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On the Null Spaces of a One-System and its Associated Complexes.
By W. H. YOUNG. Received November 3rd, 1898, and
subsequently, in revised form, February 25th, 1899.. Read
November 10 th, 1898.

A one-system lying in an odd space Sim.i is known to be reducible
in general to m one-vectors. Of these m one-vectors, r can be chosen
to lie in any odd space S2r-i of perfectly general position, the /Swi_2r

containing the remaining (m—r) one-vectors being then determined,
as also are the systems in the S2r-i and $2m_i_ar respectively. A
slightly different theorem holds good for even spaces.* I here occupy
myself with the theory of the spaces for which these theorems require
modification. Such spaces, which I have called the null spaces of
the one-system, are of several species. An Sn where r is less than m,

may have any species from 1 to — or ——— inclusive, according as

r is even or odd. An Sr of maximum species I call a thoroughly null
space, since in this case none of the m one-vectors can be chosen
to lie in it. The null lines of the one-system generate a linear com-
plex, and convei'sely, given a linear complex, we may construct it by
means of a one-system. The thoroughly' null spaces are the
vollstdndige Raume of the associated linear complex discussed by
S. Kantor,f and generate, as he has shown, a linear co("~'r)(r+" com-
plex. More generally, the null Sr'& of species p generate a linear
0o(»-rKr+i)-ip'(p'+i) complex, where p' is 2j> or (2p—1) according as r is
even or odd.

The methods employed are those indicated in Grassmann's
Ausdehnungslehre, an English exposition of which has been given
by E. Lasker in papers on " The Geometrical Calculus," published
in the Proceedings of this Society, Vol. xxvni. All that is required
for the present paper will, however, be found in the paper by
me "On Flat-Space Coordinates " (infra, pp. 54-69).

* Cf. " O n Systems of One-Vectors in Space of n Dimensions," Proe. Loud.
Math. Soe., Vol. xxix., Theorems vn. b and c.

t " Allgomeine Theorie der linearen Complexe," 1897, Crette's Journal.
VOL. XXX.—NO. 660. D
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2. Notation.

Let a12, a13, ..., ffi,ll+i, ais, «21, ..., a2,n+,, ..., a)/>11+1 be a system of
quantities, and let

fly = — aJi-

We adopt the following notation

12 = [12] = a,,,

[1234] = 12 . 3 4 - 1 3 . 24 + 14 . 23,

[123 ... 2r] = 12.34 ... [ ( 2 r - l ) 2r]-13.24 ... [ ( 2 r - l ) 2r] + &c,

whore the l'ule for writing down the right-hand side is as follows:—
Every possible interchange of numerals is made in the first term,
every such, interchange being accompanied by a change of sign; the
right-hand side then consists of the sum of all terms so obtained.

It follows at once from the definition that

[12 ... >2r] = [12][34 ... 2r ] - [13] [24 ... 2r] + ...

•with a nnmber of similar expansions.
It will be convenient to speak of the dimensions of a square

hraclcrt; thus r will be said to be the dimensions of the square
bracket on the left-hand side of the above equation. It is evident
that, if all the square brackets of any the same dimensions vanish,
nil those of higher dimensions also vanish.

When n is odd and equal to 2m—1 the square of the square
bracket o dimensions m is the skew determinant formed in the
usual way from the quantities a-y. When n is even the determinant
is, of course, identically equal to zero. The square of any other
square bracket, whether n be odd or even, is a minor of this deter-
minant. From the known properties of determinants, we deduce a
variety of theorems, e.g., if, n being odd, we denote by b's the square
brackets of dimensions (in— 1) in the a's, the square brackets of
dimensions (m —1) in the b's are proportional to the square brackets
of dimensions one in the a's, i.e., to the a's themselves. We have, in
fact, the identical equation

where we have written subscripts to call attention to the letters used
in forming the square brackets. This theorem will be of use in the
sequeL
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3. Covariants of a System of One-Vectors.

Consider any system of one-vectors, not necessarily reduced to a
canonical form. Take every possible set of r non-intersecfcing one-
vectors: each such set determines a (2r—1)-vector, defined, without
ambiguity, by the 2r-pyramid having those r one-vectors for non-
intersecting edges. Proceeding thus, we obtain a (2r—1) -system,
easily seen to be covariant with respect to the original one-system.
Suppose the original one-system changed in any manner whatever
to an equivalent one-system; then the laws of the composition and.
resolution of vectors show that at every step of the work the
(2r—l)-system changes into an equivalent (2r— l)-sysfcem. Here r
must be such that (2r—1) is less than n. If (2r—1) be equal to n,
a similar process will give us a number of scalar quantities, whose
sum remains invariable, which is therefore an invariant of the
system.

Again, take any fixed q-vector, external to the system, and let q
and r be such that (2r + q) is less than n, and form (2r + q)-pyramids
by joining up the j-vector to all the (2?'—1)-vectors of the (2r—1)-
system. We thus get a (2r + q — l)-system, which possesses also
covariant character with respect to the original system. If (2r + g)
be equal to n, we have a system of scalar quantities whose sum is
constant for the same g-vector and the same one-system.

4. Coordinates of a Covariant System.

There are two modes in which we find it convenient to change a
one-system. In the first, we replace each one-vector by components
along the edges of a fundamental (w + l)-pyramid. We thus get the
system replaced hy single one-vectors along the edges ; the ratios of
these to the one-vectors denoted by the edges themselves, taken in
the order 12,13, ...,23, 24, ... always in ascending order of numerals,
we shall call the coordinates of the one-system, and denote by the
symbols % of §2. In the same way the coordinates of a ('Jr—1)-
system are thus defined; replace the (2r —l)-system by (2r—1)-
vectors in the S2r-i faces of the fundamental pyramid; the coordinates
of the system are defined to be the ratios of these vectors to the
(2r—1) -vectors represented by the fundamental 2r-pyramids in those
faces, the vertices being-taken in definite order, e.g., (12... 2r), so
that the order of the numerals is always ascending.

Suppose, then, the one-system replaced in the first mode. Then
we know the covariant (2r—l)-system is equivalent to that got by

D 2
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combining the one-vectoi'S along every r non-intersecting edges of
the fundamental pyramid. This gives us the coordinates of the
(lr — l)-system.* For example, in the Sir.i whose vertices are
numbered 1, 2, ..., 2r, the magnitude of the (2r—1)-vector bears to
that of the corresponding fundamental (2r—l)-vector a ratio which
is expressed by means of the square bracket [12 ... 2r], and similarly
for the other coordinates. That is, the coordinates of the (2r— 1)-
system are the square brackets of dimensions r. Since these coordinates
depend only on jn (n +1) quantities, while those of the general (2r—1)-

Kystem are — ' in number, it is evident that these systems

are of very special types, except when r = in — 1, that is, except for
the (n—2)-system.

5. Degeneration of One-Systems.

Now let us use the second mode of reduction, in which lve replace
the one-system by the minimum number, say k, of equivalent one-
vectors ; this we may call the reduction to a canonical form. Taking

the k one-vectors r at a time, we get a system of '— (2J—1)-

vectors, forming a system of which the expressions already obtained
are the coordinates.

It is thus evident that, when r is greater than 7c, the square
brackets of dimensions r are all zero.

We can at once deduce the conditions that a given one-system
should degenerate one or more times. "We can, for example, write
down the conditions that the one-system should be equivalent to k
one-vectors, where k is any integer less than ?n.f In this case, and
in this.case only, the covariant system of (2fc-f-l)-vectors does not
exist. Thus the necessary and sufficient-conditions that a system should
he equivalent to k one-vectors are that the square brackets of dimensions
(& + 1) should vanish, and those of dimensions k should not vanish.
Further the (2k—1)-system is equivalent to a single vector, namely,
that determined by the k one-vectors, and the coordinates of the 82k.i
in which the k one-vcclors lie are given by the square brackets of dimen-
sions k.

6. Classification of Linear Sn.2 Complexes.

The equation to a linear $,,_2 complex involves the £ n ( n + l )
coordinates of an Sn.2. These are connected by the well-known

Cf. infra, $ 16, p. 67. t Cf. Laskor, he. cit.
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quadratic relations whose number is the number of combinations of
(w+1) things taken four at a time. The equation also contains
%n(n + l) arbitrary coefficients; these may be regarded as the
homogeneous coordinates a0- of a certain one-system deBned by them.
The equation expresses the fact that the S,,_2, whose coordinates it
contains, is such that the moment* of the one-system about it
vanishes. The nature of the complex depends then on the nature of
the system of one-vectors. We are thus led to a classification of the
$,,_2 complexes, which may be said to degeneratef 1, 2, ..., k times,
according as the auxiliary one-system is reduciblo to (m — 1), to
(m — 2), ..., to (m — k) one-vectors. These different classes of S,,.2
complexes will accordingly be characterized by the vanishing of the
square brackets of corresponding order.

7. Degenerate $,,_2 Complexes.

The consideration of complexes in even space, and of degenerate
complexes in general, is easily seen to be reducible to that of un-
degenerafce complexes in odd space. Thus suppose the one-system
equivalent to k one.-vectors lying in an S2 .»• The complex consists
of all those *S,,_2's whose moment about the one-system is zero, and
thus evidently includes all those 8n.2s which contain the &*_i, or
which meet it in an /S2Jt-2« Consider, however, an Sn.2 which meets
the SJk_i in an S.,k_3; the necessary and sufficient condition that its
moment about the one-system should vanish is that in the £2*-i the
moment of this Syt-a should vanish, that is, that the S2k-3 of intersec-
tion should belong to the undegenerate complex in the S>k.i deter-
mined by the k one-vectors. Thus we may generate the original
complex (undegenerate if n be even and equal to 2k), as follows:—
Describe the undegenerate S^.^ complex of the S2k.\ which corresponds to
the k one-vectors. Dratv through its Su.zS all possible Sn.2's; further,
if n bo not equal to 2k, complete the system by drawing all possible S,,.iS
through the 6>2*-i> and through the S2k.28 contained in the 6'2t_i; if n be
equal to 2k, the system has to be completed by taking all the S,,.2s in
the Sik.i.

8. Classification of Linear Line Complexes.

The results of the preceding two articles may be at once applied,
by means of the principle of duality, to the theory of linear line com-
plexes. In fact, we may map off such a complex unit by unit on to
an #,,.j complex, corresponding lino and S,,.2 having the same

• Seo iiiff; §$ 5, G, pp. 57-59. t Sec note, p. 38.
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coordinates, and the line complex and the dual $,,_2 complex the same
equation. Regarded as the equation to a line complex, the equation
expresses the fact that the moment about every line of the complex
of a certain (n—2)-system vanishes. We have only to modify the
phraseology in the usual way. Thus, corresponding to an S,,.2 com-
plex degenerate k times, we have a line complex degenerate the like
number of times.

In odd space («=2m—1) corresponding to the auxiliary one-
system of the Sn.t complex, lying in an Sim-2k~\i we have an auxiliary
(n —2)-system of the line complex, passing through an #2 _j. It is
usual to call such an S24., the centre of the complex ; its coordinates
are the same as those of the Stm-ut-x oi the auxiliary one-system of
the Sn.i complex, and may therefore be at once written down.

In even space (« = 2»t), we have an auxiliary (n — 2) -system of
the line complex, passing through an S2k centre, where k may be zero,
in which case we have the undegenerate complex with its point centre.

Whether the space be odd or even we have the following result:—
The conditions that a linear line complex should he degenerate k times

are that all the square brackets of dimensions (m— /c+1) formed from

the coefficients in the equation should vanish, and those of dimensions
(m—k) should not vanish, and the coordinates of the centre of such a
degenerate complex are given by the square brackets of dimensions (m — k).
This is true for the undegenerate complex in even space (n = 2m) if we
put k equal to 0.*

9. Degenerate Line Complexes and the Undegenerate Line Complex in
Even Spare.

Consider a linear line complex degenerate k times, where, when
k = 0, we understand the undegenerate line complex in even space.
The complex has an Sn.imi.2*centre. The auxiliary system of (n —2)-
vectors then reduces to (m—k) (n — 2)-vectors, passing through the
S,,_o,,,+2* centre. Making use of the method of sections,f and cutting
by an S^n-ik-u which does not meet the Su-i, we obtain a system of
(2m —2/c — 3)-vectors lying in the 8am.ik-u whose moments about a
unit vector in the S^.i are the original («—2)-system. Form the

* Cf. Segre, " Ricerche snlle omografie o eulle correlazione," ilemorie S. Ace.
Torino, 1885. I t should be uoted thut in Segre's terminology " specialized " does
not correspond exactly to " dege tun-ate " ; a line complex is specialized q times when
it has nn >V9_i centre. A line complex in even space is always specialized an odd
number of times. The point of view from which we regard line complexes leads
naturally to the adoption of lauguuge differing from that already in use.

t See «;/'•"» f *> P- 57.
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linear complex composed of the lines lying in the 82m-n-u whose
moment about this Bystetn vanishes. Every such line is evidently a
line of the original complex. Conversely, by taking all possible
Sim-ik-i** we shall obtain all the lines of the original complex. It is,
however, unnecessary to take more than one (S2m_j»_i. In fact we
have merely to join up to the <SU_2m+2* centre all the lines of the
subsidiary line complex in the jS2m_2*_i. We thus get a complex of
n̂-2m+2ft+2's, such that every line in every Sn-2m+j*+a of it is a line of

the original complex. The proof of this is evident, if we reflect that
every line that meets the centre is a line of the complex, and there-
fore in every such £„_<!„,+2i+ai we can construct a fundamental
(?i—2w-f 2/u + 3)-pyramid, every S, edge of which is a line of the com-
plex, that is, is such that the moment about it of the auxiliary {n—2)-
s'ystem vanishes. Any one-vector in the £„_»„,+0̂ 2 maybe replaced
by components along the edges of this pyramid ; therefore the moment
of the {n — 2)-system about it is also zero. We. may add that every
line of the complex is obtained in this way, and obtained only once.

10. The Govariaut One-System of an (11—2)-System.
There is a more picturesque and often more convenient method of

passing from a linear line complex to a one-system than the method
of duality.

We have seen that the covariant r-system of an undegenerate one-
system in odd space is, in every case but one; special in character.
The exception is when r is equal to (n—2).

Every undegenerate (n—2)-system in odd space is, in fact, the
covariant (w—2)-system of a certain one-system. We proceed to
show how to construct the one-system, and to find its coordinates.
Such an (ra—2)-system is reducible to m in—2)-vectors. We may
conceive it accordingly represented by such a canonical set. Every
(m—1) of these vectors intersect in a straight line. Thus we obtain
m straight lines, such that every (TO—1) of them determine the $,,_2

of one of the canonical set.
Now suppose one-vectors whose magnitudes are xv a*2, ..., xm taken

along these lines. If rtx equations hold of the form

•"a^s «•« fl*m ~~ - " u

where Ax is the ratio of the first (» —2)-vector to the (n—2)-vector
obtained by taking unity for each a?, then we shall have the required
one-system. Evidently these equations are satisfied by
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It is convenient to know the coordinates of the one-system when
those of the (»—2)-system are given. Let them be denoted by a's,
and those of the (n —2)-system by 6's. Then, by §4, we have to
Bolve equations of the form

By § 2, the solutions of these equations are of the form

[121. {[12 - . 2m]a}"-a = [34 ... 2m]b\
m-\

In other words, the homogeneous coordinates of the one-system may bo
taken to be the square brackets of order (m—1) in the b's.

This one-system may be called the covariant one-system of the
(w—2)-system. Its covariant systems will also be covariant with
respect to the (n—2)-system; and, without dwelling on the proof,
we may assert that a covariant (2r—l)-system has for coordinates
the square brackets of dimensions r in the a's or (wi—r) in the 6's.

If the system be a degenerate one in odd space or degenerate or
undegenerate in even space, the above requires modification;
the one-system obtained is then a concomitant of the second
type described in § 3, having an element of arbitrariness. Let
us consider an (n—2)-system, degenerate k times, where, for
k = 0, we have the undegenerate complex in even space. The
(n__2)-system is then equivalent to (m—k) (»—2)-vectors all inter-
secting in an $n_2»it2*. By the method of sections obtain a set of
(2m—2k—3)-vectors in an /S2m-2*-i n ° t intersecting the /S>»_2tt,+2*-
This latter set is undegenerate and in odd space, and may therefore
be treated by the method explained: above. We thus get an unde-
generate one-system in the £2m-.2*-i, which has this property : taking
all but one of the one-vectors, and building up with these and with
the complementary (n—2m+ 2&)-vector an {n— 2)-vector, the system
so obtained is the original set. The element of arbitrariness in this
one-system is the choice of the Sim.n-u which is only restrained not
to cut the /S,,_2B,+2*» and is therefore any &m-2*-i °* perfectly general
position.

11. Construction of a Linear Line Comphx.

Anticipating the definition and discussion of §§ 12, 13, we may
here insert simple constructions as resulting from the preceding
article. To construct an undegenerate linear line complex from its equa-
tion. Form the auxiliary (n—2)-pystem, and deduce the covariant one-
system. The null-lines of tlie one-system are the lines of the complex.
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Next, to construct a linear line complex having an 8n.2m+vt centre. As
in § 9, obtain a system of subsidiary (2m—2k —3) -vectors lying in an
$2m-2Jt-ij n°t cutting the centre. Form the covariant one-system of this
subsidiary system. Take all the null lines of this one-system, and join
up these null lines to the centre, thus forming a complex of Sn.Sm+2k+2S.
Every line in every /S>l,_2,,,+«+2 of this complex is a line of the original
complex.

Conversely, given a one-system, degenerate h times, and therefore
equivalent to (m—k) one-vectors, lying in an 82m.2k.u we can con-
struct a linear complex, degenerate the same number of times, as
follows :—Take an S,,^2,n^k, not intersecting the $2m-2*-ii and join up
to the null lines of the one-system in the S^^k-i > all the lines in
the $,,_2m+2*+2's so obtained constitute the complex required.

12. Null Spaces.
We shall now confine our attention to odd space (n = 2m — 1), and

to undegenerate systems, unless the contrary is stated or obviously
implied. The necessary modifications for even space, or when the
system is degenerate, may easily be made.

In the paper on one-vectors it was shown that, in the canonical
form, one of the m representative one-vectors may be made to act
along any straight line of perfectly general position, and that, more
generally, r of them can be made to lie in any &,r_i of perfectly
general position. It is, however, evident that for special positions of
the 6'2r-i this would not be possible.* In fact, when it is possible to
choose r of the m one-vectors of the canonical form in our Sir.u the
remaining (m—r) one-vectors will define a (2?/i—2r —1) -vector, whose
moment about the S2r.l does not vanish, while all the other
(2m — 2r—l)-vectors, got by taking together (m—r) one-vectors of
this canonical form, have a zero moment about the 6'2r-i' l̂ 01* the
theorem to be true the S2r-i must then not be such that the moment
of the covariant (2m—2r— l)-system about it is zero. If this
moment be zero, we shall call the space in question a null space.

It is evident from § 10 that the null spaces of a one-system may
equally well be called the null spaces of the (n—2)-system with
which it is associated, and vice versa.

• Thus in Theorem v. (A) the construction fails if the chosen line through 0 be
one of the oo3 which meet the S3 determined by the second and third one-rectors.
Since 0 is arbitrary, this shows that the construction fails for oo' of the oo8 straight
lines in 6'5. which are cases of'exception and, in accordance with the definition to
be presently given, will be c.illed null lines.
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13. Ntdl Lines.

Confining our attention first to null lines, we see that a null line
may be defined in two equivalent ways :

(1) As a line along which a one-vector of the canonical form cannot be
made to act.

(2) An a line such that the moment of the covariant (n—2)-system
about it vanishes.

The equivalence of these two definitions follows from the mode in
which we show that along a straight line of perfectly general posi-
tion one of the one-vectors of the canonical form may be made to lie.
The proof only fails when the ai'bitrary line lies in the fixed 8,,.u
through the arbitrarily chosen point, and the $,,_2 of the remaining
one-vectoi*s. Adopting a convenient term, we may say : the construc-
tion fails always, and fails only, when the line lies in the " polar"
S,,.i of one of its points.

From this definition of polar it is evident that the polar of every
point on such an exceptional line contains the line. Choosing some
definite line through the arbitrary point along which one of the one-
vectors should act, we have a fixed S,,^, in which the remaining
(?>i—1) one-vectors lie. This /S,,_2, lying in the polar $„_], cuts any
null line through the arbitrary point, and through this second point
one of the remaining one-vectors can be made to pass. Thus every
null line, according to the first definiticm, is such that two of the one-
vectors may be made to meet i t ; it at once follows that it is null
according to the second definition. That the second definition
involves the first has virtually been shown in the preceding article.
For, if a tme-vector could act along a line, the moment of the
covariant {n— 2)-system about it could not vanish.

It is easily seen that the moment about any straight line of the
covariant (n—4<)-syslevi, and of systems of lower order, can none of them
vanish. For, by § 4, if any one of these vanish, all the covariant
Bystems of higher order also have zero moment round the line.
Hence the covariant (n—2)-system has zero moment round the
line, so that the line is a null line. Choosing two of the one-vectors
to meet it, a third cannot do so, for three such would lie in SA, and
be reducible to two. Now the moment of the (n—4)-system about a
line meeting two of the one-vectors is evidently not zero. Thus the
theorem is proved.
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14. Thoroughly Null Spaces.

We shall use the expression thoroughly null space to denote a space
which has no lines in it other than null lines. We easily see that
such spaces exist by the following construction :—

THEOREM 1.—If (r + Y) points be taken, one on each of as many dis-
tinct one-vectors of any canonical set of m one-vectors, these always
determine a thoroughly null 8r.

For they are the vertices of an (r + 1)-pyramid, of which every
edge is a null line. Consider then any other line in the Sr. A unit
one-vector along it may be replaced by components along the edges
of the (r + 1) -pyramid, and its moment about the covariant (w —2)-
system is the sum of the moments of these components. But the
moment of each component is zero, for its line of action is a null line;
therefore the moment of the line in question is zero, and the line is
also a null line, as was to be proved.

THEOREM 2.—If Sr be a thoroughly null space, the polar of every point
in it contains the whole 8r.

For the polar contains all the null lines through its pole.

THEOREM 3.—If 8r be a thoroughly null space, we may always arrange
that (r + 1 ) of the m one-vectors should meet it; more cannot meet it.

For, through any point A of the Sr we may make one of the one-
vectors pass. The remaining (m —1) one-vectors then lie in the 8n.\
polar of A ; they also lie in the polar of any other point B on the line
of action of the first one-vector. The polar of A contains the null
line 8,, and the polar of B does not. Thus the S,,.^ in which the
(m—1) remaining one-vectors lie, does not contain the Sn but meets
it in an fiv-i, which is, of course, thoroughly null. Repeating this
process r times, we get r one-vectors passing through as many points
of the 8r, and the remaining (m—r) lying in a space which intersects
the 8.- in a point. Through this point one of the remaining one-
vectors may be made to act. This demonstrates the theorem.*

It is to be remarked that here r + 1 ^ m.
It will appear subsequently that there are no thoroughly null

spaces of dimensions higher than (m — 1).

THEOREM 4.—A thoroughly null Sr is such that the moment about it of
the covariant (n — 2r)-systeni vanishes.

* It is otherwise obvious that an S,- cannot meet more than (»• +1) of the one-
vectors. If it met (r+ 2), these would reduce to (r+ 1).
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This follows from Theorem 3. For a thoroughly null Sr meets
(r-f-1) of the m one-vectors, and therefore meets the spaces deter-
mined by every (m—r) of them.

THEOREM 5.—Conversely an Sr such that the moment about it of the
covariant (n—2r)-systcm vanishes is thoroughly null.

The proof of this theorem is contained in that of Theorem 7, § 15,
of which it is a special case.

15. On the Species of Null Spaces.

An S^..i or an S2r of perfectly general position can be made, as we
know, to contain r of the one-vectors, and, evidently, no more. We
have seen, on the other hand, that spaces exist which cannot bo
made to contain even one of the one-vectors. We are thus led to a
classification of spaces, with respect to a given one-system, according
to the number of one-vectors- of the canonical form which they can
be made to contain.

We shall say that an S^-u or an &in & a null space of species p if
the maximum number of one-vectors which it can fee* made to contain
is (r-p).

If the dimensions of the space in question be less than (m — 1), the
last article shows that p can attain the maximum r, the space being
then what we call thoroughly null. The maximum value of p when
the space is of dimensions higher than (m — I) is given by the
following theorem:—

THEOREM 1.—In every S,,_r where r is less than m, at least (m — r) 0/
the one-vectors can be made to lie.

Since the one-system can be replaced by a one-vector through any
chosen point, and (?«,—1) in any S,,.\ not containing the point, the
theoi'em is obviously true when r = 1. Suppose it proved for all
values of r up to (k — 1) : we proceed to prove it by induction, when
r is equal to If.

Take any $„_*, and through it pass an /S>,,_t+i; then (m — k + 1) of
the one-vectors can be chosen in this S,,-k+u These determine an
$2»i-2it+i in the Sn.k*u which is cut by the S,t.k (unless the latter
contains it) in an S2m~2k- In this S2m.2k of (S2m-&ui we nmy> by
hypothesis, put (m — k) of the (?»—k + 1) one-vectors. Thus (m—k)
of the one-vectors can be put in the £„.*, as was to be proved.

Thus the maximum value of p for an S,,.ir is the same as for an 8>r.l;
viz., it is r. Similarly, it is r for an #,,.2»--i» that is, the same as for
an &,.
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THEOREM 2.—If, in an 8n.r where r is less than m, (m—r) of the one-
vectors, and no more, can be made to lie, all the remaining r one-vectors
can be made to meet it.

For the remaining r one-vectors lie in an Sit.-\, which is cut by the
8,,., in an /Sr_v Since none of the one-vectors can be chosen in this
Sr.u ^ is thoroughly null. Hence, by Theorem 3 of the last article,
all these r one-vectors can be made to meet it.

THEOREM 3.—If, in an S,,.r where r is less than m, (in—r+k) of the
one-vectors, and no more, can be made to lie, then (r — 2k), and no more,
can be made to meet it.

The remaining (?• — k) one-vectors determine an S2r.ik.u which is
met by the £„.,. in an <S,-2*.i. As, by hypothesis, none of the (r—k)
one-vectors can be made to lie in this, the 8r^a-i is a, thoroughly
null-space for the system of (r— h) one-vectors in the Sir.2k-i'
Therefore (r—2k) of these one-vectors may be made to meet it. The
remaining k one-vectors will not meet it.

THEOREM 4.—If, in an Sr where r is less than m, k of the one-vectors,
and no more, can be made to lie, then, of the remaining (m— k) one-
vectors, ( r—2k+1) may be made to meet the S,., and no more.

For the (m — k) one-vectors lie in an Sn.->k, intersecting the S, in
an #,.-2*: which is, by the hypothesis, thoroughly null for the system
in the 8n.-ik. Hence (r—2k + l) of these (m — k) one-vectors, and no
more, can be made to meet the 8,.-^, which proves the theorem.

From the last three theorems it follows that every null space may
be constructed by means of a suitable choice of the canonical set of
m one-vectors, as follows :—

THEOREM 5.—To construct an S,. of species p, take a suitable canonical
set of m one-vectors, choose 2p points if r be odd, and (2p + l ) if r be
even, on as many different one-vectors, and complete the space by taking
sufficient of the remaining one-vectors to give an Sr.

We have still to show that every space constructed in this way is
of species p ; that is, we have to show that a space so constructed
has the maximum number of one-vectors in it, and could not, by
another choice of the canonical foxm, be made to contain more. * This
follows from our next theorem.

THEOREM 6.—If S>,..i be of species p, the moment about it of the
covariant (n — 2r — 2p + 2)-sijstem vanishes, as does that of any higher
and no lower system.
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If S>r be of species p, the moment about it of the covariant (n — 2r—2p)-
system vanishes, as does that of any higher and no lower system.

These follow from Theorem 5.
The covariant properties possessed by these spaces indicate that a

space which when constructed with a particular set of one-vectors
contains X and meets /x in the manner explained could not contain
more than A, and therefore meet less than /u, by means of any other
canonical form, for then we should have different covariant systems
with zero moment about the space. In fact, if a different choice of
the canonical form could give the numbers A' and fi, we must have,
first of all,

2A + /t = 2A'+// = dimensions of the space.

(A-f/t) will therefore necessarily alter, and with it the covariant
system whose moment vanishes.

THEOREM 7.—If an 8ir.i be such that the moment of the covariant
(n—2r—2p + 2)-system about it vanishes, and not that of any lower
system, the 83,-1 is of species p.

And, if an Sir be such that the moment of the covariant (n — 2r—2p)-
sysfem about it vanishes, and not that of any lower system,, the 8ir is of
species p.

Any other species is, in fact, inconsistent with the Theorem 6.
Summing up, we have proved the identity of two definitions of

species, one respecting the number of one-vectors which can be made
to lie in a space, and the other respecting the covariant systems
which have zero moment about the space. We have also given a
geometrical construction for a null space of any species.

16. Polarity.

We have hitherto only defined the polar of a point. Next to
define the polar of a straight line.

It may be proved that the polar $,,_i's of every point on a straight
line intersect in an £„_«; this we call the polar iS,,-2 of the straight
line. If the line be not a null line the theorem on which the defini-
tion depends is obvious, the 8n.2 being that determined by the
remaining one-vectors when one has been chosen to act along the
line. Next, take a null line, and draw two one-vectors to meet it.
These determine an 8S containing the line, and the remaining one-
vectors determine an £„_<, not intersecting the Sa. Without disturb-
ing the Sn.t, we can move the first pair of one-vectors about in their
St, so that one of them intersects the null line in any desired point
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of it. Thus the polar of any point of the null line contains the S,,_a

determined by this (S,,_4 and the null line itself. Hence all the polars
of points on a null line intersect in an $,,_2 containing the null line.

A similar proof may be used to prove the existence and properties
of the polar SH.2r of an S2r.i. For let the S2r^i be of species p.
Draw (r—p) one-vectors to lie in it and 2p to meet it. These deter-
mine an S2r+2p-i containing the whole S2,..\. The 2p points lie, as is
seen in § 15, in a thoroughly null S2p-i- The polar of any point in
this S.p-x contains of course the S2p.i and also the (r—p) one-vectors
first chosen; hence it contains the whole /S2,-i. Thus without dis-
turbing the Sop.i we can move the other one-vectors about so that
one of them passes through any chosen point of the $2r_i. The
Sip-i lies therefore in the polar of every point of the S2r-i- Further,
without disturbing the remaining (vi—r~p) one-vectors, we may
move the (r+jt>) about in their S^^p-u so that one of them passes
through any chosen point of the Sir-i- Thus the polar of every
point of the &j(._i contains the $,,_2, determined by the £,,_2r_2p of the
one-vectors not meeting the /S'2r-i and the thoroughly null Sip.i. This
we may call the polar S,t.2r of the Sir.i. Mutatis mutandis, the proof
holds for the /S,,.2r.1 polar of an Sir.

COE. 1.—An S2r.i and its polar Sn.2r are of the same species p, and
intersect in a thoroughly null S2p.x.

Similarly, for an even space S2r of species p, we may show the
theorem holds, provided p>0.

COR. 2.—The thoroughly null /S^./s aro their own polai's.

17. Coordinates of Polars of thoroughly Null and other Spaces.
Given the coordinates of a point, those of the £„_, polar may be at

once wx*itten down. We have merely to take the sum of the moments
in every /S,,_i face of the components of the point about the components
of the system of (n—2)-vectors, e.g.,

P\2...n =Pi [23 . . . n ] -p , [13 . . . n] + &c.

Given the cooi'dinates of a line, those of its polar may bo found an
follows :—Assume the lino is such-that one of the one-voctors can bo
made to act along it, and let A be the magnitudo, and pvii |>1S, ... the
coordinates of the one-vector so chosen. Then

«u—.\pi2 : al3-Xpls: &c,

are the coordinates of a system of one-vectors which is degenerate
once; therefore the square bracket of dimensions in of these quantities
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vanishes. Expanding in powers of X, all the coefficients disappear
except the constant term and the tei'm involving the first power of X.
Thus we have the following equation defining X:—

[12 ...2m] = X {pu [34 ... 2m]-p,3 [24... 2m] + &c.}.

This fails, it will be noticed, if the coefficient of X vanishes. X is
then infinite; the line must therefore be a null line of the system. We
may, however, deduce the result in this case also.

With this value of X,
an—^Pu '• a\&—*P\t ': &C,

are the coordinates of the degenerate system. The $,,_2 in which it
lies is the required polar. Following, therefore, the rule of § 5, we
form the square brackets of dimensions (m —1); these are the coordi-
nates required. If we go through the work, we find there is a great
simplication, the coefficients of all powers of X, except the first and
the absolute term, vanishing. Thus, for instance,

Pzi.. 2». = [345 ... 2m] - X f pM [56 ... 2m] - ^ [46 ... 2m] + &c.}.
When the line is a null line the absolute term may be neglected in
comparison to that involving X, and the coordinate of the polar /S,,_2

of a null line may be taken to be the coefficient of X itself.

We can see this more easily still geometrically. For, as the polar
of a null line contains the null line, the polar 8n.2 is that of the
moment about the null line of the covariant (w—2)-system ; the co-
ordinate can therefore be written down in the usual way. In a
similar way, the polar spaces of all thoroughly null spaces can be
written down at once. Thus, to find the polar of a thoroughly
null S.,. This is the space determined by the thoroughly null S2 and
the remaining (m—3) one-vectors of the canonical form, when three
have been made to meet it. That is, it is the space of the moment
about the $a of the covariant (n—6)-system. More generally the
polar of a thoroughly null £,. is that determined by the 8n and the
(m—•»•—1) one-vectors which do not meet it, and is therefore the space
of the vector representing the moment about the Sr of the covariant
(?i — 2r—2)-system.*

18. The Equations to the Complexes of Null Spaces.
First consider the null lines. Their characteristic property is tha t

the moment about them of the covariant (« — 2)-system vanishes.

* See end of § 18. ri'he indications are sufficient to enable the reader to find the
coordinates of the polar of any space whatever.' The results, being less simple, are
not given here.
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This moment is a scalai* quantity; there is, therefore, only one con-
dition that a line should be a null line ; viz., it is

JJM [34 ... 2m] -pia [24 ... 2m] + &c. = 0,

or, in the notation of § 2, ^<i>oPu — 0-

In the general case of a null S2t-i of species p the characteristic
property that the moment of the covariant (« —2r—2p4-2)-system
about it vanishes leads to several equations. In fact the moment of
this system about a unit (2r—l)-vector in an $,,-i gives rise, in the
general case, to a system of (n — 2p + 2)-vectors ; this system must, in
our case, be in equilibrium. We thus have as many equations as
such a system has coordinates, viz., the number of coordinates of a
(2p—3)-system ; that is, the number of (-p—2)-pyramidal faces in
an (n -f 1)-pyramid. The coefficients in these equations are the square
brackets of dimensions (on—r— p-\-1).

In the case of a null S.h. of species p, tiie number of equations
is the number of (2p — 1) pyi'amidal faces, and the coefficients are
the square brackets of dimensions (m—r—p).

It Avill be noted that the number of equations depends only on the
species of the space, and not on its dimensions. The equations ai'e
not, however, all independent; they are linear equations, having
syzygies between them.

To determine the dimensions of the entity formed by the 8,'& of a
given species, we must either determine the syzygies, and the syzygies
between the syzygies, and so on, or else adopt another method. This
we shall do in two subsequent articles (§§ 23, 24).

It will be noticed that, denoting by

e = o
the equation to the complex of null lines, 0 is the coefficient of X in
the equation of the preceding article determining \ ; and that the
coordinates of the polar <S(1_2 of a null line are

„ do . do . c
PU ...2m • P2l...im ' &C. = ~ '. I &C.

da12 Oa,3

By Euler's theorem we then have
anP:n...im + a\3Pu...i,« f&c . = 0,

the equation to the complex of null /S(,.a's of species 1, which
verifies our result.

VOL. xxx.—NO. 661. E



50 Mr. W. H. Young on the Null Spaces of a [Nov. 10,

In a similar way, if

©34...2»1 = = 0 , Gil ..2,B — 0 , &C,

be the equations to the complex of null &,'s, where

Qu...«» = Pun [78 ... 2w] -p3507 [48 ... 2m] -f &c,

the coordinates of the polar $,,_4 of a null Ss are

PoO ...2m .P46...2», ' &C. = ^°"" •'" I ? ~ ^ I &C.
da31 da-SB

8daia 8a,3

and a variety of equivalent ratios.

Jllulci's tlieorcm gives us then the equations to the complex of null
;S,,_4's of species 2.

It is easy to generalize from the above and write down sym-
bolically the coordinates of the polar of any thoroughly null space.

19. Associated Complexes of a given Linear Complex.

Suppose now the linear complex to be given, and let the coellicients
iu its equation be the quantities b. Then the preceding shows that
there are a series of associated complexes, which may be written
down sis follows, making use of the known relations connecting the
a's and the Vs.

Linear Complex. '2th^pij = 0.

Covqdex of 8.,'s. Oj3i5...2l), = 0, G,aiS ...2|I, = 0, &C,

'U'lierr, e,315...••„, = p a i [l2W]b-pm [1235] 4 + &c.

Complex of JSYS. Oai:ii....2m = 0, 8..,5G...,>,„ = 0, & c ,

where Oai5C ..,,„, - ^3130 [123456]6- i>3 5 0 7 [123567] t + &c.

the coefficients corresponding to an S, complex being always the square
brackets of diviensions r.

These we shall call the associated complexes of the given linear com-
plex. The original complex is defined by one equation; the associated
complexes are each of them defined by several equations, with, more-
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over, syzygies between them. The relation between the linear line
complex and an associated Sr complex is this: talcing the lines of the
original complex, ive huild up all possible Sr's; the Sr's so obtained con-
stitute the associated complex in question.

21. On the Associated Complexes of a Degenerate Complex.

Suppose the complex degenerate k times, so that it has an 8n.-illl+ik
centre. The auxiliary (n—2)-system consists then of the system
formed by joining the centre up to the (2m—2k—3)-vectors of a
(2m—2k — 3)-system lying in any JS »̂»-2*-H which does not meet the
$»-2»i+2A: j tins (2m—2k — 3)-system being a covariant system of an
undegenerate one-system in the Sim-2k-v We have to find the loci of
the thoroughly null spaces of this (« — 2)-system. We shall employ
the method of duality. Corresponding to the degenerate (n— 2)-
system, we have a degenerate one-system lying in an S^l.^.u having
the same coordinates as those of the (n—2)-system. We can, at
once, write down the coordinates of the covariant (2r—1)-system,
"where r may have any value from 1 to (m — h) inclusive; they are
the square brackets of dimensions r. Dually these are the coordi-
nates of the covariant (n — 2r)-system of the original (n—2)-system.
That is to say, the coefficients in the equations to the associated Sr com-
plex, where r may have any value from 1 to (vi — k) inclusive, are the
square brackets of dimensions r.

22. On the Arrangement of the Null Lines in the Ntdl Spaces.

The null lines in a null space, exception being of course made of
the case in which the space is thoroughly null, form an entity whose
dimensions are one less than the dimensions of the line space peculiar
to the space. In fact, for a line to be a null line constitutes a single
condition, viz., it must belong to a certain linear complex. The null
lines of a space form therefore what we may call the " section " of
the complex by this space. Considering for definiteness an S-zr-\ of
species p (where 2r ^ m), let us consider the nature of the section
for all values oi p from 0 to (r—1). When p is zero, that is, when
the space is ordinary, r of the one-vectors can be made to lie in it,
the system determined by these r one-vectors being a determinate
one. • The section in this case is composed therefore of the null lines
of an undegenerate one-system of the S-2r-i; in other words, it is an
undegenerate linear complex of that space.

Xext suppose the S>,._i to be of speciesp>0. In this case (r— p)
E 2
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of the one-vectors may be made to lie in it, and 2p to meet it. These
2p determine by their intersection with the S->r-\ ft determinate S2p.v
•which is thoroughly null. Every line in the £>2,.-i which meets
this S',,,.1 is thoroughly null. For, take a point on such a line
not in the S2p.i] one of the (r — p) one-vectors may be made to
pass through it, and one of the 2p to pass through the point where
it meets the S^,,.^ Avhich shows that the line is a null line.
Taking a definite set of (r—p) one-vectors, these determine an
S-ir-fy-u a i l (l form an undegenerate one-system in it. The null lines
of tins system are null lines of the original one-system. Join up
every such line to the &>,,_,; we thus get &>,,+1's every line of which is
a null line of the original one-system, and therefore a line of the
linear lino complex which it defines. It will be noted that, in virtue
of § 9, the result we have arrived at is as follows :—

The section of the linear line complex of a one-system by a null space
bf species p is a linear line complex degenerate p times.

23. Enumeration of the thoroughly Null Spaces.

Let f{n, r) denote the number* of thoroughly null #,.'s for the
general undegenerate one-system in S,t.

Then {/(n, r)—?t+r} is the number of such S,.\s which pass
through an arbitrary point. But all the thoroughly null S,.'s which
pass through a given point necessarily lie in the polar £„_, of that
point; and, taking any Su-i of the polar <S>,,_i not passing through
the pole, each such Sr will give a thoroughly null S,..^ of the S,,.->',
and, vice versa, each thoroughly null £,._, of that Sn.2, joined up to the
pole, gives one of the null S,.'s passing through the pole. Hence

/(n, r ) - n + r = / ( n - 2 , r-1).

Or, putting n = 2m—1, we may write

>̂ (m, r) — <p (in— 1, r—1) = 2HI—1—r;

therefore

<j> (m—1, r— 1)— <p (m—2, r—2) = 2 (m—1) — 1—r+1,

<p ( n i - r + 2, 2 ) - p ( m - r + l , 1) = 2 («i—r + 2 ) - l - 2 ;

further

<p (m—r + 1, 1) = 2 (2m—2r)-i.

* Wo Rhall Buy thnt the number of <S,.'s is x when there are co* of them.
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These give at once

0(w, r) = («_r)

which is the number of the dimensions of the entity formed by the
thoroughly null $,.'s.*

As the total number of &',.'s in S,, is (r -\-l)(n—r), we see that the
numerous equations obtained in § 18 are equivalent to \r (?' + l ) only.
Thus, for instance, the thoroughly null $2's, the equations to which
are (n+l) in number, are only bound by three independent con-
ditions.

24. Enumeration of Nidi Spaces of any Species.

We have seen that a null S^-i of species p intersects its polar in a
thoroughly null ^ . - i ; further, all the /S^^'s which pass through a
thoroughly null <S2p-i and lie in the polar 8n_2,> are of species p at
least, and there are no others. Now in such an S2,-\ there is only
one thoroughly null #2,,-! which has this unique position with regard
to it. Hence the number of null S2r.i's of species p is equal to the
number of /S2i--i'

8 which pass through a thoroughly null S2p.u and lie
in its polar, plus the. number of thoroughly null fi^-i's. Writing
2p—1 =p' and 2r—1 = r for brevity, the required number is

which is p (2p—1) less than the number of general iS^r-i's. The equa-
tions to be satisfied by an S2r.i of species p are therefore equivalent to
p (2p—1) independent conditions. The above reasoning holds for an
82n only that we have to write p' = 2p, r = 2r in accordance
with §15.

Combining this result with the rule of §18, we see that the null Sr's
of speciesp generate a linear <x>(n-rX'+l)-b/(>/+}) complex, where p is 2p or
(2/» —1) according as r is even or odd. These complexes maybe said,
in an extended sense, to be "associated" with the complex of null
lines. The /S/s are not built up of complex lines, but the coefficients
in the equations are still square brackets formed from the coefficients
b,k. Thus, for instance, the equation to the complex of null S-Js of

species 1 is ^ [1234],-JplI<B [1345], + Ac. = 0.

• Cf. S. Kantor, be. cit.




