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On the Null Spaces of a One-System and its Associated Oomplexes.
By W. H. Youna. Received November 8rd, 1898, and
subsequently, in revised form, February 25th, 1899.. Read
November 10th, 1898.

A one-system lying in an odd space S,,.; 18 known to be reducible
in general to m one-vectors. Of these m one-vectors, r can be chosen
to lie in any odd space S,,., of perfectly general position, the &,,,_,_,,
containing the remaining (m—r) one-vectors being then determined,
as also are the systems in the S,., and S,.-1-s respectively. A
slightly different theorem holds good for even spaces.* Ihere occupy
myself with the theory of the spaces for which tiiese theorems require
‘modification. Such spaces, which I have called the null spaces of
the one-system, are of several species. An S,, where r is less than m,
may have any species from 1 to ‘—;- or t—';i inclusive, according as
7 is even or odd. An S, of maximum species I call a thoroughly null
space, since in this case none of the m one-vectors can be chosen
to lie in it. The null lines of the one-system generate a linear com-
plex, and conversely, given a linear complex, we may construct it by
means of a one-system. The thoroughly null spaces are the
vollstindige Raume of the associated linear complex discussed by
S. Kantor,t and gencrate, as he has shown, a linear co®- X+ com-
plex. More generally, the null 8,/s of species p generate a linear
ool rlr+ -1 (¥ +1) complex, where p" is 2p or (2p—1) according as r is
even or odd.

The methods employed are those indicated in Grassmann's
Ausdelmungslehre, an English exposition of which has been given
by E. Lasker in papers on “ The Geometrical Calculus,” -published
in the Proceedings of this Society, Vol. xxviir. Al that is required
for' the present paper will, however, be found in the ‘paper by
me “ On Flat-Space Coordinates " (2nfra, pp. 54-69).

* ¢f. ““On Systems of One-Vectors in Space of n Dimensions,” Proc. Lond.
Math. Soe., Vol. xx1x., Theorems vir. & and ¢.
1 ¢¢ Allgemeine Theorie der linearen Complexe,” 1897, Crelle's Journal.

VOL. XXX.—x0. 660, D



34 Mr. W. H. Young on the Null Spaces of a [Nov. 10,

2. Notation.

Lot @y @y vy 01 usly Bags Gogy ooey Bgnely ooy @y nsy D B system of
quantities, and let
Qi = — .

We adopt the following notation
12 =[12] = ay,
[1234] =12.34—13. 24+14 .23,

(123 ...20] = 12.34 ... [(2r—1) 2] —13.24 .. [2r—1) 2]+ &e.,

where the rule for writing down the right-hand side is as follows :—
Tivery possible interchange of numerals is made in the first term,
every such interchange being accompanied by a change of sign; the
right-hand side then consists of the sum of all terms so obtained.

It follows at once from the definition that

(12 ... 2] =[12][34 ... 20]—[13][24 ... 2¢] + ...

: (12012320 —1],
with & number of similar expansions.

It will be convenient to speak of the dimensions of a square
_bracket; thus » will be said to be the dimensions of the square
bracket on the left-hand side of the above equation. It is evident
that, if all the square brackets of any the same dimensions vanish,
all those of higher dimensions also vanish.

When 2 is odd and equal to 2m—1 the square of the square
bracket o dimensions m is the skew determinant formed in the
usual way from the quantities a;. When n is even the determinant -
is, of course, identicully eqnal to zero. The square of any other
square bracket, whether # be odd or even, is a minor of this deter-
minant. Trom the known properties of determinants, we deduce a
variety of theorems, e.g., if, % being odd, we denote by b’s the square
brackets of dimensions (m—1) in the a's, the square brackets of
dimensions (m—1) in the b's arc proportional to the square brackets
of dimensions one in the a's, ¢.¢., to the a's themselves, We have, in
fact, the identical equation

[84...2m]), = {[12... 2m].}" *ay,
where we have written subscripts to call attention to the letters used

in forming the square brackets. This.theorem will be of use in the
sequel, .
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3. Covariants of a System of One-Vectors.

Consider any system of one-vectors, not necessarily reduced to a
canonical form. Take every possible set of » non-intersecting one-
vectors: each such set determines & (2r—1)-vector, defined, without
ambiguity, by the 2r-pyramid having those r one-vectors for non-
intersecting edges. Proceeding thus, we obtain a (2r—1)-system,
eagily seen to be covariant with respect to the original one-system.
Suppose the original one-system changed in any manner whatever
to an equivalent one-system; then the laws of the composition and.
resolution of vectors show that at every step of the work the
(2r—1)-system changes into an equivalent (2r—1)-system. Here r
must be such that (2r—1) is less than n. If (2r—1) be equal to =,
a similar process will give us a number of scalar quantities, whose
sum remains invariable, which is therefore an invariant of the
system. ‘ i

Apgain, take any fixed g-vector, external to the system, and let q
and r be such that (2r+q) is less than n, and form (2r +¢)-pyramids
by joining up the g-vector to-all the (2r—1)-vectors of the (2r—1)-
system. We thus get a (2r+q—1)-system, which possesses also
covariant character with respect to the original system. If (2r+gq)
be equal to n, we have a system of scalar quantities whose sum is
constant for the same g-vector and the same one-system.

4. Coordinates of a Covariant System.

There are two modes in which we find it convenient to change a
one-system, In the first. we replace each one-vector by components
along the edges of a fundamental (n+1)-pyramid. We thus get the
system replaced by single one-vectors along the edges; the ratios of
these to the one-vectors denoted by the edges themselves, taken in
the order 12,13, ...,23, 24, ... always in ascending order of numerals,
‘we shall call the coordinates of the one-system, and denote by the
symbols ay of §2. In the same way the coordinates of a (2r—1)-
system are thus defined; replace the (2r—1)-system by (2r—1)-
vectors in the §,,_, faces of the fundamental pyramid ; the coordinates
of the system are defined to be the ratios of these vectors to the
(2r—1)-vectors represented by the fundamental 2r-pyramids in those
faces, the vertices being: taken in definite order, e.g., (12...2r), so
that the order of the numerals is always ascending.

- Suppose, then, the one-system replaced in the first mode. Then

we know the covariant (2r—1)-system is equivalent to that got by
» 2
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combining the one-vectors along every r non-intersecting edges of
the fundamental pyramid. This gives us the coordinates of the
(2r—1)-system.* TFor example, in the S,.., whose vertices are
nambered 1, 2, ..., 2, the magnitude of the (2r—1)-vector bears to
that of the correspouding fundamental (2r—1)-vector a ratio which
is expressed by means of the square bracket [12 ... 2r], and similarly
for the other coordinates. That is, the coordinates of the (2r—1)-
system are the square brackets of dimensions . Since these coordinates
depend only on 7 (1 + 1) quantities, while those of the general (2r—1)-
n+41!
are of very special types, except when » = m—1, that is, except for
the (n—2)-systcm. '

system are in number, it is evident that these systems

5. Degeneration of One-Systems.
Now let us use the sccond mode of reduction, in which we replace
the one-system by the minimum number, say %, of equivalent one-
vectors ; this we may call the reduction to a canonical form. Taking

1
the k one-vectors » at a time, we get a system of %-‘ (2r—-1)-
1 l—rl

vectors, forming n system of which the expressions already obtained
are the coordinntes. .

It is thus evident that, when r is greater than &, the square
brackets of dimensions » are all zero. ' .

We can at once deduce the conditions that a given one-system.
should degenerate one or more times. We can, for example, write
down the conditions that the one-system should be equivalent to k
one-vectors, where k is any integer less than m.+ In this case, and
in this case only, the covariant system of (2k+1)-vectors does not-
exist. Thus the necessary and sufficient-conditions that a system should
lig equivalent to k onc-vectors arc that the square brackets of dimensions
(k4+1) shonld vanish, and those of dimensions k should not vanish.
Fuvther.the (2k—1)-system is equivalent to a single vector, namely,
that determined by the & one-vectors, and the coordinates of the Sy _,
tn which the k one-veclors lie are given by the squave brackets of dimen-
stons k.

6. Classification of Linear S,_, Complezes.

The equation to a linear S,_; complex involves the in (n+1)
coordinates of an S,... These are connected by the well-known

- * Cf. infra, § 16, p. 67. : t Cf. Lasker, loc. cit.
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quadratic relations whose number is the namber of combinations of
(n+1) things taken four at a time. The equation also contains
gn (n+1) arbitrary coefficients; these may be regarded as the
homogeneous coordinates a; of a certain one-system defined by them.
The equation expresses the fact that the S,.,, whose coordinates it
contains, is such that the moment* of the one-system about it
vanishes. The nature of the complex depends then on the nature of
the system of one-vectors. We are thus led to a classification of the
8,_, complexes, which ma,yba said to degeneratet 1, 2, ..., k times,
according as the auxiliary one-system is reducible to (m—1), to
(m—2), ..., to (m—k) one-vectors. These different classes of §,_,
complexes will accordingly be characterized by the vanishing of the
square brackets of corresponding order.

7. Degenerate S,_; Compleaes.

The consideration of complexes in eveu space, and of degenerato
complexes in general, is easily seen to be reducible to that of un-
degenerate complexes in odd space. Thus suppose the one-system
equivalent to & one-vectors lying in an S, .. The complex consists
of all those S,_.'s whose moment about the one-system is zevo, and
thus evidently includes all those S,_,’s which contain the Si.,, or
which meet it in an Sy_,. Consider, however, an S,_, which mcets
the S,_; in an 8,,_;; the necessary and sufficient condition that its

-moment about the one-system should vanish is that in the &,._, the
moment of this S,._; should vanish, that is, that the Sy._; of intersec-
tion should belong to the undegenerate complex in the Sy., deter-
mined by the % one-vectors. Thus-we may generate the oviginal .
complex (undegenerate if » be even and equal to 2k), as follows:—
Describe the undegenerate Sy_5 complex of the Sy,_, whick corresponds to
the k one-vectors. Draw through its Sy _s's all possible S, _J's; further,
if n be not equal to 2k, complete the system by drawing all possible S, 4's
through the Sy, and through the Sy.,'s contained in the Sy_; if n be
equal to 2k, the system has to be compleled by taking all the 8,..'sin
the Sgk_].

8. Classification of Linear Iine Complexes.

The results of the preceding two articles may be at once applied,
by means of the principle of duality, to the theory of linear line com-
plexes. In fact, we may map off such a complex unit by unit on to
an S,_; complex, corresponding line and 8, ; having the same

* Sece infrr, §§ 5, 6, pp. 571-59. ) 1 See note, p. 38.
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coordinates, and the line complex and the dual S, _; complex the same
equation. Regarded as the equation to a line complex, the equation
expresses the fact that the moment about every line of the complex
of & certain (n—2)-system vanishes. We have only to modify the
phraseology in the usual way. Thus, corresponding to an S,., com-
plex degenerate k times, we have & line complex degenerate the like
number of times.

In odd space (n=2m—1) corresponding to the auxiliary one-
system of the S,_, complex, lying in an S,,_s.,, we have an auxiliary
(n—2)-system of the line complex, passing through an S, _,. Itis
usual to call snch an 8, ., the centre of the complex ; its coordinates
are thc same as those of the Sy,.5., of the auxiliary one-system of
the 8,_; complex, and may therefore be at once written down.

In even space (n = 2m), we have an auxiliary (n—2)-system of
the line complex, passing through an Sy centre, where k may be zero,
in which case we have the undegenerate complex with its point centre.

‘Whether the space be odd or even we have the following result :—

T'he conditions that a linear line complex should be degenerate k times
are that all the square brackets of dimensions (m—k+1) formed from
the coefficients in the equation should vanish, and those of dimensions
(m—Fk) should not vanish, and the coordinates of the centre of such a
degenerate complex are given by the square brackets of dimensions (m—k).
This ds trus for the undegenerate complex in even space (n = 2m) if we
put k equal to 0.*

9. Degenerate Line Complexes and the Undegenerate Line Complez tn
Even Space.

Consider a linear line complex degencrate k times, where, when
k = 0, we understand the undegenerate line complex in even space.
The complex has an S,_n.s centre. The auxiliary system of (n—2)-
vectors then reduces to (m—=%k) (n—2)-vectors, passing through the
S, _om.+o centre. Making use of the method of sections,t and cutting
by an 8,,.5.1, which does not meet the Sy._,, we obtain & system of
(2m —2k —3)-vectors lying in the S,,_s.y, whose moments about a
unit vector in the §,_, are the original (n—2)-system. Form the

* ¢f. Scgre, * Ricerche sulle omografie e sulle correlazione,” Memorie R. Acc.
Torino, 1885. It should be noted thut in Segre’s terminology **specialized” does
not. corresapond exactly to ¢ degencrate’’ ; a line complex is specialized ¢ times when
it hus an &,_) centre. A line complex in even space is afways specialized an odd
number of times. The point of view from which we regard line complexes leads
naturally to the adoption of languuge differing from that already in use.

1 Bee infra, § 4, p. 57.
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linear complex composed of the lines lying in the S, .1, whose
moment about this system vanishes. Every such line is evidently a
line of the original complex. Conversely, by taking all possible
Sam_2x-1'8, We shall obtain all the lines of the original coﬁlplex. It is,
however, unnecessary to take more than one S,,_a_;. In fact we
have merely to join up to the S,.om.u centre all the lines of the
subsidiary line complex in the S;n_z-;. We thus get a complex of
S, _2mim.0’8, such that every line in every S,.um.or.s Of it is 8 line of
the original complex. The proof of this is evident, if we reflect that
every line that meets the centre is a line of the complex, and there-
fore in every such 8, su.ot.2 We can construct a fundamental
(n—2m 42k + 3)-pyramid, every S, edge of which is a line of the com-
plex, that is, is such that the moment about it of the auxiliary (2—2)-
system vanishes. Any one-vector in the S,_ ., .u.. may be veplaced
by components along the edges of this pyramid ; therefore the moment
of the (n—2)-system about it is also zero. We. may add that every
line of the complex is obtained in this way, and obtained only once:

10. The Covariant One-System of an (n—2)-System.

There is & more picturesque and often more convenient method of
passing from & linear line complex to a one-system than the method
of duality.

We have seen that the covariant »-system of an undegenerate one-
system in odd space is, in every case but one; special in character.
The exception is when r is equal to (n—2).

Every undegenerate (n—2)-system in odd space is, in fact, the
covariant (n—2)-system of a certuin one-system. We proceed to
show how to construct the one-system, and to find its coordinates.
Such an (n—2)-system is reducible to m (n—2)-vectors. We may
conceive it accordingly represented by such a canonical set. Every
(m—1) of these vectors intersect in a straight line. Thus we obtain
m straight lines, such that every (m—1) of them determine the S, _,
of one of the canonical set.

Now suppose one-vectors whose magnitudes are @y, &, ..., &, taken
along these lines. If m equations hold of the form

By o Ty = A
where 4, is the ratio of the first (n—2)-vector to the (n—2)-vector
obtained by taking unity for each z, then we shall have the required
one-gystemn. Evidently these equations are satisfied by
1.1 1

;1‘; B ;i; vee Am-

Xyl R, =
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It is convenient to know the coordinates of the one-system when
those of the (n—2)-system are given. Let them be denoted by a's,
and those of the (n—2)-system by b’s. Then, by §4, we have to
solve equations of the form

A [12], = Aby, = [34... 2m]..
By § 2, the solutions of these equations are of the form
[12] {[12 ... 2m],}""* = [34 ... 2m],A™"".

In other wards, the homogeneous coordinates of the ome-system may ba
taken to be the square brackets of order (m—1) in the U's.

‘This one-system may be called the covariant one-system of the
(»n—2)-system. Its covariant systems will also be covariant with
respect to the (n—2)-system; and, without dwelling on the proof,
we may assert that a covariant (2r—1)-system has for coordinntes
the square brackets of dimensions 7 in the a's or (m—7) in the b’s.

If the system be a degenerate one in odd space or degenerate or
undegenerate in even space, the above requires modification;
the one-system obtained is then a concomitant of the second
type described in §3, having an element of arbitrariness. Let
us consider an (n—2)-system, degenerate k% times, where, for
k=0, we have the undegenerate complex in even space. The
.(n—2)-system is then equivalent to (m—k) (n—2)-vectors all inter-
secting in an S,_su, By the method of sections obtain a set of
(2m—2k—3)-vectors in an Sy..y-, not intersecting the Sn s,z
This latter set is undegenerate and in odd space, and may therefore
be treated by the method explained above. We thus get an unde-
generate one-system in the Sya_g-;, which has this property : taking
all but one of the one-vectors, and building up with these and with
the complementary (n—2m + 2k)-vector an (n—2)-vector, the system
so obtained is the original set. The element of arbitrariness in this
one-system is the choice of the S,,.s.1, which is only restrained not
to cut the S,.smez, and is therefore any S;,.u.1 of perfectly general
position.

11. Construction of a Linear Line Compl: z.

Anticipating the definition and discussion of §§12, 13, we may
here insert simple counstructions as resulting from the preceding
article. To construct an undegenerate linear line complex from its equa-
tion. Form the auxtliary (n—2)-system, and deduce the covariant one-
system. The null-lines of the one-system are the lines of the complez.
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Next, to construct a linear line complex having an S,y centre. As
in § 9, oblain a system of subsidiary (2m—2k—3)-vectors lying in an
Sim-2x-1, not cutting the centre. Form the covariant one-syslem of this
subsidiary system. Take all the null lines of this one-system, and join
up these null lines to the centre, thus forming a complex of S, _gmskss's-
Lvery line in every S, s m.a Of this complex 1s a line of the original
complex.

Conversely, given a one-system, degenerate k times, and therefore
equivalent to (m—%) one-vectors, lying in an 8,,,_5.;, we can con-
struct a linear complex, degenerate the same number of times, as
follows :—Take an S, _;.,2, not intersecting the S,,,_5:.,, and join up
to the null lines of the one-system in the Sy.x_;; all the lines in
the S,_zm.242'8 80 obtained constitute the complex required.

12. Null Spaces.

We shall now confine our attention to odd space (n = 2m—1), and
to undegenerate systems, unless the contrary is stated or obviously
implied. The necessary modifications for even space, or when the
system is degenerate, may easily be made. ‘

In the paper on one-vectors it was shown that, in the canonical
form, one of the m representative one-vectors may be made to act
along any straight line of perfectly general position, and that, more
generally, » of them can be made to lie in any S,._, of perfectly
general position. [t is, however, evident that for special positions of
the S,,_, this would not be possible.* In fact, when it is possible to
choose 7 of the m one-vectors of the canonical form in our S;,.;, the
remaining (m—1) one-vectors will detine & (2m—2r —1)-vector, whose
moment about the S,._., does not vanish, while all the other
(2m —2r—1)-vectors, got by taking together (m—r) one-vectors of
this canonical form, bave a zero moment about the S,,_,. For the
theorem to be true the §,,_, must then not be such that the moment
of the covariant (2m—2r—1)-system about it is zero. If this
moment be zero, we shall call the space in question a null space.

It is evident from § 10 that the null spaces of a one-system may
equally well be called the null spaces of the (n—2) -system with
which it is associated,.and vice versa.

* Thus in Theorem v. (8) the construction fails if the chosen line through O be
one of the «3 which meet the §; determined by the second and third one-vectors.
Since O is arbitrary, thia shows that the construction fails for oo of the o8 struight
lines in ;. which are cases of exception and, in accordance with the definition to
be presently given, will be oulled null lines,
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13. Null Lines.

Confining our attention first to null lines, we see that & null line
may be defined in two equivalent ways :

(1) As a line along which a one-vector of the canonical form cannot be
made to act.-

(2) As a line such that the moment of the covariant (n—2)-system
about it vanishes.

The equivalence of these two definitions follows from the mode in
which we show that along a straight line of perfectly general posi-
tion one of the one-vectors of the canonical form may be made to lie.
The proof only fails when the arbitrary line lies in the fixed 8, .,
through the arbitrarily chosen point, and the S,_, of the remaining
one-vectors. Adopting a convenient term, we may say : theconstruc-
tion fails always, and fails only, when the line lies in the * polar”
S,..1 of one of its points.

From this definition of polar it is evident that the polar of every
point on such an exceptional line contains the line. Choosing some
definite line through the arbitrary point along which one of the one-
vectors should act, we have a fixed S,_,, in which the remaining
(m—1) one-vectors lie: This S,_,, lying in the polar S,_,, cuts any
null line through the arbitrary point, and through this second point
one of the remaining one-vectors can be made to pass. Thus every
null line, according to the first definition, is such that two of the one-
vectors may be made to meet it ; it at once follows that it is null
according to the second definition. That the second definition
involves the first has virtually been shown in the preceding article.
For, if a one-vector could act aleng a line, the moment of the
covariant (n—2)-system about it could not vanish.

It is easily seen that the mument about any straight line of the
covariant (n—4)-system, and of systems of lower order, can none of them
vanisk. For, by § 4, if any one of these vanish, all the covariant
systems of higher order also have zero moment round the line.
Hence the covariant (n—2)-system has zero moment round the
line, so that the line is a null line. Choosing two of the one-vectors
to meet it, a third cannot do so, for three such would lie in §,, and
be reducible to two. Now the moment of the (n—4)-system about a
line meeting two of the one-vectors is evidently not zero. Thus the
theorem is proved.
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14. Thoroughly Null Spaces.

'We shall use the expression thoroughly null space to denote a space
which has nolines in it other than null lines. We easily see that
such spaces exist by the following construction :— '

TrEorEM 1—If (r+1) pbints be taken, ons on each of as many dis-
tinct one-vectors of any canonmical set of m ome-vectors, these always
determine a thoroughly null S,.

For they are the vertices of an (»+1)-pyramid, of which every
edge is a null line. Consider then any other line in the 8,. A unit
one-vector along it may be replaced by components along the edges
of the (r+1)-pyramid, and its moment about the covariant (n—2)-
system is the sum of the noments of these components. But the
moment of each component is zero, for its line of action is a null line;
therefore the moment of the line in question is zero, and the line is
also a null line, as was. to be proved.

THEOREM 2.—If S, be a thoroughly null space, the polar of every pornt
en it contains the whole S,.

For the polar contains all the null lines through its pole.

TueoreM 3.—If S, be a thoroughly null space, we may ahways arrunge
that (r+1) of the m one-vectors should meet it ; more cannot meet 5t.

For, through any point 4 of the S, we may make one of the one-
vectors pass. The remaining (m—1) une-vectors then lie in the S, _,
polar of 4 ; they also lie in the polar of any other point B on the line
of action of the first one-vector. The polar of 4 contains the null
line 8,, and the polar of B does not. Thus the §,_, in which the
{(m—1) remaining one-vectors lie, does not contain the S,, but meets
it in an §,.;, which is, of course, thoroughly null. Repeating this
process r times, we get r one-vectors passing through as many points
of the S,, and the remaining (m—7) lying in a space which intersects
the S, in a point. Through this point one of the remaining one-
vectors may be made to uct. This demonstrates the theorem.¥

It is to be remarked that here r+1 < m.

It will appear subsequently that there are no thoroughly null
spaces of dimensions higher than (m—1).

TaEOREM 4.—A thoroughly null S, is such that the moment about it of
the covartant (n— 2r)-system vanishes.

* It is otherwise obvious that an S, cannot meet more than (r+ 1) of the one-
vectors. If it met (r+ 2), these would reduce to (»+1).
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This follows from Theorem 3. For a thoroughly null S, meets
(»+1) of the m oné-vectors, and therefore meets the spaces deter-
mined by every (m—) of them. '

TrEOREM 5.— Conversely an S, such that the moment about it of the
covariant (n—2r)-system vanishes is thoroughly null.

The proof of this theorem is contained in that of Theorem 7, § 15,
of which it is a special case.

15. On the Species of Null Spuces.

An 8, or an 8, of perfectly general position can be made, as we
know, to contain r of the one-vectors, and, evidently, no more. We
have seen, on the other hand, that spaces exist which canuot be
made to centain even one of the one-vectors. We are thus led to a
classification of spaces, with respect to a given one-system, according
to the number of one-vectors of the canonical form which they can
be made to contain. '

We shall say that an Sy,_,, or an Sy, is a null space of species p if
the maxzimum number of one-vectors which it can be made to contain
is (r—p). ‘ _

If the dimensions of the space in question be less than (m—1), the
last article shows that p can attain the maximum », the space being
then what we call thoroughly null. The maximum value of p when
the space is of dimensions higher than (m-1) is given by the
following theorem :—

THEOREM 1.—In every S,., where r is less than m, at least (m—17) of
the one-vectors can be made to lie. ‘ _

Since the one-system can be replaced by a one-vector through any
chosen point, and (m—1) in any S,_; not containing the point, the
theorem is obviously true when » =1. Suppose it proved for all
values of » up to (k—1): we proceed to prove it by induction, when
7 is equal to k. .

Take any S,_;, and through it pass an S,_;,,; then (m—%+1) of
the one-vectors can be chosen in this S,_;,,. These determine an
Sop-zer in the S, 4,1, Which is cut by the S,.; (unless the latter
contains it) in an Sy,_y. In this Su.z of Ssu.m. We may, by
hypothesis, put (m—k) of the (m—k+1) one-vectors. Thus (m—k)
of the one-vectors can be put in the 8,_;, as was to be proved.

Thus the maaimum value of p for an S, ., 18 the same as for an S, ;
viz., st is . Similarly, it is » for an S,..-y; that is, the same as for
an S,,.
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TuroreM 2.—IFf, tn an 8,., where r is less than m, (m—r) of the one-
vectors, and no more, can be made to le, all the remaining r one-vectors
can be nade to meet it.

For the remaining # one-vectors lie in an 8,,.,, which is cut by the
S,.,inan S,_;. Since none of the one-vectors can be chosen in this
S,.1, it is thoroughly null. Hence, by Theorem 3 of the last article,
all these = one-vectors can be made to meet it.

THEOREM 3.—If, vn an S, ., where r s less than m, (m—r+k) of the
one-vectors, and no more, can be made to lie, then (r —2k), and no more,
can be. made to meet it.

The remaining (r—k) one-vectors determine an S,,_y.,, which is
met by the S,_,inan S,_5_,. As, by hypothesis, none of the (r—k)
one-vectors can be made to lie in this, the S,_y_,is a thoroughly
null-space for the system of (r—k) one-vectors in the 8, _n_;.
Therefore (r—2k) of these one-vectors may be made to meet it. The
remaining k one-vectors will not meet it.

THueorEM 4.—If, in an S, where r is less than m, k of the one-vectors,
and uo more, can be made to lie, then, of the remaining (m—k) one-
vectors, (r—2k+1) may be made to meet the S,, and no more. ‘

For the (m —k) one-vectors lie in an S,_u, intersecting the S, in
an S,_y. which is, by the hypothesis, thoroughly null for the system
in the S, 4. Hence (r—2k+1) of these (m —&k) one-vectors, and no
more, can be made to meet the S, ., which proves the theorem.

From the last three theorems it follows that every null 'space may
be constructed by means of a suitable choice of the canonical set of
an one-vectors, as follows :(—

Turores 5.—To construct an S, of species p, take a suitable canonical
set of m ouc-vectors, choose 2p points if v be odd, and (Zp+1) if + le
even, on as muny different one-vectors, and complete the space by taking
sufficient of the remaining one-vectors to yive an S,.

We have still to show that every space constructed in this way is
of species p ; that is, we have to show that a space so constructed
has the maximum number of one-vectors in it, and could not, by
another choice of the canonical form, be made to contain move. ~ This
follows from our next theorem.

TusoreM 6.—If 8,.., be of species p, the moment about it of the
covariant (n—2r —2p + 2)-system vcanishes, as does that of any higher
and no lower system.
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If 8., be of species p, the moment about it of the covariant (n —2r—2p)-
system vanishes, as does that of any higher and no Zower system. '

These follow from Theorem 5.

The covariant properties possessed by these spaces indicate that s
space which when constructed with a particular set of one-vectors
contains A and meets w in the manner explained could not contain
more than A, and therefore meet less than u, by means of any other
canonical form, for then we should have different covariant systems
with zero moment about the space. In fact, if a different. choice of
the canonical form could give' the numbers A" and p’, we must have,
first of all,

2\ +p = 2N+ p’ = dimensions of the space.

(A+p) will therefore necessarily alter, and with it the covariant
system whose moment vanishes.

TrEOREM 7.—If an S, ., be such that the moment of the covariant
(n—2r—2p+2)-system about it vanishes, and not that of any lvwer
system, the S,,_, is of species p.

And, if an S,, be such that the moment of the covariunt (n—2r—2p)-
system about it vanishes, and not that of any lower system, the S,, is of
species p.

Any other species is, in fact, inconsistent with the Theorem 6.

Summxng up, we have proved the identity of two definitions of -
species, one respecting the number of one-vectors which can be made
to lie in a space, and the other respecting the covariant systems
which have zero moment about the space. We have also given a
geometrical construction for a null space of any species.

16. Polarity.

We have hitherto only defined the polar of a point. Next to
define the polar of a straight line.

It may be proved that the polar S,_,’s of every point on a Stlalght
line intersect in an S,_,; this we call the polar S,_; of the straight
line. If the line be not a null line the theorem on which the defini-
tion depends is obvious, the S,.. being that determined by the
remaining one-vectors when one has been chosen to act along the
line. Next, take a null line, and draw two one-vectors to meet it.
These determine an S, containing the line, and the remaining one-
vectors determine an S,_,, not intersecting the S;. Without disturb-"
ing the S,., we can move the first pair of one-vectors about in their
S,, so that one of them intersects the null line in any desived point
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of it. Thus the polar of any point of the null line contains the S, _,
‘determined by this S,_ and the null line itself. Hence all the polars
of points on a null line intersect in an S, _, containing the null line.

A similar proof may be used to prove the existence and properties
of the polar S,., of an §;_,. For let the 8,_, be of species p.
Draw (r—p) one-vectors to lie in it and 2p to meet it. These deter-
mine an S,,,., containing the whole S;,_,. The 2p points lie, as is
seen in § 15, in a thoroughly null S,,.,. The polar of any point in
this 8,,-, contains of course the S,,., and also the (»—p) one-vectors
first chosen; hence it contains the whole S,,_;. Thus without dis-
turbing the S,,.; we can move the other one-vectors about so that
one of them passes through any chosen point of the S,_,. The
S,,.1 lies therefore in the polar of every point of the S,._;. Further,
without disturbing the remaining (m—r—p) one-vectors, we may
move the (r+p) about in their S,,,;,.1, so that one of them passes
through any chosen point of the S,._.,. Thus the polar of every
point of the S,,_, contains the S,_,, determined by the S, _,,_s, of the
one-vectors not meeting the S,,_; and the thoroughly null S,,.,. This
we mdy call the polar S, o, of the S,,_.\. Mutatis mutandis, the proof
holds for the S,_,.., polar of an S,,.

Con. 1.—An S,,_, and its polar 8,_,, arve of the same species p, and
infersect vn a thoroughly null S,,_,.

Similarly, for an even space S, of species p, we may show the
theorem holds, provided p>0.

Cor. 2.—The thoroughly null §,,.,’s are their own polars.

17. Coordinates of Polars of thoroughly Null and other Spaces.
Given the coordinates of a point, those of the S,., polar may be at
once written down. We have merely to take the sum of the moments
in every S,_, face of the components of the point about the components
of the system of (n—2)-vectors, e.g.,

Pu.n=p [23...0]—p, [13 ... n]+ &e.
Given the coordinates of a line, those of its polar may be found as
follows :—Assume the line is such-that one of the one-vectors can be
made to act along it, and let A be the magnitude, and p,y, ps, ... the
coordinates of the one-vector so chosen. Then
@ —=Apy ¢ ay—Apy : &e.,

are the coordinates of a system of one-vectors which is degenerate
once; therefore the square bracket of dimensions m of these quantities
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vanishes. Expanding in powers of A, all the coefficients disappear
except the constant term and the term involving the first power of A.
Thus we have the following equation defining A :—

[12...2m] =X {p,[84...2m]—p, [24 ... 2m]+ &c.}.

This fails, it will be noticed, if the coefficient of A vanishes. A is
then infinite; the line must therefore be a null line of the system. We
may, however, deduce the result in this case also.

With this value of A,
@ =Apy; ¢ a—Apy & &e.,

are the coordinates of the degenerate system. The S,.; in which it
lies is the required polar. Following, therefore, the rule of §5, we
form the square brackets of dimensions (m—1); these are the coordi-
nates required. If we go through the work, we find there is a great
simplication, the coefficients of all powers of A, except the first and
the absolute term, vanishing. Thus, for instance,

Par.on = [345 ... 2m]—N {py,[56 ... 2m]—py [46 ... 2m] + &e.}.

When the line is a null line the absolute term may be neglected in
comparison to that involving X, and the coordinate of the polar S,._;
of a null line may be taken to be the coefficient of A itself.

We can see this more easily still geometrically. For, as the polar
of o null line contains the null line, the polar S,_; is that of the
moment about the null line of the covariant (n—2)-system ; the co-
ordinate can therefore be written down in the usual way. In a
similar way, the polar spaces of all thoroughly null spaces can be
written down at once. Thus, to find the polar of a thoroughly
null §,. This is the space determined by the thoroughly null S, and
the remaining (m—3) onc-vectors of the canonical form, when three
have been made to meet it. That is, it is the space of the moment
about the S, of the covariant (n—6)-system. DMore generally the
polar of a thoroughly null 8, is that determined by the S,, and the
(m—r—1) one-vectors which do not meet it, and is therefore the space
of the vector representing the moment about the S, of the covariant
(1 —2r—2)-system.*

18. 1'he Equations to the Complexes of Null Spaces.
Fivst consider the null lines. Their characteristic property is that
the moment about them of the covariant (n—2)-system vanishes.

@ Scoend of § 18. The indications are sufficicnt to enable the reader to find the
coordinates of the polar of any space whatever. The results, being less simple, are
not given here, :
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This moment is a scalar quantity ; there is, therefore, only one con-
dition that a line should be a null line ; viz., it is

P [34...2m]—p,(24... 2]+ &e. = 0,
or, in the notation of § 2, Sbhypy=0.

In the general case of a null S,,_, of species p the characteristic
property that the moment of the covariant (n—2r—2p+2)-system
about it vanishes leads to several equations. In fact the moment of
this system about a unit (2r—1)-vector in an S,._, gives rise, in the
general case, to a system of (n—2p+2)-vectors ; this system must, in
our case, be in equilibrium. We thus have as many equations as
such a system has coordinates, viz., the number of coordinates of a
(8p—38)-system ; that is, the number of (2p—2)-pyramidal faces in
an (n+1)-pyramid. The coeflicients in these equations are the square
brackets of dimensions (m—r—p+1).

In the case of a null S, of species p, the number of equations
is the number of (2p—1) pyramidal faces, -and the coefficients ave
the square brackets of dimensions (m —r—p).

It will be noted that the number of equations depends only on the
species of the space, aud not on its dimensions. The equations are
not, however, all independent; they are lineam equations, having
syzygics between them. »

To determine the dimensions of the entity formed by the S,’s of &
given species, we must either determine the syzygies, and the syzygics
between the syzygies, and so on, or else adopt another method. This
we shall do in two subsequent articles (§§ 23, 24).

It will be noticed that, denoting by
0=0

the equation to the complex of null lines, O is the coeflicient of X in
" the equation of the preceding article determining X; and that the
coordinates of the polar S, _; of a null line are
' do . d0
Pss.om « P2aotm - &e. = - P — 1 &e.

dar, Oy

By Euler’s theorem we then have
Qo Pap..om+ Qg Pos . om +&c. =0,

the equation to the complex of null S,.,/s of species 1, which
verifies our result.

VOL. XXX.—X0. 661. E
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In a similar way, if
Osu.on =0, Oy 2y =0, &e,
be the equations to the complex of null S,’s, where
Out..2m = Dyuso 78 oo 21 ] — Py [48 ... 2m] + &e.,
the coordinates of the polar S,_, of a null §; are

<
s &e. = aemn.. 2 ae:usc o tm &e.

DiG.2m + Pis..zm *
bl " o aas‘ aaxs
= ae]‘.’-‘)ﬁ...'}m . aenm...em . &C
L : .
Oa, Oa,y

and a vaviety of equivalent ratios.

Buler’s theorem gives us then the equations to the complex of null
8..s of species 2. '

It is casy to generalize from the above and write down sym-
bolically the coordinates of the polar of any thoroughly null space.

19. Associated Complexes of a given Linear Complea.

Suppose now the linear complex to be given, and let the coellicients
in its equation be the quantities b. Then the preceding shows that
there are a series of associated complexes, which may be written
down as follows, making use of the known relations connecting the
«'s and the b’s.

Linear Compler. Sbipy = 0.
00')"}'1(-"8 Of S.:’S. 0‘_'3]5 ;= 0) OIUIS wtm = 0) &C',

where Ouigs . om = Py [1234]— 105 [1235], + &e.
Complex of Sy's. Opzoow =0, Ouz..ou =0, &c.,
where O am 2= Py [128456],—pgy [123567], + c.
&e., &e.,

the coeflicients corvesponding to an S, complex being always the square
brackets of dimensions 7.
These we shall call the associated complexes of the given linear com-
plex. 18 original .complex is defined by one equation ; the associate
l Tl 1 1 defined b t tl ted
complexes ure cach of them defined by several equations, with, more-
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over, syzygies between them. The relation between the linear line
complex and an’ associated S, complex is this: faking the lines of the
original complen, we build up all possible S,’s; the S,’s so oblusned cen-
stitute the associuted complex tn question.

21. On the Associated Complexes of a Degenerate Comple.

Suppose the complex degenerate & times, so that it has an S, p..x
centre. The auxiliary (n—2)-system consists then of the system
formed by joining the centre up to the (2m—2k—3)-vectors of a
(2m—2k—3)-system lying in any S, _x%.,, which does not meet the
S, _sms2; this (2m—2k — 3)-system being a covariant system of an
undegenerate one-system in the S,,_a-.,. We have to find the loci of
the thoroughly null spaces of this (n—2)-system. We shall employ
the method of duality. Corresponding to the degenerate (n—2)-
system, we have a degenerate one-system lying in an S, .2y, having
the same coordinates as those of the (n—2)-system. We can, at
once, write down the coordinates of the covariant (Zr—1)-system,
where » may have any value from 1 to (m—=Z) inclusive; they are
the square brackets of dimensions r. Dually these are the coordi-
nates of the covariant (n—27)-system of the original (n—2)-system.
That is to say, the cocfficients in the equations tv the assoctated S, com-
plex, where + may have any wvalue from 1 to (m—k) inclusive, ave the
square brackets of dimensions 1. '

22. On the Arrangement of the Null Lines in the Null Spaces.

The null lines in a null space, exception being of course made of
the case in which the space is thoroughly null, form an entity whose
dimensions are one less than the dimensions of the line space peculiar
to the space. In fact, for a line to be a null line constitutes a single
condition, viz., it must belong to a certain linear complex. The null
lines of a space form therefore what we may call the * section” of
the complex by this space. Considering for definiteness an S,,_, of
species p (where 2 < ), let us consider the nature of the section
for all values of p from O to (r—1). When p is zero, that is, when
the space is ordinary, r of the one-vectors can be made to lie in it,
the system determined by these r one-vectors being a determinate
one. - The section in this case is composed therefore of the null lines
of an undegenerate one-system of the S,,.,; in other words, it is an
undegenerate linear complex of that space.

Next suppose the S,,_; to be of species p>0. In this case (r—p)

E 2
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of the one-vectors may be made to lie in it, and 2p to meet it. These
2p determine by their intersection with the S,,.., a determinate S,,_,,
which is thoroughly null. Every line in the 8,_, which meets
this 8,,., is thoroughly null. TFor, take a point on such a line
not in the 8,,.,; one of the (r—p) one-vectors may be made to
pass through it, and one of the 2p to pass throngh the point where
- it meets the S,,_,, which shows that the line is a null line.
Taking a definite set of (r—p) one-vectors, these determine an
Sy _9p-1, and form an undegenerate one-system in it. The null lines
of this system are nunll lines of the original one-system. Join up
every such line to the S,,.,; we thus get S,,,,’s every line of which is
a null line of the original one-system, and therefore a line of the
linear line complex which it defines. It will be noted that, in virtue
of § 9, the vesult we have arrived at is as follows :—

T'he section of the lincar line complen of a one-system by a null space
of species p s a lincar line complex degencrate p times.

23. Dunimeration of the thoroughly Null Spaces.

Let f(n, r) denote the number* of thoroughly null §,’s for the
general undegenerate one-system in S,,.

Then {f (n, r)—n+7} is the number of such S/s which pass
through an arbitrary point. But all the thoroughly null 8,’s which
pass through a given point necessavily lie in the polav 8,_; of that
point; and, taking any S,., of the polar S,., not passing through
the pole, each such S, will give a thoroughly null §,_, of the §,_,;
and,vice versa, each thoroughly null S,_, of that S,_,, joined up to the
pole, gives one of the null 8,’s passing through the pole. Hence

f(nyr)—ntr=f(n-2, r—1).
Or, putting # = 2m—1, we may write
¢ (m, 7) —¢ (m—1,r—1) = 2m~1—2;
therefore

¢ (in—1, r—1)—¢ (n—2, r—2) = 2 (m—1)—1—r+1,

¢ (m—7+2,2)—¢p (m—r+1,1)=2 (m—r+2)-1-2;
further

¢ (m—r+1,1) =2 (2m—2r)—1.

* We shall say that the number of §,’s is 2 when there are oo of them.
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These give at once
¢ (m, 7) = (n—7)(r+1)—3r (r+1),

which is the number of the dimensions of the entity formed by the
thoroughly null 8,’s.*

As the total number of S,’s in S, is (» +1)(n—7), we see that the
numerous equations obtained in § 18 are equivalent to 3 (»+1) only.
Thus, for instance, the thoroughly null Sy’s, the equations to which
are (#+1) in number, are only bound by three independent con-
ditions.

24. Enwmeration of Null Spaces of any Species.

We have seen that a null S,,_, of species p intersects its polar in a
thoroughly null 8,,_,; further, all the S,,_,’s which pass throngh a
thoroughly null 8,,_, and lie in the polar S,_,, are .of species p at
least, and there ave no others. Now in such an S,._;, there is only
one thoroughly null S,,_, which has this unique position with regard
to it. Hence the number of null §,,.,’s of species p is equal to the
number of S,,._;’s which pass through a thoroughly null S,,_,, and lie
in its polar, plus the number of thoroughly null S,,_,’s. Writing
2p—1 = p’ and 2r—1 = »" for brevity, the required number is

(@ =p Y —p —=1—=7)+ (n—p)(p'+1)—3p (F+1)
‘ = =) (P +1)=3p (F+1),

which is p (2p—1) less than the number of general S,,_,’s. The equa-
tions to be satisfied by an S,,_, of specieé p are therefore equivalent to
p (2p—1) independent conditions. The above reasoning holds for an
8., only that we have to write p’=2p, +'=2r in accordance
with § 15.

Combining this result with the rule of §18, we see that the null 8,’s
of species p generate a linear oo~nU+N-W 0N o4ppleq where p’ is 2p or
(2p—1) according as r1is even or odd. These complexes may be said,
in an extended sense, to be ‘“associated” with the complex of null
lines. The S,’s are not built up of complex lines, but the coefficients
in the equations are still square brackets formed from the coefficients
bs. Thus, for instance, tl;e equation to the complex of null S;'s of

species 1 is Prass [ 1234]5— Prss [1345], 4 &e. = 0.

# Cf. S. Kantor, loc. cit.





