* U > 8\%

*12» fi«3

= 0.

Since no unsymmetrical minors occnr in this equation the sum of

each pair of Jacobians such-as vanishes. Also their product

? I, for example, beingvanishes, that of

Hence all such Jacobians vanish.
Now, forming the equations (6), we get

dn
dp2

du

( du
dx2

(du
*

These give for a first integral

X\ Xz x3 i

which satisfies the given equation. The other first integral is identical
with this.

To find the complete primitive, put

= 2a2, £2=203;
x3

therefore dz = * dx2 + 2a3 x3 dx3t

z = a( xx + a2 x<i + a3 x3 + at;

and the general integral is expressed by the equations

(an 2̂) x\ + yp (a,, a2),

where a b a2 are functions of xh x2, x3 defined by the last two equations
when the forms of <j>, \}> are specified.

(18.) When the first integrals are not identical, a general integral may
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be found in the same way as Boole has treated this case for two variables.
But the results are very complex, and I believe that the best way to
treat this case is to use a generalisation of Imschenetsky's method of
variation of constants; viz., taking any particular solution involving
n +1 constants, we find the most general relation between these con-
stants, consistent with the given equation, is expressed by an equation
of the second order, in which n constants are independent variables,
and which is generally of an easily soluble form.

February 10/^,1876.

Prof. H. J. S. SMITH, F.R.S., President, in the Chair.

Messrs. Arthur Cockshott, M.A., late Fellow of Trinity College,
Cambridge, Mathematical Master at Eton College, and Richard Thomas
Wright, M.A., Fellow and Tutor of Christ's College, Cambridge, were
proposed for election.

The following communications were made to the Society:—«•" Loci
connected with the Rectangular Hyperbola, being inverses with respect
to its centre and vertices:" Prof. Wolstenholme.—" On Determinants
of Alternate Numbers:" W. Spottiswoode, F.R.S.—"On the Trans-
formation of Gauss's Hypergeometric Series into a Continued Fraction:"
Mr. T. Muir, M.A.—"On the Partition of Geometrical Curves:" the
President.—" On the Sum of the Products of r different terms of a
Series :" Mr. J. Hammond, B.A.—" On Pendular Motion:" Prof.
Clifford, F.R.S.

A portion of a fly-sheet, by the Comte Leopold Hugo, Member
of the Paris Mathematical Society, entitled " The Pan-imaginary

Theory " (in which he speaks of space of — dimensions), was read by
m

the President. Messrs. Cayley, Clifford, Cotterill, Roberts, and the'
President took part in the discussions on the papers.

The following presents were made to the Society's Library :—
" The Journal of Education " (Jan., Feb., March, 1876), by Mr.

Tucker, the Mathematical Editor.
"Proceedings of the Royal Society," Vol. xxiv., No. 166.
" Bulletin des Sciences," tome neuvieme, Nov., Dec, 1875; and

"Table des Matieres et Noms d'Auteurs," tome viii., 1° semestre, 1875.
" M6moires de la Societe des Sciences Physiques et Naturelles de
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Bordeaux," tome i. (2e s6rie) 2e cahier, 1876; and " Extrait des Proces-
verbaux des Seances," Bordeaux.

" Annual Report of the Board of Regents of the Smithsonian Insti-
tntion," for the year 1874, Washington, 1H75.

" Jornal de Sciencias, Mathematicas, Physicas, e Naturaes, poblicado
sob os auspicios da Academia Real das Sciencias de Lisboa," tomo i.,
Nov. 1866—Dez. 1867, Lisboa, 1868; Tomo ii., A^gosto 1868—Dez.
1869. Lisboa, 1870 ; Tomo iii., Junho 1870—Dez. 1871, Lisboa, 1871:
Presented by W. S. W. Vaux, Esq.

On Theorems relating to the Circular Cubics which are the Inverses
of a Lemniscate with respect to Us Vertices. By Professor
WOLSTBNHOLME, M . A .

[Head February 10th, 1876.]

1. Let S, H (Fig. 1) be two fixed points; R a variable point
moving so that SR. HR : SH2 = 1 : 4n; and let the circle SRH
meet the lemniscate whitfh is the locus of R again in R' (on the same
side of SH as R). Then let P, P*, Q, Q' be points on this circle such
that the distance of any one of them from R is a mean proportional
between its distances from S, H ; Q being always taken on the arc HR,
Q' on the arc RS, P, P* on the arc of the circle opposite R. P being
the one nearer to H in passing from H to S along this arc. This paper
proposes to investigate the loci of these points and to prove varioua
relations between their looi and the locus of R.

To determine the position of these points for a given position of R,
refer the system to areal coordinates measured on the triangle RHS
(these answering for the sake of familiar notation to A, B, G, so that
for the present HS=a, SR=&, RH=c, where a2 = 4-vbc. Then, at Q,
a:, y will be positive and z negative, and we shall have, from well known
properties of the circle,

• — _£_ • ^ • ~ c
X ' V ' Z ~ RQ * HQ * SQ

or, since RQ2 = SQ. HQ, x\ = ^ ;
a be

but at any point of the circle
a2yz + b-zx + c^xy = 0,

whence, at Q,

— hex* -r bhx + cfyy = 0, or x = — z -f y v.
c b . •


