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1. Introduction and Summary.

The problem of expanding a given function f(x) in a series of functions
of given form—thus :

f(x) = a1<ji(K1,x) + a2<l>(ici,x) + ...+an<l>(icn,x) + ..., (1)

where KU K2, ..., «•„, ... are the roots of a transcendental equation

y/r(z) = 0 (2)

—is one which has been familiar to mathematicians since the days of
Fourier. This problem, in most cases which occur in mathematical
physics, is usually solved by the method of normal functions ; that is,
functions x(K>x) a r e determined such that

[ft

\ x(fr, a?) 0fa» x)dx = 0 (8)
Ja.

when r, s are different, but has some definite value when r = s. Thus,
multiplying (1) by x(K*> x) a n ^ integrating from a to ft, the coefficient au

is readily determined.

The great disadvantages of this method are that it gives no clue for
the discovery of the functions x when the form of the latter is not obvious
from other considerations, and that it gives no means of predicting, given
the functions <p and the transcendental equation (2), whether the required
expansion is possible or not.

Another method has been given by Cauchy, and is described in Picard's
Cows d'Analyse (pp. 169 et seq.). This method depends on the calculus
of residues. Cauchy (and Picard after him) restricted himself to the case
of trigonometrical series (see Cauchy, CEuvres Completes, t. vn, 2e S6rie:
" Sur les Re'sidus des Fonctions exprimees par des Integrates definies,"
p. 393), but the process by which the result is arrived at seems artificial.
The function [denoted below by F(z)~\ on which the whole expansion
hinges is selected from an a priori knowledge of the coefficients in
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Fourier's expansion, and no method is given for finding it in the general
case.

Dini, in his book on Fourier series (Serie di Fourier e altri rappre-
sentazione analitiche delle funzioni di una variabile reale, Pisa, 1880),
has employed a mixed method, depending partly on normal functions,
partly on Cauchy's residue theorem. He gives a determination of the
function F{z) of the present paper, but in order to do so seems to assume
(loc. cit., pp. 131, 132) that the conjugate functions are practically already
known, and that x(K>x) — <P(K,X)6(X), 6{X) being a function of x inde-
pendent of K. This restricts very considerably the generality of his
results.

Dini's analysis seems to be directed rather to giving exact proofs of
expansions already known than to developing methods for obtaining new
expansions.

The object of the present paper is to extend arid generalize the appli-
cation of Cauchy's method of residues to expansions, and to give a rule for
finding the form of the expansion in certain large classes of cases.

In what follows the functions to be expanded are supposed finite
polynomials. This enables us to dispense at present with troublesome
considerations of convergence.

The paper begins by establishing a general theorem for expanding a
polynomial in a series of functions of the form <P(KX), K being a root of
\fs(z) = 0. The theorem is practically contained in equations (6) and (15).
Exceptional cases, when z = 0 is a zero of \fr(z), are next dealt with. An
example of the method is then given, showing how to expand a function
f(x) in the form 2 {Ancos (Knx)-\-Bnsin (KUX)\, the K '̂S being roots of the
transcendental equation JQ{KCL) = 0.

It is also verified that the method will give the expansions of Fourier,
Schlomilch's expansion, and expansions in Bessel functions of order zero
which occur in physical examples. New forms are obtained for the co-
efficients in the expansions in Bessel functions of order zero.

Also, in each case, the method enables us to find the range of validity
of the expansion and the values of the series at the extremities of the
range of validity. Thus the results (34), (35), which give the values at the
ends of the range for Fourier's second trigonometrical series, I have not
been able to find anywhere.

The latter part of the paper, after a brief consideration of the possi-
bility of extending the results to functions other than polynomials, is
devoted to applying the method to series of functions <p (K, X) where K, x
do not appear exclusively as a product KX. The results are applied to an
expansion in functions occurring in the theory of elasticity, which expan-
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sion I believe to be new. Mr. John Dougall, in a paper on "An Analytical
Theory of the Equilibrium of an Isotropic Elastic Plate " {Trans. Boy.
Soc. Edin., Vol. XLI., Part I., 8, 1904), has used functions of this type
and obtained the sum of a few series involving them by the method of
residues, but he has not attempted the converse problem of determining
the coefficients, given the sum.

2. Determination of the Coefficients.

Let <j>{z, x) be a function of two variables, z being complex and x real.
Consider the function F(z)<p{z,x)/\fr{z), and integrate it round any closed
contour G in the 2-plane, enclosing the origin. Then

_—. — / Y—- dz = sum of the residues of the function inside G.

Suppose now that <j>{z,x) is a function without poles, and that F{z)
has poles only at the origin. Then the poles of the function which con-
tribute to the residues are the zeros of \fs(z) inside G and the origin. To
begin with, we shall assume that \Js(z) has no zero at the origin.

Let Klt K2, ..., Ktl be the zeros of \fr(z) inside G, arranged in the order of
magnitude of their moduli. Then

1 f F(Z)<J>(Z,X) , * F(Kr)d>(Kr,x) . . , , .,—: 7 Y dz = 2 ,;, \ + residue at the origin.
7T&J y(z) r l l/r'(/f)

The residue at the origin will be some function of x. Denote it by f(x).
We have £ W;>M + i f f

If, now, as the contour C becomes larger and larger,

L j . r * » » » . « > * = 0, (5)

we obtain, on proceeding to the limit
FMfx\ (6)

the roots *> occurring in the order of their moduli. The problem is so to
determine F(z) that f(x) shall be identical with a given polynomial and
that (5) shall hold.

/i -J 1 [ F{z)d>(z,x) ,
Consider -—. \ . v; dz

Ziri J \fs(z)
taken round a small circle enclosing the origin. Since <p(z, x) is without
poles, its expansion in powers of z is absolutely and uniformly convergent
over this circle. Also, if the radius of this circle be <C|fi|, l/V'te) m a v
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be replaced by the equivalent Taylor series. The product of the two
series is absolutely and uniformly convergent over the path of integration.
Thus <p(z,x)l\Js(z) may be replaced by the two series and the result of
multiplying these out integrated term by term. We shall further suppose
that \fr(z) itself has no pole infinitely close to z = 0, and take the radius
of the circle of integration less than the modulus of its nearest pole (if
any), so that \Js(z) itself can be replaced by a power series.

Take, as a particular case,

F(z) = *-<*+1ty,(*) (7)
where \p-n(z) = aQ+a1z+...+anz

n, (8)
i.e., yjrn{z) denotes the first (n+1) terms of the denominator \js{z) of the
above integral.

yfr(z) = ao+alz+...+anz
n+an+izn+1-\-...; (9)

F(z) (Jl+

YK)
• • • )_ -(n+l)

— z-(n+\)_^ p O w e r series in z

TVino 1 i ̂ <^ $
inUS

n+1 yp-{z) 2-7TIJ z'l+1

Let <i>(z,x) =/0(a;)+*/1(aj)+...+«*/»(*) + - .
Then required residue = fn(x).

If we take *•(*) = » ^ + & ^ + ...+ &X™> (10)
z z* z'l+1

where p0, Pi, • • •, pn are constants, then

We will now consider more specially the important particular case
where f iT\ _ n Tn

or (j>(z, x) = a function of zx only : thus

<t>(z,x) = <j){zx) = qo+q1zx+...+qn(zx)"'+.... (12)

Hence qn = ^ . (13)

(11) gives f(x) — pQqQ+p1q1x + ...+pnq,lx
n

fn(0)or pnqn = i-^lt

that is p n = fn(O)/<j>n(O).
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We shall suppose <pn(0) is not zero ; so that nc term is missing in the
expansion of <}>{z).

The required form for F{z) is therefore

'o(*) , / (0) i'M , , f'l(0

It will be convenient in what follows to conceive the series (15) as ex-
tending to infinity. This will prove in many cases to be really a
simplification, and, if we remember that, after a certain term, all the
terms of the series vanish, no difficulties of convergency will be in-
troduced.

3. Case where \fs{z) = 0 at the origin.

Suppose that z = 0 is a zero of \js(z) of p-th or.ler. Then

In this case yp-^z), yp-x{z), ..., \pp-i(z) all vanish. Consider

ir>+,-i(z) _= J _ iaPzp+...+aP+s-izr+s-1

zp+s\},(z) ' zp+6 l<v"-f... + ap + sz
p + s+.

apz"+...+ap+sz>+s+... J

z"+sV ap-\~ap+1z+...+ap+sz
s+...\'

In the expansion of the above in ascending powers of z only the
negative powers are required. Therefore it is sufficient to expand

ap+ap+1z-\-...-\-ap+sz
s-\-...

as far as zp~l.
Let

, p p . ) - 1 = bo+hx ; + . . +bp-1z
p~1+... ; (17)

then we have the equations, to find the b's,

1 = bQap

0 =

0 =

0 =

(18'
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Using (17), (16) becomes

Vr<t+.-1(g)= 1 .

4- positive powers of z. (19)

(19) has been established for positive values of s. But it is easy to
see that it will still hold for s = 0 or s = a negative integer numerically
less than p.

If s be negative (or zero), then, using (18) and remembering at = 0 if
t < p, we see that the only term in the square bracket in (19) which
does not vanish is z~sbQap, i.e., z~8. Thus, if s ^ 0, (19) gives

as it should.

We may therefore write (19)

+ . . . +zp-1(boas+p+61as+p_i+...

+ positive powers of z, (20)

and (20) holds for s = 0 or any positive integer. If we take, as before,

F(z) =Y 2hz

5 = 0 M

and <p(z,x) = 2

then the residue at the origin of F(z)<f>{z,x)j\p-{z) is
4=OT S=3O S=V3

2np,fs(x)— fP-i(x) 2 &oa«+ii>«~-/p-2(j;) 2 (60«»+s+6ia

—fo{x) sJo (V.+p+-+

If, now, we have, as before, been able to expand f(x) in a series of
functions fs(x) so tha t STr-:o

= 2 psfs(x),
5 = 0

it follows that fix) is not expansible solely in functions </>(z,x), but
auE. 2. VOL. 4. NO. 937. 2 D
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contains a finite number of terms of a different form. We have

S=oo

fix) = /o{x) 2Q (b0a,+p+... + bp-ia8+l)p,
S=oo

$ — QQ 5=00

2 boa,+1pt
$=0

In the important particular case where <f>(z, x) is given by (12)

/'(O)

Then

where F(z) is given by (15).

4. Application to a New Trigonometrical Expansion.

As an example of the application of this method to trigonometrical
expansions in general, let it be proposed to expand f(x) in the form

f(x) = '2(anscosnsx-\-bnisinnsx)

where ns is a root of the transcendental equation J0{z) = 0.

We take <f>(xz) = <?*, \Js(z) = IQ(z) = J0(iz).

We proceed to calculate F(z). We have here

Then (15) gives

F w = r (M>+»±p+ . . .+£££») /M-i (28)

where Z) = dfdu. Or, writing out yp-n(z),

F(z) = [ { a o l + a o ^ + a i | + a o ^ + a 1 ^ + a25-2 + . . . } /w] u o . (24>
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The series (24) contains only a finite number of terms. It is, there-
fore, permissible to change the order of the terms. Collecting terms in
z~\ z~2, ..., we find

F(z) = r{I(ao+a1LI z

u=o

u=0

(25)

We may note here that (25) is the symbolic value of F(z) for all
trigonometric series, since it has been obtained without reference to the
form of yfr{z).

In the present case ifs(z) has no zero z = 0. But in those cases [e.g.,
that of a Fourier series, where i//- (z) = sinh (&#)] where \{r (z) has a single
zero z = 0 the additional terms in (22) take a simple form. For they then
reduce to the first term, namely,

T W(0) = [^|^/M]0- (25A)

' J/(M).z—D

By a known transformation in the theory of differential operators, this is

We proceed to evaluate J
r z—D

a being some upper limit.
It is not necessary to evaluate a. In fact, a may be given any con-

venient value.
For, if we change a to /5, the difference between the two values of

is e™ V (D+z) T e-zuf(u) du,
J a.

that is, since the limits of the integral are now constants with regard to u,

e-zwf{u) du.

But we are going to compute the value of F(z) only for such values of z as
are roots of \js (z) = 0. The above difference, which contains •<//• (z) as a
factor, is therefore irrelevant.

2 D 2
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We have then

F(z) = {^(D+z) \ac-=affa)dii\ +yjr{z) {some factor[. (26)

So far our results are independent of the form of \fr (z); that is, they hold
for all trigonometric series.

Take now the value for \jr(z) assumed at the beginning of the present
section. We have (see Gray and Mathews' Bessel Functions, p. 89)

e~iqsinede-

Thus xLr (z) = Jo {iz) = •£-[ e: sin B dd,

xU(D+z) = -3L T e:s{ne eDshx9 dO.
27Tj_7r

Therefore, using the symbolic form of Taylor's theorem,
F fa 1 r 1 fT ffu+sinfl I -|
^(D+,r) e-«:f(u)dit = \ - - M e;sine e""-"/^) ^ ^

L J.i Jit=o L ^7rJ_n. (Ja J J,l
e )
e-uzf{u) du

Since a is arbitrary, we may take it equal to 0. Hence

1 r-n rsin 9

F(z) = - ± \ e^a[n9-u)f(io) dO du.
*ir J-ir Jo

The terms in the expansion corresponding to the roots z = + ins are

I rn rsinO

-I - J — n J\3

iJ1 (—ns)
i rn fsin 9

iJ' {)is)
it rsin 9I rn- rsin 9

= —^ . , I I sin ns (it—x ••- sin 0) f(u) dO du,
T — / I O 1 i l l

whence we get

$='•*> r~ I rn rsinO

f(x)= 2 T. cosnsa; 1 I sin |ns(w—sin 6)\f(u) dddu

pi- rsine -j
coa {n,(u-Biu 6)} f(u) dddu j . &

I pi- pine
=7—r sin I
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5. Validity and Limits of the last Expansion.

To obtain the conditions under which the expansion (27) is valid we
have to consider the integral

taken round a very large contour G in the 2-plane.
The form (25) for F(z) shows that when z becomes infinite in any

manner

L zF(z) = [\[,(D) f (ttJl.o = [«7o(*£)/(«*)l»-o = ^ f /(sin ft dBt

which is finite.
<b (xz) exz

With regard to the values of ', , . , that is of T , . , we have, when z
is large,

JQ(z) = w f—) cos [z ^-J (real part of z > 0),

/„(£) = ^/ f ——j cos f z-\- —J (real part of z < 0),

J0(iy) = J"o(—*?/) = (27rt/)~ie2/,

where the square roots are so taken that their real part is positive (see
Hankel, Math. Annalen, Vol. i., pp. 500, 501).

From these we deduce

I0(z) = (27rz)-i(ez-^e-s+iin) (imaginary part of z > 0),

I0(z) = (2x^)-i(ea-fe-2-ii70 (imaginary part of z < 0),

IQ(z) — (2x2)-*ez (z real and positive),

IQ(z) = (—2'7rz)~ie~s (z real and negative),

the values of the roots above being determined by taking »Jz to be the
positive real root of z when z is real and positive.

It is clear that, if x = ± 1, e^jloiz) is in general comparable with
(2x2)*, and r -n,(s^s

\ n \z) e 7
I — dz

JC J-Q{Z)

need not be finite. Accordingly the expansion is not valid for the end
values x = ± 1. Still less is it valid if | x \ > 1.
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Consider | x | < 1. Let the path of integration be a circle of radius
B passing through z = i{tnr-\-\Tr);

IQ(z) e»(
when | z | is large.

Let z =• p-\-iq be any point on the path of integration.
Consider first those parts of the contour which lie inside an angle 2e

enclosing the imaginary axis: let us restrict for the present our attention
to that arc which is bisected by the positive half of the above axis.

Here Io (z) = (2TTZ)-* (es+e-z+iiir),

Thus \I0(z)\

since | a-\-ib | > | a \,

and —•

Let p0 be given by the equation
gPB(l-|*|) =

X being any constant.

Then, if p>pOt

ezx

< a fixed finite quantity Q it B exceeds a fixed value,
since pQ becomes infinite with B.

Let the arc bounded by ±_po~N<7o subtend an angle 2e' at the origin.

Then s i n e ' = ^ . =
B

Thus e' tends to zero as B increases, and the arc 2e' ultimately lies inside
the arc 2e.

The integral over the arc 2e—2e'

< Q(2e—2e') L zF{z)
Z = oo

in the limit.

Over the arc 2e' B > q > B—p2JB.

Now pl/B is of order -p.—j—pr2 ( ".^—) and tends to zero as B in-
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creases. Hence, if B is large enough,

6 being any assigned positive quantity which may be taken as small as we
please, and ,n , N ^ a
r cos(2g—£TT) > cos#.

Hence over the arc 2ef

cose • i + e - 2 l j " c o sio(*>
The integral over the arc 2e' is therefore less than

2e'(27r.R)* L zF(z)
3 = 00

in the limit.

But L 2e' (2x5)* = L const.1-^^ = 0.
lt=<a R=a>

Thus the whole integral over the arc 2e tends to a quantity less than

2Oe L zF\z),
ar=w

when B becomes indefinitely great.
Thus, making e small, we see that the arc bisected by the positive

half of the imaginary axis ultimately contributes nothing to the contour
integral. By symmetry the arc bisected by the negative half of the
imaginary axis also contributes nothing.

Now, over the parts of the contour lying outside the angle 2e, it is

Y~rr) = 0. Hence these parts also contribute nothing.

Therefore, if \x\ < 1,

When the radius of G becomes infinitely great the expansion then holds.

6. The Expansions of Fourier.

The same method may be applied to deduce from the general theorem
of Art. 2 the well known series of Fourier

. . . . irx , ZTTX . . , . 7TX . 7 . 2TTX , / r t n .

f{x) = ao+ax cos -r- +^2C0S"T~" + • • • + &i sin —r + o2
 S l n ~T—K--> (28)

and another series, also given by Fourier,

f(x) = a1cos7i1x-\-a2COS?i2x-\-...-\-b1sinn1x-\-b2sin?i2x-\-..., (29)
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where nlt nit ... are the roots of the equation

A sin nr A /nn.cos nr = 0, (80)
nr

\ being < 1.

In the case of Fourier's series, we find, in a manner similar to that
employed on p. 408, using the symbolic form of Taylor's theorem,

F(z) = I [e-zu^f{u)du-l f e-*we-zhf(u)du+\f,(z){some factor},
Jb J-b

where a, as before, is arbitrary and \fs(z) = sinh^fr. Taking a = — b and
putting z = any root K of \{f{z) = 0, we have

{u)du. (31)
- 6

The constant term is obtained from the additional term due to the single
root z = 0 of \[s(z). It is

It is easily verified that (81) and (32) lead to the well known expansion.
An investigation similar to that of Art. 5 will then show that the expansion
is valid if — b<x<b, L zF(z) being here equal to

2=00

In the case where x = + b it is easily shown (see also Picard, Cours
d'Analyse, pp. 167-177) that

whence we get the well known result that the value of the series at the
ends of the range is ^ r f(h\Mf( /̂ n

With regard to the series (29), Fourier showed {Theorie de la Chaleur,
p. 348 et seq.) how to expand an odd function in terms of sines. The
coefficients a were therefore absent in his expansion. Picard in bis Cours
d'Analyse (pp. 179-183, first edition) has generalized Fourier's result, so
as to include the even terms. But he has proceeded in what appears to
be a rather arbitrary manner, with the result that he has introduced into
his expansion a constant term which is unnecessary.
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If we treat this example by the method of the present paper, putting

. , . , X sinh zr
•dr{z) = cosh zr ,

zr

we find, by a process very similar to that used before,

=eH1- k) j

where G is some factor which we do not require to determine.
Whence, after some reductions,

I | cos nsu—cos ns r \ f (u) du

r— (sin 2ns

Bin nauf(u)du

cos nsx
r—(sin Znsr)12nt

l
(sin 2w, 7-)/27i,

which gives the expansion required.
The sine terms in this expansion agree with those given by Fourier

{loc. dt.) for the expansion of an odd function.
Picard's result differs from (36) in that the coefficient of co8nsx is

r— | J-r ;

instead of the coefficient given in (33), and there is an absolute term
introduced.

That such an absolute term is not really required is obvious from the
present work, since z = 0 is not a zero of i/r (z). In fact (33) allows us
to expand a constant in a series 2.4scos ?&,#, and when we replace the
absolute term in Picard's result by its expansion in a series of cosines,
the new expansion is found to agree with (33).

That (33) is the natural expansion may also be seen from the fact that

{coansu—cos nsr) cos nt udu = 0,
—r

if s and t are different—a result which is easily verified directly and which
would allow us to obtain the expansion by a method analogous to that of
normal functions.
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Also, if we investigate as before the validity of this expansion by con-

) d)(zx)
F(z) ' . . dz, we find that

c YW

£\r f(u)du.
r

Then it may be shown, as in Art. 5, that, if | z | > r , | <j>(xz) l\fs(z) | = oo
over one half of the contour of integration, so that the expansion is then
not legitimate, but that, if | a j | < r , | (j)(xz)l\Js(z) | = 0 when |*|=<x>,
except within an angle 2e enclosing the imaginary axis; and the parts of
the path of integration within this angle can easily be shown to contribute
nothing ultimately to the integral, so that, if | x | < r, the expansion is
valid.

When x = r, L Vr-r = 2 when the real part of z is positive, and

L ' . ' , = 0 when the real part of z is negative.

Hence, if x = r,

/(/•) = se r ies+J[ / ( r )+ / ( - r ) ] - ̂  [ f(u)du,

or series = £ [ / ( r ) - / ( - r ) ]+ |?. f /(^) rf«. (34)

Similarly, if x = — r,

series = ^ [ / ( - r ) - / ( r ) ]+ ^ j ^ / ( u ) A*. (35)

These two end values for the series are not given by Picard, and I have
been unable to find them anywhere else.

It follows from (34) and (35) that when f(x) is an odd function the
expansion in sines holds right up to the limit x = ± r. But, if f(x) be
an even function, there is a discontinuity at the ends of the range. This
is precisely the reverse of what happens with the ordinary Fourier's series.

7. Schldmilch's Expansion.

Here we require to expand f(x) in a series of Bessel functions of zero
order in the form ,. , . . T . . t . T ln . ,

f(x) = AQ+AlJQ(x)+A2JQ(2x) + ....
Clearly, if this expansion is to hold for negative as well as for positive
values of x, f(x) must be an even function.
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It will be more convenient to consider a more general expansion,
where f{x) is not restricted to be even, namely,

f(x) = AQ+AlJ0tx)+A2JQ(2x)+...+B1LQ(x)+B2L0(2x)+...,

where L o(x) = - | | ^ - _ ^ 2 + _ | ^ _ _ . . . } . ( 3 6 )

This function occurs in the theory of the vibrations of a circular plate,
and its properties have been discussed by Lord Eayleigh (Theory of
Sound, Vol. ii., § 302). Rayleigh denotes this function by K(x).

We write

2 z
( 3 7 )-i 9 I r\0, I * 9, r*9 I 7*9 79 I To—r\O ^9 I

7r X mU 7T X • O id • TC 7T X • O • O

and take <f> (zx) = . Q (#£), ^ (̂ ) = sinh -KZ.

We then find easily

l — (?)-i ±(?)dt (38)-

whether s be odd or even, with the exception of 1/0(0) = 1.
Substituting into the expression (15) for F(z), we find

F(z) = Vo(*

and, treating the series in curled brackets as was done in Art. 4, we find

Hence, remembering that [(£D)r/(w)]u=0 = [Prf(ut)]u=o,

+ [ ^ f1 a-er^u/'Mdt] . (39)
z Y.z—v Jo JM=O

(39) is the general expression for F(z) whatever the form of \}r(z). It
is therefore applicable to all expansions of the type

X) As Jo (ns x)+BsL0 {ns x)).

Taking now \js(z) = sinh TTZ> we find that



412 DR. L. N. G. FILON [Aug. 10,

Applying this result to (89),

F(z) = - | f du T dt(l— P)-*(f^-^uf'iuQ+xfrWG, (40)
J-1T JO

since \f^0(z) = r 0 in the present case.
There will be an absolute term, since \Js{z) has a simple zero at

the origin.
This absolute term is given by the first term in (22),. namely,

which, when we put 0(0) = 1, bo= 1/T, ax — ir, \j/{D) =s inh7rD,
becomes

Thus, from (22), (40), (42),

. Pdt£^u
JO (I-*22TT cosh-T

z = K being any zero of sinh irz other than z = 0. Whence, grouping
terms in pairs,

(43)

The even terms give Schlomilch's well known expansion. The odd
terms complete this expansion, the function LQ(x) having here to J0(x)
the same relation that the sine has to the cosine.

In order to investigate the validity of this expansion, it is necessary
to know the order of magnitude of Q(z) when |^|.is large.

We have (see Rayleigh, loc. cit.)

J 7T J o ( l —

Writing (1 — t) = u,

2

2

dt.
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It may then be shown that, when z is large and its real part is
positive, the most important term in Q(z) is the first. This first term
becomes, on writing zu = v,

_2_ ez

7T

the integrations with regard to v being taken along the straight line
joining the origin to the point z.

By considering a contour ABGD in the y-plane, AD being the arc
of a very small circle, centre the origin, CB a concentric arc through
the point v = z, CD a portion of the line joining v = 0 to v = z, and
AB & portion of the real axis in the «-plane, we can readily show that
the first term in Q(z) is approximately equal to

1 e~vdv
/o Vv

when \z\ is large, the path of integration being now real.
Therefore the most important term in Q(z) is

rvdv „ /2

2 e> P
ir v W Jo

2 <? f
7T \/(%z) Ji

Take now the real part of z negative. Write z = — £; then the real
part of £ is positive. 0 «

gCar) = — ( l - f l - i f i -
7T Jo

Now expand (1 — tf2)"4 by the binomial theorem

By reasoning similar to that employed above, the most important term in

2 r
—-.
•7T<, JO

2 2
"ri-y = —T = .

The case where z is a pure imaginary has been worked out by Lord
Eayleigh. Taking the value given for LQ(z) [his K(z)] in ascending
powers of \\z in his Theory of Sound, § 302, we have

the same convention being adopted with regard to */z as on p. 405.
Similarly when z = —i£.
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Thus Q(z) = -± +<fJ(-) (44)
irz V \irzl

will give approximately the order of Q {z) for all large values of z.
It may then be readily shown

(a) That

L zF(z) = fsinhTrD F {l — P)-
8=co L Jo *=o

which is finite.

(b) That, if x > 0,

tends to 0 if the real part of z is negative and approximates

to 2v'2(7r^)"iez(x~jr) if the real part of z be positive, that is, it tends
to 0 or co according as x J> TT or x > TT.

Similarly, if # < 0,
Q(zx)

-^-\—— tends to 0 everywhere if x <t — TT, but tends to oo when
sinhx^ J ^

the real part of z is negative and # < — -w.

(c) That the parts of the contour integral in the neighbourhood
of the imaginary axis are evanescent in the limit.

It follows that Schlomilch's expansion is valid if — IT < x <; ir.
No exception is to be made for the extremities of the range.

8. Other Expansions in Bessel Functions of Zero Order.

The method can also be applied to obtain an expansion of the type

f{x) = 2{AsJ0(nsx)+BsL0(nsx)\, (45)

ns being any root of the transcendental equation

JQ{na) = 0. (46)

Such expansions occur frequently in mathematical physics in problems
relating to vibrations where the boundaries are circular.

We have here , , . n, \ , , \ T r \<p(zx) = Q(zx), \fs(z) = J0(iaz).

Thus \}so(z) = 1

and F{z)=m + [Io^\\1-e)-luf{ut)dt-\ .
z L z—JJ Jo J«=o
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Proceeding as in Art. 4, this leads to

*•(*) = Zj9> _ JL j* dor™ «•<•»«•-•> cfoj1 ( l -

or, writing t = sin <f>,

F(z) = ffi - JL [ d8 f <fo f d0w/(w sin
2 ^J-rr JO JO

whence

' o V's«

i sin 9 rjn-

_ 2LW — — dJ6 \ du \ d<f> uf (u sin <f>) sin n,(a sin 0—u)

*2° ^ % ^ 4 f - -L T dd (° du\ dd>uf(u sin rf») cos ws(a sin 0-«*)~|.
•=i a.r0Ka)L TT )_„ Jo Jo J

(47)

The form (47) is very different from the one usually employed, which

<48>

when f{x) is an even function.
The forms (47) and (48) are not easily comparable directly, but, if we

go back to the form (15) for F(z), it is found that, if ZK = ns, so that K is
any zero of ^(z),

1K«W = **W = - * ( W (71? j 0
whence

"

Jo Jo(nsa) L (2r)! y Ju=

2.4...(2r)

Jo

o Jo

using the identity

TT 2 JO Jo
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This leads to the form

o0hx) {f(x)+f(-z)\xdx
| e / 0 V ' S " 7 | JO

2 .. , — — JQ{)isx)dx\ at] dv
*=nrnaar\JQ(nta)\-j0 Jo Jo

. (49)

The even terms have the coefficients found by the usual methods. The
odd terms have their coefficients in a new form.

The comparison of the coefficients in (47) and (49) will be found to
yield several interesting theorems connecting definite integrals involving
the function JQ, which it would be difficult to establish otherwise.

Returning to the expansion in the form (47) which presents itself more
naturally in this connection, we find that

H=O
L zF{z) =f(O) + [jo(iaD)[ uf (usin=v3 L J

— [~[ eaDsiaedo[ uf'(;icsm<f>)d<t>~]
'iTrLJ-,. Jo Ju=cJo

i r r*ir

— 1 f70 1 a sin 0 / ' (a sin 0 sin 0) d<p.

By considering this integral as taken over the surface of a sphere of
radius a, 6 being the colatitude and 0 the longitude, and y being
a sin 6 sin <j>, we find

f dd [ a sin 0 / (a sin 0 sin <j>) d<f> = f / ' (y) a " 1 ^ ,
Jo Jo J

taken over the area of the lune bounded by </> = 0, <f> = ^TT,

— <7r I f'(y)dy = 7r[/(a)—/(0)].
Jo

In like manner

So ri"
cẐ  a sin 0 / ' (a sin 9 sin 0) d0 = ir [/(—a) —/(0)].

- T Jo

Thus L ^ ( ^ ) =

Also, when j z \ is large,

Q(gs)
JMaz) (2TT
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if the imaginary part of z is positive; and

Q(xz) _ XTTZXI TTZX

J0(iaz) (—2-7raz)~^(e~az-{-easi+^ri)

if the imaginary part of z is negative.
Reasoning strictly analogous to that used in previous cases shows that,

if | x | < a, \Q(zx)/J0(iaz)\ tends to zero when z tends to infinity in any
direction save that of the imaginary axis.

If x = a, Q{zx)/JQ{iaz) tends to 2 if the real part of z be positive, and
to 0 if the real part of z be negative.

If x = — a, Q(xz)/J0(iaz) tends to 0 if the real part of z be positive,
and to 2 if the real part of' z be negative.

If |x| > a, \Q(zx)/J0(iaz) | tends to oo over one half of the contour C,
and to 0 over the other half.

Finally, it may be proved that the neighbourhood of the imaginary
axis contributes nothing in the limit to the contour integral.

Thus, if |*| < o , L - U

and the series converges to f(x).

If | x | > a, L - ^ f F (z) £ M dz need not be finite.
2 l J J{)

Ux=±a, L-L.\ l^^Mdz =

Therefore value of series when x = a is £[/(») —/(—a)]

value of series when x = —a is £[/(—o)—/(&)])

This result shows that, whereas the even part of the series is, in general,
discontinuous for the ends of the range of validity, being zero for x = ± a
[which is, indeed, immediately obvious from the equation J0(nsa) = 0], the
odd part remains continuous up to the ends of the range inclusive.

9. Possibility of Extension of the above Besults to Functions other than
Polynomials.

It is well known that every function f{x) which can be represented by
a Fourier's series between a and b can also be represented throughout the
same range as the limit of polynomials.

Thus, let f{x) = L Pn(x), where Pn(x) is a polynomial.

8KB. 2. VOL. 4. NO. 938. 2 E
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Pn(x), by the preceding work, can be expanded in a series of suitable
functions r=«

n\X) — £i J±r)n(p\Kr, X).

Thus, f(x)= L 2 Ar>n<f>(Kr,x).
* d=co r—1

It seems difficult to prove generally that in the cases where the ex-
pansion of Pn(x) is possible the limiting sign can be taken through the
sign of summation.

If we assume that this can be done, then
r=oo

J \X) — Z/ /lr<p\Kr, X)

where Ar — L Arn.
11 = 00 '

In one fairly simple case, where f(x) is expansible in an infinite power
series, so that Pn(x) = sum of the first n terms of the Taylor series for
fix), we can prove that, under certain restrictions, the present method
allows us to calculate the coefficients Ar—in other words, that Ar,n tends
to a limit when n increases.

We now proceed to prove this.
Consider the expression (15) for F\z) and write it

i , £ 5 i , , /H(Q)
z 0'(O) z2 '" </>'l(0)

- ( a x +a2z , ^ , ..., ^ ( Q )

— (a« +a3z

2i x/'l(0) / K 1 X
3 "*"•") d«(0)* ^ ^

Consider first the part of Fiz) in square brackets. <p(z) is an integral
function ; hence by a well known result

10(0)1 < T"1

^ being any positive constant, however large.
Also, if the power series tor fix) have a finite radius of convergence />,

then it is clear that we cannot have for all values of n, however large,

I /n(0)|<^r,

p' being any quantity greater than p.
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Therefore terms must exist in the sum in square brackets which are
numerically .greater than cn

~W \z\n+1prn'

and this must occur for values of n as large as we please.
Thus, if we make n infinite, terms exceeding any given magnitude will

appear in the series in square brackets, which is therefore divergent.
If f(x) were an integral function whose coefficients decreased at a
sufficiently rapid rate, this part of F(z) might be convergent; but this
will be a comparatively rare case.

The divergence of this part of the expression for F(z) is, however,
immaterial, since in calculating the coefficients we put z = K in F(z),
where yjs (K) = 0. The part in question therefore disappears.

To deal with the other part we notice that in all the examples con-
sidered y]s (z) has been an integral function.

We shall suppose that \Js(z) is such a function, and further that from
a certain value of r, \ar\<. qr/r!, q being some positive quantity, a
condition that will always be satisfied by integral functions of order zero.
(See Poincare", " M6moire sur les fonctions entieres," Bulletin de la Sodete
Mathematique de France, 1883.)

Then, from this value of r,

(r+D! V r+2/ ^ 0+1)! \ - l '

r being taken so large that r + 2 > X^ \z\, where A is any fixed number
greater than 1. Hence, if the series

UL (52)

be absolutely convergent, the second part of F(z) is also absolutely con-
vergent. We may therefore increase n without limit, and use this series
to calculate the limiting values of the coefficients. So far I have not been
able to complete the demonstration and to show that these are the actual
coefficients in the expansion oif(x) itself.

2 B 2
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10. Application of the Theorem to Cases where <f> [z, x) is not a Function
of zx only.

Return now to the more general case, where cj> (z, x) is not a function
of the product zx only. In this case the expansion in functions <j> («-r, x) is
known by (10), when the expansion (11) of f(x) in terms of the functions
fQ(x) ...fn(x), ..., which are the coefficients in the expansion of <f>{z, x) in
powers of z, is known.

Now, if f(x) be a polynomial, the expansion of f(x) in functions fn(x)
is easily obtained in the following case, namely, when fo(x),f1(x), ...,fn{x)
are themselves polynomials of increasing degrees 0, 1, 2, ..., n.

In this case, if f(x) be a polynomial of degree n, all the quantities
u Pn+2, -•• in the expansion (11) may be taken zero. Let

fo(x) =

fn(x) = tfni

Lot / (x) =

Then, to determinep0, plf ...,pn, we have the (n-\-l) equations

)+^2 02O+-"

= Ctn

of which the solution is

Pn =

(53)

(54)

(55)

;
071-1, n-1 0n»0n-l, n-l

Pn-2 =
Cn- lgn- l , n-2 I Qn

~1

n-l, n-2 0n, n-2

n~\, n-l 0n, n-l

0n-2, n-2 0n-l, n- l 0n-2, n-2 0n, n 0n-l . n-l 0n-2, n-8
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Pn-r —
O-n-i

Qn—r, n—r

fln-r+1 <?n-r+l, n—r

<?n-r+l, n—r+1 ?n-r, n-r

«*-r+2

ffn-r+l, n-r Qn-r+2,n-r

qn-r+1t n-r+l ([n-r+2, n-r+l

Qn—r+'l, n—r+2 <?»—r+1, n —r+1 (/it-r, n—r

v"™*-*-/ Otn,—r+s

Q'n—r+1, n—r (7n-r+2, n-r

Jn-r+l, n-r+l ̂ n-r+2, n-r+l

°
0

<?n-r+2, n-r+2

0

Q'n-r+s-l, n-r Q'n-r+j, n-r

^ft-r+s-l,/i-r+1 ^n-r+j, n-r+l

^n-r+j- l , n-r+2 Qn-r+s, n-r+2

Q'n-r+s-l, n-r+s-1 <Jn—r+s, a.-r+«-l

Qn—r+s, n—r+s • • • Qn—r, n—r

QV—r+l, n—r ^n—r+2, n—r • • • <?n— 1, n— r Qn,n—r

Qn—r+1, n - r + l 2 » i - r + 2 , n - r + l ••• QV-l , n - r + l <?«, « - r + l

0 <?n-r+2, n - r + 2 • • • Qn—l, n-r+2 Qn, u - r + 2

0 0
(56)

BO that the coefficients jp are obtained in finite form. F(z) is then known
by (10) and the expansion (6) follows.

11. Application to Functions occurring in the Theory of Elasticity.

The equations for the mean stresses P, Q, S in the plane of an elastic
plate are dP,dS_

~J r ~T~ —

ax ay
~5 r -j~
ax ay

and these are satisfied by

S = d-E
dyl' dx2 ' " dx dy *

where V4^ = 0. (See a paper by the author on "An Approximate
Solution for the Bending of a Beam of Rectangular Cross-Section," Phil.
Trans., A, Vol. 201, pp. 63-155 ; and also a paper by John Dougall, M.A.,
" An Analytical Theory of the Equilibrium of an Isotropic Elastic Plate,"
Trans. Boy. Soc. Edin., Vol. XLI., Pt. 1, No. 8, 1904. See ako for an
analysis of the above Professor Love's Theory of Elasticity, second edition,
chapters v. and ix.)



422 DR. L. N. G. FILON [Aug. 10,

If we take E = (C sinh KX-\-BX cosh KX) COS KIJ,

then P = K1 [C sinh KX-\-DX cosh KX] COS KIJ,

Q = — K\(CK-\-2D) sinh KX-\-DKX cosh /trc] cos icy,

S = — K [(CK-\-D) cosh KX+DKX sinh /c«] sin icy.

If P = 0, S = 0, when a: = + b, then

C sinh /c&-f-D& cosh icb = 0,

(CK+D) cosh icb+DKb smh icb = 0.

Hence sinh 2*6 — 2Kb = 0. (57)
We have

Q = const, [KX cosh KX sinh /c6—/c& cosh/c6 sinh KX-\-2 sinh/c6 sinh/tx] cos icy.

It is easy to verify that when K is a root of (57)

P
Qjida; = 0. (58)

J-b

Now for various purposes it is desirable to be able to expand a given

function of x in terms of functions 0(«v> %) where

<p(z, x) = zx cosh zx sinh zb—zb cosh #6 sinh 2£-|-2 sinh z& sinh zx, (59)

where 2 = KT is any root of
\fr(z) = sinh 2^6 — 2^6 = 0. (60)

For example, if Q be given over y = 0, between a; = — b and a; = -f >̂

such an expansion will give us the coefficients of the typical terms which
build up the complete solution.

We notice, however, that, if f(x) be the function to be expanded, then,
owing to (58), p

f(x)xdx = 0; (61)
J-b

and therefore f(x) is not entirely arbitrary.
The expansion of <f> (z, x) in powers of z is as follows :—

Thus (62>

/ar+i (x) = 0,

— 7 « £ » - • • 1 A « f " " « J J T I / O ^ ^ ^ 1

= 2 .?i (2s- l ) ! (2r -2s+l ) ! ' ( 6 8 )

It follows that only an odd function will be suitable for f(x).
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If f(x) = a1x + aBx3+...+a<ir-iX2r-\

then, since from (76) it is seen that the highest power of x in f-2r(x) is
s*-\ we have f{x) = ^ {x) +pJ^ {x) + _ ^ ^ ^ ( 6 4 )

where p2, P\, •••> 2>2r can be found in the manner indicated in the preceding
section.

The equations for p2, pit • ., Piv may be here quoted : they are

(2-1) paft» (2-2)j?464 (2 -3)^A 6 (2-r)jP«,6»r l ! a i 6
H h 3! "^ 5! T - - - f (2?—l)! 2

(4-2)ff464 , (4-3)j7666 . j4-r)p.2rb-r ^ 3 ! a 3 6 3

1! ^ 3! ~l~...-r (2;—3)! 2
6 , . , (6-r)j)2r6

2r 5!a565

-^••••+' ( 2 r _5 ) ! • 2

(2r-r)p2rb
2r _ (2

1!

(65)

12. Zeroes of sinh 1zh — 2zb = 0.

We have now to consider the distribution of the zeroes of V'te)-
In the first place the expansion of sinh 2s& —2z& begins with a term in

z9, so that the origin is a triple zero.
To find the other zeroes write

2zb =

Then sinh

and, equating real and imaginary parts,

sinh g cos n = g, (66)

sin r\ cosh i = rj. (67)

If we put r\ = 0, we have sinh £ = £,

which is impossible, unless £ = 0 ; and, if we put g = 0, we have

. s in r\ — r],

which is also impossible, unless rj = 0.
Thus no root lies on the axes, except the triple root z = 0.
Consider now the position of the roots of very large modulus.
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Squaring (66) and (67) and adding, we find

cosh2 g = cos2 >/4-£2+>72.

If, therefore, | £-\-ir]\ = \/(^a+)72) is large, £ must be large.

Hence, by (66), cos i) = . * .,
smn £

and is small; therefore y = mr-\-%Tr

approximately. Putting this value into (67), then, since cosh £ must be
positive, n must be even.

Thus n — 2nr+$ir , coshf = 2r7r-f-£7r

very nearly, or £ = Iog«(4r7r+7r)

approximately. The roots fall into groups of four, symmetrically placed
with regard to the axes, the four members of each group being given by
± loge(4r7r+7r) ± i (2r7r+^7r) approximately.

18. Additional Terms due to the Triple Zero at z = 0.

Referring to the expression (21), we see that the additional terms due
to the triple root 0 = 0 are

fo(x) J)o( s|0
+/2{x) 2 (boas+l)p,,

and, since /0(a;) = 0, f^x) = 0, and /2{x) = 2x6, this reduces to
S=oo

2x6 2 (b0a3+i)ps.
s=0

01 o: ~l~-"~r (2r+iy.""

Thus a0 = ax = a% = 0, a2r = 0,

(26)2r+1 , 1 _ 3!
^ " a . (26)8<

Thus the additional term is

Sz J=r (26)2<+1

26s A (

since, if * > 2r, ^« = 0. The quantities p2r are here given by (66).
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But this term may be evaluated as follows:—Rewriting the first ex-
pression (68) for/2r(a;),

whence

-b(3r+l){(b+x?r+(b-x)2r

and

IF

Thus
 ZI^TUSI

\ ^ by (64).

The additional term in the expansion is therefore

| p j ^*/(*)(&. (68)
Therefore

/() J / ( ) ^ 2 0( ^
(KT) [/fr a; cosh /crx sinh *,. b—Krb cosh «-r 6 sinh A.> J?

+2s inh i r r 6Binhr r g ]

where *fr is any root of (60), and

- 6 T + v + ^ ( 2 7 = 8 ) 1
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Consider the roots in groups of four. Connecting the two in each group
which have opposite signs, then, since F(z) contains only even powers
of z, we may write

F(/cr) [_KrxcoshKrxsinhKrb*-KrbcoshKrbsinh Krx

Z b{cosh2<rb-l\
(70)

where the 2 now extends only to those roots of (60) of which the real part
is positive.

As an example, if we wish to expand x3 in such a series, we have from
(65), putting ax = 0, a3 = 1, and all the other a's zero,

Hence

rb 26 5

and \ xf(x)dx = -=-.
J-6 5 .

Therefore
\jcrx cosh Krx sinh Krb—Krb cosh Krb sinh KTX

, . 3_ 3,7,2 07, y 1 + 2 sinh>cr6smh^ra;]
K; (cosh 2/cr 6 — 1)

We notice that the terms introduced by the zeroes at the origin ensure
that the function which is represented by the sum of the series in (70)
always satisfies the condition (61).

14. Limits and Validity of this Expansion.

Looking at the expression (69) for F(z), we see that the most important
terms when \z\ is large involve 1/z2, the terms in 1/z being absent from
the expansion.

2 _ (26)3 (26)5 , (OhY2r-l

«=» 8! 5!
Now

(26)28"1

Hence, when s > 1, /2', (b) = f v
2g_ .
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Thus p4i|2L+JN,i|«. + . . . + p a r ^ I j j = f[pMb)+...+P2rfUb)']

But / a Or) = Ibx.

Therefore f'2{b) = 2b.

Hence L £F{z) - §/'(6)-|6pa. (71)

It follows that the remainder after n terms in (70)—the terms involving
conjugate imaginaries being counted as one term—is given by

dz

7'
(72)

the contour C being a circle passing through the points ±i(4r-}-S) 7r/46.

Referring to the results of Art. 12, we see that when r is large

if i(4r+l)7r '

and this tends to zero with r. The roots, after a certain value of r, are
contained within an angle 2e enclosing the imaginary axis, where 2e may
be taken as small as we please.

Again, if r be large enough, all the roots for which >/ <^ (7r/46)(4r+l)
lie inside the circle C.

For, if (£', rj) be on the circle and

n = (7r/46)(4r+D, fa = (TT/26) ( 2 ^ -

being the radius of the circle, that is B = (7r/46)(4r+3). Thus

and | / f = log 14r +1) 7T [ /TIV(4r+2) = 0

when r = oo .
Therefore, if r be large enough, (£, q) lies inside the circle C, and

the roots for which r\ < (7r/46)(4?-4-l) can easily be shown to lie in-
side the circle G.

We will consider first those parts of the contour integral which lie
inside the angle 2e on the arc which is bisected by the positive half of
the imaginary axis; the work for the arc which is bisected by the negative
half of the imaginary axis is precisely similar.
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Let z = p-\-iq, as before, be any point on the circle C. Then

<f> {z, x)
Z\fr(z)

\x\ \ cosh zx I I sinh zb \ -\-b \ cosh zb | | sinh zx \ •

. + (2/iJ?)|sinh<g6| \ainhzx I

(x cosh zx sinh £6 — 6 cosh aft sinh zx-\-(2/z)8mhzb sinh zx)
sinh 2zb — 2zb

sinh Zzb — 2zb

Now cosh (px+iqx) | <

Similarly | sinh zb \ < epb, | cosh zb | < epb, | sinh zx \ < ep' *'.

ThnR
| sinh Izb —

Take p so large that sinh 2pb-2Rb > £X e2p\ (73)

X being some positive quantity < 1. Then

| sinh 2zb — 2zb| > |sinh 2zb\ — \2zb\,

and | sinh 2zb \ > i \ e^ \ — $ \ e~2zb \ > \£pb—\e~2pb > sinh

Thus | sinh 2^6—2^61 > sinh 2pb — 2Rb > ^X e2pb,

and for values of p which satisfy the inequality (73)

and is therefore finite if — b ̂  x ^ + 6, however large 22 may be.
The first value of p which satisfies the inequality (73) is given by

i (1-X) elph = le--ph-\-1Rb.

This leads to a large value of p when R is large, and thus, to a first
approximation, this limiting value of p is given by

or = log

JL - IPl.
[7r(4r-
1 -JITX IThus

This ratio becomes very small as r (and therefore R) increases. Hence
the parts of the contour for which p does not satisfy the inequality (73)
are on a small arc 2e' bisected by the imaginary axis and ultimately very
small compared with the arc 2e.



1906.] THE EXPANSION OF POLYNOMIALS IN SERIES OF FUNCTIONS. 429

Consider now the values of
Z\fs(z)

B-q <p2/B, q > B-p^/B.

over this arc 2e\ We have

Hence, a fortiori,

by increasing B the second term can be made numerically less than any
assigned quantity 0/26, and we have

I (4r+3) 7T > 2qb > £ (4?-+3) T T - 0

all over the arc 2e'.

Now

| sinh 2zb—2zb | = | sinh 2pb cos 2^6 —2^6+^ (cosh 2p& sin Zqb—2qb) |

=̂ | cosh 2pb sin 2^6—2^6 |.

Now sin 2qb lies between —1 and —cos 6. Therefore

cosh 2pb sin 2g6 — 2qb

lies between —cosh2pb—2qb and — cosh 2pbcos 0—2g6.

Thus | cosh 2p6 sin 2qb — 2qb | > cosh 2^6 cos d+2qb > ^ 6 cos 0.

Accordingly, inside the arc 2e'

zyjs{z) {M+H- — •

and this is finite for — b *^ x <; b, since in this case ep^x^~b^ ^ 1.
It follows that the parts of the integral due to the whole arc 2e are

less than

and. since we can take cos 6 > X, this is less than

which tends to zero with e. These parts then contribute nothing in the
lirait to the integral.

No\s consider the parts outside the angle 2e. It is easy to show that,
if | x | < b, then over those parts

i {z, x)

Z\fr(z) = 0,
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and they ultimately contribute nothing to the contour integral; the latter
then vanishes when B = <x>, and the expansion holds.

If x = ± 6,
2/z sinh2 zh

sinh 2zb~2zbZ\js{z) B

when B is large. In this case also the contour integral vanishes when
B = oo. The expansion holds therefore for the ends of the range of
validity.

If \x\>b,
Z\}r(z)

= 00

when B = oo, and the expansion is not valid.


