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1. Introduction and Swmmary.

The problem of expanding a given function f(z) in a series of functions
of given form—thus:

F@ = ay¢pky, ) Fagpleg, )+ ... +uplcn, )+ (1)
where &y, kg, ..., Ky, ... are the roots of a transcendental equation
(@) =0 (2)

—is one which has been familiar to mathematicians since the days of
Fourier. This problem, in most cases which occur in mathematical
physics, is usually solved by the method of normal functions; that is,
functions x({«, z) are determined such that

j” x(ry @) ¢ (k0 ©) d = O (3)

when 7, s are different, but has some definite value when » = s. Thus,
multiplying (1) by x (x., z) and integrating from a to’f, the coefficient a,
is readily determined.

The great disadvantages of this method are that it gives no clue for
the discovery of the functions x when the form of the latter is not obvious
from other considerations, and that it gives no means of predicting, given
the functions ¢ and the transcendental equation (2), whether the required
expansion is possible or not.

Another method has been given by Cauchy, and is described in Picard’s
Cours d’Analyse (pp. 169 et seq.). This method depends on the calculus
of residues. Cauchy (and Picard after him) restricted himself to the case
of trigonometrical series (see Cauchy, (Buvres Completes, t. vir, 2° Série:
“Sur les Résidus des Fonctions exprimées par des Intégrales définies,”
p- 393), but the process by which the result is arrived at seems artificial.
The function [denoted below by F(2)] on which the whole expansion
hinges is selected from an @ prior: knowledge of the coefficients in
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Fourier’s expansion, and no method is given for finding it in the general
case.

Dini, in his book on Fourier series (Serte di Fourter e altri rappre-
sentazione analitiche delle funzioni di una variabile reale, Pisa, 1880),
has employed a mixed method, depending partly on normal functions,
partly on Cauchy’s residue theorem. He gives a determination of the
function F'(z) of the present paper, but in order to do so seems to assume
(loc. cit., pp. 181, 182) that the conjugate functions are practically already
known, and that x(x,z) = ¢(x, z) 6(z), 6(x) being a function of z inde-
pendent of «. This restricts very considerably the generality of his
results.

Dini’s analysis seems to be directed rather to giving exact proofs of
expansions already known than to developing methods for obtaining new
expansions.

The object of the present paper is to extend and generalize the appli-
cation of Cauchy’s method of residues to expansions, and to give a rule for
finding the form of the expansion in certain large classes of cases.

In what follows the functions to be expanded are supposed finite
polynomials. This enables us to dispense at present with troublesome
considerations of convergence.

The paper begins by establishing a general theorem for expanding a
polynomial in a series of functions of the form ¢ (xz), x being a root of
Yr(2) = 0. The theorem is practically contained in equations (6) and (15).
Exceptional cases, when z = 0 is a zero of y-(¢), are next dealt with. An
example of the method is then given, showing how to expand a function
f(x) in the form = {Ancos (kyz)+ By sin (x,2) }, the «,’s being roots of the
transcendental equation Jy(ka) = O.

It is also verified that the method will give the expansions of Fourier,
Schlomileh’s expansion, and expansions in Bessel functions of order zero
which occur in physical examples. New forms are obtained for the co-
efficients in the expansions in Bessel functions of order zero.

Also, in each case, the method enables us to find the range of validity
of the expansion and the values of the series at the extremities of the
range of validity. Thus the results (34), (85), which give the values at the
ends of the range for Fourier’s second trigonometrical series, I have not
been able to find anywhere.

The latter part of the paper, after a brief consideration of the possi-
bility of extending the results to functions other than polynomials, is
devoted to applying the method to series of functions ¢(x, z) where «,
do not appear exclusively as a product xz. The results are applied to an
expansion in functions occurring in the theory of elasticity, which expan-
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sion I believe to benew. Mr. John Dougall, in a paper on “ An Analytical
Theory of the Equilibrium of an Isotropic Elastic Plate” (Trans. Roy.
Snc. Edin., Vol. xu1., Part 1., 8, 1904), has used functions of this type
and obtained the sum of a few series involving them by the method of
residues, but he has not attempted the converse problem of determining
the coefficients, given the sum.

2. Determination of the Coefficients.

Let ¢(2, z) be a function of two variables, z being complex and z real.
Consider the function F(2) ¢ (2, z) [y+(2), and integrate it round any closed
contour C in the z-plane, enclosing the origin. Then

—1—J‘ F2) G, 2) dz = sum of the residues of the function inside C.
271 c \P(Z)

Suppose now that ¢(z, z) is a function without poles, and that F(2)
has poles only at the origin. Then the poles of the function which con-
tribute to the residues are the zeros of y-(¢) inside C and the origin. To
begin with, we shall assume that y(2) has no zero at the origin.

Let «y, &g, -.., «, be the zeros of v-(2) inside C, arranged in the order of
magnitude of their moduli. Then

1 j F@pa) g, — 3 Fld¢ln ) 4 osique at the origin.
c

2w \/I(Z) = \l/' (k)
The residue at the origin will be some function of . Denote it by f(z).
We have n

f(x) =3 F(Kr), (kr, x)+_1_J F(z) ¢z ) dz. (4)

=1 Y(k) 2m)c ()

If, now, as the contour C becomes larger and larger,
L i.j Fap@a) g, = o, (5)

2w ) Y (2)

we obtain, on proceeding to the limif

_ 5 Flk) ¢k, @)

f@=—-2 T
the roots «, occurring in the order of their moduli. The problem is so to
determine F'(2) that f(z) shall be identical with a given polynomial and
that (5) shall hold.

(6)

Y iAo 1 (F@) ¢z 2)
Consider o S @ dz

taken round a small circle enclosing the origin. Since ¢(z,2) is without
poles, its expansion in powers of z is absolutely and uniformly convergent
over this circle. Also, if the radius of this circle be < ||, 1/ (2) may



1906.] THE EXPANSION OF POLYNOMIALS IN SERIES OF FUNCTIONS. 399

be replaced by the equivalent Taylor series. The product of the two
series is absolutely and uniformly convergent over the path of integration.
Thus ¢(z, 2)/y-(2) may be replaced by the two series and the result of
multiplying these out integrated term by term. We shall further suppose
that y(2) itself has no pole infinitely close to z = 0, and take the radius
of the circle of integration less than the modulus of its nearest pole (if
any), so that y-(2) itself can be replaced by a power series.
Take, as a particular case,

F(z) = 270Dy, (2) (M
where \Pu(z) = a0+a/1 Z+ oo +a/nzu; (8)

t.e., Y (2) denotes the first (n+1) terms of the denominator v-(z) of the
above integral.

V() = apta2+...Fans"tan 2" 4. (9)
E@ p— z-—(n+l) [\/’(Z)_an+lzn+l—an+22n+2—--~]
Y (2) ¥ (2)
= =+ __ (@ns1FCnioz4...)
¥ (2)
= z~"+D4 power series in z. -
1 (@) ¢z2) , _ 1 [¢z2)
Thus 27”.5 %@ dz = 27”;5 poES dz.
Let ¢z, 2) = fol@)tzfi@+... .+ ful@)+....
Then required residue = f,(z).
lvetake F()=200@ 2@y 4 pufald (10
where pg, Py, ..., P are constants, then
f @) = po fo@)+p i@+ ... +p. fulz). (11)
We will now consider more specially the important particular case
where fol@) = gna®
or ¢(z,z) = a function of zz only : thus
¢z, ) = ¢plax) = qotqrzr+...+qulez)*+.... (12)
— ¢"0)
Hence In = - (18)
(11) gives f@ = pogotpiiz+...+puguz"
or pugn = L9 (14

n! '’
that is Pn = f*(0)/¢™(0).
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We shall suppose ¢"(0) is not zero; so that nc term is missing in the
expansion of ¢(2).
The required form for F(z) is therefore

— [O Y@ | fO Y1) F*0) Yru(2)
e = $(0) oz +(/ 0 ; +o +,b"(0) T (15)

It will be convenient in what follows to conceive the series (15) as ex-
tending to infinity. This will prove in many cases to be really a
simplification, and, if we remember that, after a certain term, all the
terms of the series vanish, no difficulties of convergency will be in-
troduced.

3. Case where \(2) = 0 at the o-igin.
Suppose that z =0 is a zero of y»(2) of p-th order. Then
V(@) = a2 a2 a2
In this case Yy (2), Y (2), ..., Yo—1(2) all vanish. Consider

+s—1(z) — 1 ((t ~p+ +afp+9—lzp+s l}
z"“\//(z) Tt (@p2P ... 4 @pys2? T4

_1_ [ _ Apss2f Pt s ? Ps+1+---]_

2PT3 | a2+ ...F a2t

— 1 fl__ (ﬂ'p+sz°+a/p+s+12 4 )

27 0 qptapiat. et iR

In the expansion of the above in ascending powers of z only the
negative powers are required. Therefore it is sufficient to expand

1
G tapz+.. . Fapus2’+ ...

(16)

as far as 2~
Let

(@ apmzt...Faps2+..)7 = 0g+b i+ Foa L (A7)
then we have the equations, to find the 0’s,
1 = bya, .
0=190 a,,+1+bla,,

(18
0=1 a,,”-l—b a, _1—}— b

0= boagp_1+bla._~‘_2+...—‘—bp_ L
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Using (17), (16) becomes

Lt = {12 Dyt 20t bty
+ 22 (Do @542+ 01 Bp a1+ 09 @i+ ...
+ 2271 (by ttoprs—1H Dy Agprs—2t . F 10}
4+ positive powers of z. (19)

(19) has been established for positive values of s. But it is easy to
see that it will still hold for s = 0 or s = a negative integer numerically
less than p.

If s be negative (or zero), then, using (18) and remembering a, = 0 if
t<p, we see that the only term in the square bracket in (19) which
does not vanish is z2~*,a,, .c., z7%. Thus, if s <0, (19) gives

‘,bp+s—1(z)/zp+"\/’(z) =0,
ag it should.

We may therefore write (19)

;,% zsl;l [boars+1+z(bo“s+2+ bla,3+1)+zz(boa,s+3+ by Qg2+ Dysi)
+.. -_+Zp_l(bo a’s+p+ b, a’s+p—1+ ot bp—l as+l)]
+ positive powers of z, (20)

and (20) holds for s = 0 or any positive integer. If we take, as before,
F(z) = E: Psz'(““)‘,’/s (2)

and ¢(z,0) = :@: 2f(x),

then the residue at the origin of F(2) ¢ (z, z)/{ (2) is

320 Psfs(m)—fp—lu) 2 b afs+1Ps"‘fp— (.L) (b0a3+°+blas+1)pt

—fo (x) bo Asspt oo F 0po1@ss1) Ps.

If, now, we have, as before, been able to expand f(r) in a series of
tunctions f;(z) so that

f@ =5 pfi),

it follows that f(z) is not expansible solely in functions ¢ (z, z), but
0ER. 2. vorL. 4. No. 937. 2
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contains a finite number of terms of a different form. We have
F@ = fo(@) = Botarpt -t bpraun) 2y

+£10) 2 Botapos oA bposasd) pik oo fora @) 2, by P

= Fl)
2 P ?

In the important parficular case where ¢(z, z) is given by (12)

= ?:(_02 " = fa_@
fala) = =a, P= 50y

(kr, Z). (21)

Then

f@ = 40 Z, oyt ..t bprans) L

()
70
+ 220 Gyt A yoatad LD 4.

¢°(0)
-1 _4p-1 s=w 3 r=w X,
+ zP(Pf 1) '(O) E—-:O (Bots+1) f;" Egi = \i'((,(z) ¢kr z)  (22)

where F'(2) is given by (15).

4. Application to a New Trigonometrical Ezpansion.

As an example of the application of this method to trigonometrical
expansions in general, let it be proposed to expand f(z) in the form

f (&) = Z (an, cos nsz+ by, sin n,)
where 7, is & root of the transcendental equation Jy(z) = 0.
We take ¢@2) = ¢,  P(2) = Ij(2) = Jy(e2).
We proceed to calculate F'(z). We have here
90)=¢'0)=..=¢"0)=...=1.
Then (15) gives
Fo =[ (0@ 12L& ¢ D) rey] (28)

where D = dfdu. Or, writing out yr,(2),

2 2 2
o) = [{a0%+ ao§+alg+ao%+al%+a2% +...}f(u)]u=o. 24)
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The series (24) contains only a finite number of terms. It is, there-
fore, permissible to change the order of the terms. Collecting terms in
27, 272 ..., we find

Fo=[{* (@t a D40, D)+ D @y +a, D a, D)

2
+lz—)3-(ao+a1D+a2D“‘+...)} f(u):]u=0
— [y D)

We may note here that (25) is the symbolic value of F(z) for all
trigonometric series, since it has been obtained without reference to the
form of  (2).

In the present case 1 (2) has no zero 2 = 0. But in those cases [e.g.,
that of a Fourier series, where - (2) = sinh (bz)] where y(2) has a single
zero z = 0 the additional terms in (22) take a simple form. For they then
reduce to the first term, namely,

wEoro-[Bw] ;s
‘We proceed to evaluate gk_(—% S Q).

By a known transformation in the theory of differential operators, this is
1 a
(D) e’“(—5> e~ f(u) = ez“\/f(D+z)J e~ f (u) du,

a being some upper limit.

It is not necessary to evaluate a. In fact, a may be given any con-
venient value.

For, if we change a to 3, the difference between the two values of

v D)
z2—D f@

18 e (D+2) r e~ f(w) du,

that is, since the limits of the integral are now constants with regard to u,
8
e (2) j e~ f(u) du.
But we are going to compute the value of F(z) only for such values of z as

are roots of Y (2) = 0. The above difference, which contains v (z) as a

factor, is therefore irrelevant.
20 2
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‘We have then

F() = [\/z (D+2) Sa e~ f () d-u] 4+ (2) {some factor!. (26)
«u w=0
So far our results are independent of the form of y-(2); that is, they hold
for all trigonometric series.
Take now the value for y(z) assumed at the beginning of the present
section. We have (see Gray and Mathews’ Bessel Functions, p. 89)

— _!-_ i —1igsin @
Tol) = 2WJ ¢-usine g,

-

Thus V) = Jyia) = 5- 5 )
W (D42 = j L)
01 |-
Therefore, using the symbolic form of Taylor’s theorem,
@ T w4+ sin @
[‘P(D+z)5 e"”f(u)du,] =| - —1—J e”“‘"-(j e f (w) du} dG]
0 u=0 27 | a =0

___l_ T :sino_( sin @ —uz .
= 2TLe lja 6" f(u) du} aé.

Since a is arbitrary, we may take it equal to 0. Hence

T sin 8
Fl)=— 2 S J e 6N 8= £ (1) df du.

27 - JO

The terms in the expansion corresponding to the roots z = % in, are

o

1 - sin@ -
J j 617;,(5100-!‘)}'(16) do du
0

+ 1w (—ny) ¢
1 T 'sin 8 3 .
L S 5 o=t GRO=) () 30 gy,
+ 27!' -7 JU e—in_‘;:,
2 (925)

= - J}(n) jﬂ ri” sin 7, (u—x- ~sin ) f (w) 46 du,
v s, 0

-1

whence we get

7J (n) 0

-

fl) = sg [ —,1—*cos N Y rmo sin {n;(w—sin 0)} f (u) dO du

- ———Iol(n)sin 'n,».z:jvv F’“ocos {n;(u—sin 0)} f(u) dOdu |. (27)
S, —xJo
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5. Validity and Limats of the last Expansion.

To obtain the conditions under which the expa.nsmn (27) is valid we
have to consider the integral
j F(z)e™ iz,
[

Io<z)

taken round a very large contour C in the z-plane.
The form (25) for F(z) shows that when 2 becomes infinite in any
manner

L 2F() = [ (D) f @leo = [Jo6D) f@humo = 5| f(sin ) db,

z=

which is finite.

With regard to the values of (@) that is of ——, we have, when z
Y2’ Io( )

is large,

Jy(2) = \/ (7%) cos (z— %) (real part of 2 > 0),

2 T
m) cos (z+ -Z-) (real part of 2 << 0),

Jole) = \/(__
Jo(y) = Jo(—iy) = Qwy)~HeY,

where the square roots are so taken that their real part is positive (see
Hankel, Math. Annalen, Vol. 1., pp. 500, 501).

From these we deduce
I,(2) = (2m2)" (+€7**¥™)  (imaginary part of z > 0),
I,(2) = 2m2)~t(¢*+e~*~%™) (imaginary part of z < 0),
Iy(2) = Qm2) e (2 real and positive),
I,(2) = (—2w2)"e® (2 real and negative),
the values of the roots above being determined by taking 4/z to be the

positive real root of z when z is real and positive.
It is clear that, if z = 41, ¢*/I(2) is in general comparable with

(QWZ)Q, a.nd j F(Z) P
¢ 1y(2)

need not be finite. Accordingly the expansion is not valid for the end
values # = + 1. Still less is it valid if |z|> 1.
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Consider |z| < 1. Let the path of integration be a circle of radius
R passing through z = i(nmr+3m);
e _ (272)}
IO(Z) - ez(l—z)+e—z(1+x)i§m;’

when |z| is large.

Let 2z = p+iq be any point on the path of integration.

Consider first those parts of the contour which lie inside an angle 2¢
enclosing the imaginary axis: let us restrict for the present our attention
to that arc which is bisected by the positive half of the above axis.

Here I,(2) = (2m2) % (e HHim),

| L) = @rR)™} |e* | | 14e~2+Hm| = (2nR)~HeP | 146~ ¢ (-2+im
= QrR)de? | 1467 G0,

Thus | I,(2)| > 27 R)~1el?! [14-¢2?! cos (29 —37)],
gince la+3d | > |al,
& (27rR)1‘ e—!plG-lz)

and <

I,(2) 14¢2!?lcog (2g—3%7)
Let p, be given by the equation
e (-12) = X\ (27 R)},
A being any constant.
Then, if p > p,,
e
Io (2)

1 < 1
A[14e7%Plcos 2¢—3m)] ~ A(1l—e )

< a fixed finite quantity ¢ if R exceeds a fixed value,
since p, becomes infinite with R.

<

Let the arc bounded by + p,+iq, subtend an angle 2¢' at the origin.

log B + log {A4/(2m) }
Bl1—|z|]
Thus ¢’ tends to zero as R increases, and the arc 2¢' ultimately lies inside
the arc 2e.
The integral over the arc 2e—2¢'

< Q (2e—2¢) zll; 2F (2)

in e =20 — v
Then sin € o %R[1—|x|]

in the limit.

Over the arc 2¢' R >q > R—pi/R.
2
Now pg/ R is of order a _1| 2T (lof/};R) and tends to zero as R in-
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creases. Hence, if B is large enough,
nwt+ir > q > nr+ir—36,

0 being any assigned positive quantity which may be taken as small as we

please, and cos (2 —37) > cos .

Hence over the are 2¢'

P QxR e-1?1A=I2) =R} )
I2) | = 14e%1Pleos O ~14-¢7%1P1cog 9< @mR)°.
The integral over the arc 2¢' is therefore less than
2¢’ (271-13)*z£10° 2F(2)
in the limit.
But WL, 2 (27R)t = L const. log B _ =0
«/R )
Thus the whole integral over the arc 2¢ tends to a quantity less than
2Qe L 2F(2),

when R becomes indefinitely great.

Thus, making ¢ small, we see that the arc bisected by the positive
half of the imaginary axis ultimately contributes nothing to the contour
integral. By symmetry the arc bisected by the negative half of the
imaginary axis also contributes nothing.

Now, over the parts of the contour lying outside the angle 2, it is

obvious that L (Io @
Therefore, if |z]| < 1,

) = 0. Hence these parts also contribute nothing.

F(z) ¢(22)
jc ¥ (2) de = 0.

When the radius of C becomes infinitely great the expansion then holds.

6. The Ezpansions of Fourier.
The same method may be applied to deduce from the general theorem
of Art. 2 the well known series of Fourier

2w

f@) =ay+a, cos == +a2 cos Z 4. +b, sin == +b 'n—+ ., (28)

and another series, also given by Fourier,
f @) = a,cos nyz+ascos ngz+...+by sinn x40, sinngz+...,  (29)
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where #,, 2y, ... are the roots of the equation

Asinnr _
nr

cos nr— 0, (80)

A being < 1.
In the case of Fourier’s series, we find, in a manner similar to that
employed on p. 408, using the symbolic form of Taylor’s theorem,

Fz) =3 re"“ af (u)du—%r e~ e~ f(u)du— (z) { some factor},
b : -b .
where a, as before, is arbitrary and y-(2) = sinh 2zb. Taking « = — b and
putting z = any root «x of Yr(2) = 0, we have
+b
Fi =— %j € =" f(2) du. (81)
-b

The constant term is obtained from the additional term due to the single
root 2 =0 of Y (2). Itis

It is easily verified that (81) and (82) lead to the well known expansion.
An investigation similar to that of Art. 5 will then show that the expansion
isvalid if —b<z<<b, zl"w 2F (s) being here equal to

1O —f(=0D)].

In the case where x = =+ b it is easily shown (see also Picard, Cours
d’Analyse, pp. 167-177) that

F(2)e® .
jc Sil(li)l 2b dz = e [f(b) “'f(—b)]
—zb
we jo fignezb dz = — m[fO)—F(—D)],

whence we get the well known result that the value of the series at the
ends of the range is 3B +f(—b)].

With regard to the series (29), Fourier showed (T'héorie de la Chaleur,
p- 848 et seq.) how to expand an odd function in terms of sines. The
coefficients @ were therefore absent in his expansion. Picard in his Cours
d’'Analyse (pp. 179-188, first edition) has generalized Fourier’s result, so
as to include the even terms. But he has proceeded in what appears to
be a rather arbitrary manner, with the result that he has introduced into
his expansion a constant term which is unnecessary.
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If we treat this example by the method of the present paper, putting

A sinh 2r

Y (2) = cosh 2r— po

we find, by a process very similar to that used before,

Fe =% (1-2) j:e—w feadut - (14 %) 5_ ¢ ) du

2 rz

A +r

— o | ranty@re,

where G is some factor which we do not require to determine.
‘Whence, after some reductions,

r
{cos nyu—cos ner} f(w) du

fl@ = 52=‘,1 { €08 7T —— r— (sin 2me7) | 27t
sin 7,2 f (w) du } ’ (89)

—+sin nx 7~ (sin 2n,7) [ 2725 }

which gives the expansion required.

The sine terms in this expansion agree with those given by Fourier
(loc. ctit.) for the expansion of an odd function.

Picard’s result differs from (86) in that the coefficient of cos n;z is

1 4
{r—(sin 2n,7) [ 21, S_,. cos 7, f (u) du,

instead of the coefficient given in (88), and there is an absolute term
introduced.

That such an absolute term is not really required is obvious from the
present work, since z = 0 is not a zero of yr(2). In fact (33) allows us
to expand a constant in a series X 4;cosn.z, and when we replace the
absolute term in Picard’s result by its expansion in a series of cosines,
the new expansion is found to agree with (33).

That (88) is the natural expansion may also be seen from the fact that

T
S (cos nsu—cos ns7) cos mudu = 0,

if s and ¢ are different—a result which is easily verified directly and which
would allow us to obtain the expansion by & method analogous to that of
normal functions.
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Also, if we investigate as before the validity of this expansion by con-

sidering S F(z)% dz, we find that-
c

|3l]-:_—">° zF(2) = 3 [f0)+f0)]— %\—r g_rf(u) du.
Then it may be shown, as in Art. 5, that, if |z|> 7, | p(@2) [P (s) | =
over one half of the contour of integration, so that the expansion is then
not legitimate, but that, if |z|<<7, | ¢p(z2)/y(z)|=0 when |z|= o,
except within an angle 2¢ enclosing the imaginary axis; and the parts of
the path of integration within this angle can easily be shown to contribute
nothing ultimately to the integral, so that, if |z| <<, the expansion is
valid.

When z =7, L % = 2 when the real part of z is positive, and

L Sfb(:(c—; = 0 when the real part of z is negative.

Hence, if z =7,

f () = series+3 [ f (1 +f(—n]— 2—)\7 j: f () du,

or sevies = [/ ()—7 (—n)+ 3. [ /@ du. (34)
Similarly, if z = — 7,
series = 3 [f(—n—f ]+ Q)\_r Sr_, f ) du. (85)

These two end values for the series are not given by Picard, and I have
been unable to find them anywhere else.

It follows from (84) and (85) that when f(z) is an odd function the
expansion in sines holds right up to the limit x = 7. But, if f(z) be
an even function, there is a discontinuity at the ends of the range. This
is precisely the reverse of what happens with the ordinary Fourier’s series.

7. Schlomilch’s Expansion.

Here we require to expand f(z) in a series of Bessel functions of zero
order in the form F@) = Ay 4, Ty @)+ Ay Ty @)+ .. .

Clearly, if this expansion is to hold for negative as well as for positive
values of z, f(z) must be an even function.
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It will be more convenient to consider a more general expansion,
where £(z) is not restricted to be even, namely,

f@) = Ag+A4,7y @+ 43T, (22)+ ...+ By Ly @) +ByLg )+,

2 , 3 5
where L@=2 5 —atmaa— (36)

This function occurs in the theory of the vibrations of a circular plate,
and its properties have been discussed by Lord Rayleigh (Theory of
Sound, Vol. 11., § 302). Rayleigh denotes this function by K(z).

We write

. 2 z 22 2 B P 9 25
Q=1+ -ttt mgty et T O0)

T 12, g2
and take ¢ (2z) = Q) (22), V (2) = sinh 2.
We then find easily
1 _ " st g = jl — 4 :
70 __L a2 dt = . A8~ (E)dt (88)

whether s be odd or even, with the exception of 1/¢(0) = 1.
Substituting into the expression (15) for F(z), we find

F@) =yl £

s & (%) | DY@ EDV@) )

1
T+1
0

and, treating the series in curled brackets as was done in Art. 4, we find
= WA Ul -t 4 [y (D) ]
P& =y L2 4[| a—a Z (EE far]
' Hence, remembering that [(¢D)"f @) ]u=o = [D"f@t)Ju=o,

F = v L9 & [M Y (L— &)~ of (wt) dt (39)
z z2—D ),

u=0

(89) is the general expression for F(z) whatever the form of (). It
is therefore applicable to all expansions of the type

Z{A4Jy(ns2)+ By Ly(n,z)} .
Taking now v-(¢) = sinh =z, we find that

sinh =D
z—D

xw) = — -}‘r Ty () du+(2) G.
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Applying this result to (39),
™ 1
F(2) =—1% j du J dt(1 =)~ e f' (wt) - (2) G, (40)
0

-

since Y,(2) = 0 in the present case.

There will be an absolute term, since y-(2) has a simple zero at
the origm.

This absolute term is given by the first term in (22), namely,

60 % o L= p0 [0+ (R[4 a) T @

¢°(0) 1—
which, when we put ¢0) =1, b,=1/m, a,=m, (D) =sinh=D,
becomes ™
FO+ %f duj E‘lf' (;‘2’;* dt. (42).

Thus, from (22), (40), (42),

f@ =fo+ 5| w1l g

Q (kz) F s‘ dte ™y f (ut)
+§ 27 cosh 7« _rd'll, ° ) ’

z =« being any zero of sinh 7wz other than z = 0. Whence, grouping
terms in pairs,

f@&) =FO+ 5 5" jd(‘l“‘f ;‘;;) +J, ) L 5_ du 5‘ at. °°(31n_u::)f’(ut)

1 (" dt sin nuw f (u
+L0 (’I’Iz.'l) ;T- 5_" £ (1 tg)&

(43)
The even terms give Schlomilch’s well known expansion. The odd
terms complete this expansion, the function Ly(z) baving here to Jy(z)
the same relation that the sine has to the cosine.
In order to investigate the validity of this expansion, it is necessary
to know the order of magnitude of Q(2) when |z| is large.
‘We have (see Rayleigh, loc. cit.)

Q@=%r

..sm:cdz — _g_j
0 m
Writing 1—19) = «,

1-— t”)*

e du

2 1
@ =T L«/{u(z—u)}
2

S M(Q.u)[ + +('z2b')21—}13"+“‘]d“'
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It may then be shown that, when z is large and its real part s
positive, the most important term in @(2) is the first. This first term
becomes, on writing zu = v,

2 ¢ j ¢”*dy

m 4/(22) Jo 4V’
the integrations with regard to v being taken along the straight line
joining the origin to the point 2.

By considering a contour 4BCD in the v-plane, 4D being the arc
of a very small circle, centre the origin, CB a concentric arc through
the point » = 2, CD a portion of the line joining » = 0 to v = 2, and
AB a portion of the real axis in the v-plane, we can readily show that
the first term in @ (2) is approximately equal to

3 _e (1o
T A/(22) Jo AV
when |z| is large, the path of integration being now real.

Therefore the most important term in @ (2) is

E_ez_re_'f@= ¢ (&)
7 A(22) Jo AV V\rz/

Take now the real part of z negative. Write 2 = — {; then the real
part of  is positive.

QR = S (1—8)~te4at.
Now expand (1—¢)~% by the binomial theorem
QR = % E e~% (1+ —;— e+ % t‘+...>dt
=2l FraEraiE e
By reasoning similar to that employed above, the most important term in

Q(x) is 9 -YQ 9 9

— ey = —=— —.
7§ Jo

x Tz
The case where z is a pure imaginary has been worked out by Lord
Rayleigh. Taking the value given for L,(2) [his K(2)] in ascending
powers of 1/z in his Theory of Sound, § 302, we have

QGe) = %’%+e"“‘*’” \/ () =- 2+ \/4 (%)

the same convention being adopted with regard to 4/z as on p. 4US.
Similarly when z = — ¢,
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Thus Q) = — % te \/ (%) (44)

will give approximately the order of Q (¢) for all large values of 2.
It may then be readily shown

(@) That

zl;'w 2F(2) = I:sinh xD j: (1= f (ud) dtl=

:£%(1—-t2)‘5{7rf’(7rt)+7"f'(—7"t)}dt’

which is finite.

(b) That, if z> 0,
@ (22)
sinh 7z
to 24/ 2(mzz)~¥¢*@=™ if the real part of z be positive, that is, it tends
to 0 or ® according as = > = or z > .
Similarly, if z <0,
Q (22)
sinh 7z
the real part of z is negative and = <—mr.

tends to O if the real part of z is negative and approximates

tends to O everywhere if z {— 7, but tends to © when

(¢) That the parts of the contour integral in the neighbourhood
of the imaginary axis are evanescent in the limit.

It follows that Schlémilch’s expansion is valid if —7 <z L =
No exception is to be made for the extremities of the range.

8. Other Expansions in Bessel Functions of Zero Order.
The method can also be applied to obtain an expansion of the type
f @) = Z{4,Jy(nsz)+B; Ly (nsa)}, (45)
ns being any root of the transcendental equation
Jy(na) = 0. (46)

Such expansions occur frequently in mathematical physics in problems
relating to vibrations where the boundaries are circular.

‘We have here Pex) = Qez), V(2) = Jy(iaz).
Thus Yolo) = 1

nd f(O) + [J o(iaD) L A—=duf (ut) dt] .
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Proceeding as in Art. 4, this leads to

Py ={0_1 f a0 j:m Pasing-w) g, K (1— B30 f (wh) Aty () G
or, writing ¢ = sin ¢,

™ sin@ 1
ry =9 %j doj: du L dpuf (usin g) ¢C9 4y (o) G,

whence
f@) = E %":Zz—%
X [_ m — -717[:" dejzainadurr d¢ uf (w sin ¢) sin n,(a sin O—u)]

a—-oo siné
+ = 2z alclfo'((;tfz)) [ K" dGF du r d¢ uf (u sin ¢) cos n,(a sin O—u)]
47)

The form (47) is very different from the one usually employed, which
gives

sz Qo (n,
fl@) = E,l ag-{—j’%j:.fo(mm)f(z)xdx (48‘)

when f(z) is an even function.

The forms (47) and (48) are not easily comparable directly, but, if we
go back to the form (15) for F (2), it is found that, if < = n,, so that « is
any zero of \ (2),

. or -1 J 'S
\/J‘2r+1(K) = \/’21'(") = — 23« +l (%0_25“ _J_o—(;os(% 4,

whence
[ 2dyne2)
P = —an | SR 250 W],

_am [t Tymez) [ 2 D41 (1.8, 2r—1) (2r+1)\® _
%" lj Tma) L= @FD1 ( 4.2 ) f (“)].,=od”

= —ia- j zJyn,2) fl@)+f(—2) ;.

Jo(nsa) 2
2 ("dyma) :
e j Jo(nsa)d Ydtj do N
9;(1—152) 31—t @ {f(a:tv)—f( ztv)},

using the identity

1.3...(27’+1) 2_ ij'l Sl — -3 2 d2 "r+1
( 2.4..21 ) =5],%) ®q )= gr gy o
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This leads to the form

AT
f0) = 5 s [ o) @) +f =) 2

e Ly(ns2) “ 5 : j"
s 0 : .
+ s=1 mngat {J, (n,,a-)}zjo Jolnz) d odt odv

X (1—8)=3(1 — *Zfd [ floto)—f(—at)}. (49)

The even terms have the coefficients found by the usual methods. The
odd terms have their coefficients in a new form.

The comparison of the coefticients in (47) and (49) will be found to
yield several interesting theorems connecting definite integrals involving
the function J,, which it would be difficult to establish otherwise.

Returning to the expansion in the form (47) which presents itself more
naturally in this connection, we find that

L 2F() = ‘f(0)+[J0 (GaD) L uf (wsin ¢) (z(p]u:O
d im
= fO)+ —1—U e“Ds““’dOS wf’ (u sin ¢) d¢:| "

™ yr
_f(0)+ S (ZGJ asin 6 f'(a sin 0 sin ¢) de.
g J— 0

By considering this integral as taken over the surface of a sphere of
radius @, 0 being the colatitude and ¢ the longitude, and y being
a s8in 0 sin ¢, we find

AT
‘rdﬂj asin 6 f'(asin 0 sin ¢) dgp = jf’(y)a,‘ldS,
0 0
taken over the area of the lune bounded by ¢ = 0, ¢ = 3,

In like manner

A
So dej asin 6 f'(asin 8 sin ¢) dp = 7 [f1—a)—f(0)].

0

Thus :go 2F(2) = 3 [ f(@+f(—a)].

Also, when |z| is large,

= <l)* _.2
Q(ex) _ T TZE
JoGaz) ~ (Qmaz)~d(cE4em @,
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if the imagindry part of z is positive; and

o (_.2_.‘)* _2
Q(x2) _ T TZT
Jotaz) ~ (—2waz) (e~ %4 =+

if the imaginary part of z is negative.

Reasoning strictly analogous to that used in previous cases shows that,
if |z]l<a, |Q(2)/J,(éaz)| tends to zero when z tends to infinity in any
direction save that of the imaginary axis.

If z=a, Q(zx)/Jy(taz) tends to 2 if the real part of z be positive, and
to O if the real part of z be negative.

It 2= —a, Q(z2)/J,(iaz) tends to O if the real part of z be positive,
and to 2 if the real part of z be negative.

If || > a, |Q(22)/J,(iaz)| tends to ® over one half of the contour C,
and to O over the other half.

Finally, it may be proved that the neighbourhood of the imaginary
axis contributes nothing in the limit to the contour integral.

. 1 g(zx) _
Thus, if |2]| < a, L2_7r—'£LF(Z) 70 dz = 0,

and the series converges to f(z).

If |z|>a, L —1—j’ F(2) ¢ (20 dz need not be finite.
21 c

V¥ (2)
i 1 ( FR¢ka) , _ _
It ¢ = ta, L %j_%%)_ do = 3 f@+f(—a)
Therefore value of series when z = @ is 3[f(@)—f(—a)]
. (50)
value of series when z = —a is 3 [f(—a)—f(a)]

This result shows that, whereas the even part of the series is, in general,
discontinuous for the ends of the range of validity, being zero for z = ta
[which is, indeed, immediately obvious from the equation Jy(n,a) = 0], the
odd part remains continuous up to the ends of the range inclusive.

9. Possibility of Extension of the above Results to Functions other than
Polynomials.

It is well known that every function f(z) which can be represented by
a Fourier’s series between @ and b can also be represented throughout the
same range as the limit of polynomials.

Thus, let f(z) = _nI_Jw P, (z), where P,(z) is a polynomial.

8ke. 2. VOL.4. No. 938. 2k
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P,(z), by the preceding work, can be expanded in a series of suitable

functions r=w
P,(z) = § Ar,n(ﬁ('fn ).

Thus, f@)y= L 2 Ay 0 ke, 2).

n=cw r=1

It seems difficult to prove generally that in the cases where the ex-
pansion of P,(z) is possible the limiting sign can be taken through the
sign of surmmation.

If we assume that this can be done, then

f@= % 4,¢(,2)
where 4, = L; y

In one fairly simple case, where f(z) is expansible in an infinite power
geries, 80 that P.(z) = sum of the first n terms of the Taylor series for
f(x), we can prove that, under certain restrictions, the present method
allows us to calculate the coefficients 4,—in other words, that 4, , tends
to a limit when n increases.

We now proceed to prove this.

Consider the expression (15) for F{z) and write it

W=y [0 L L OL +/;,L

9©0) z ' ¢'(0) 2 (0) Z”“
0
—(a, +ayz +azs® +.. gfl;((O))
)

—(a, +agz +al +.. )¢(0)

(@1 Onss 2t Tnps . >;;L(g; (51)

Consider first the part of F'(z) in square brackets. ¢(z) is an integral
function ; hence by a well known result

Mn!
{-n 4

¢ being any positive constant, however large.
Also, if the power series for f(z) have a finite radius of convergence p,
then it is clear that we cannot have for all values of n, however large,

| fro)< "m ,
p' being any quantity greater than p.

" (0) | <
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Therefore terms must exist in the sum in square brackets which are
numerically greater than u &

™M I ” |n+l pm’
and this must occur for values of 7 as large as we please.

Thus, if we make  infinite, terms exceeding any given magnitude will
appear in the series in square brackets, which is therefore divergent.
It f(z) were an integral function whose -coefficients decreased at a
sufficiently rapid rate, this part of F(z) might be convergent; but this
will be a comparatively rare case.

The divergence of this part of the expression for F'(z) is, however,
immaterial, since in calculating the coefficients we put z =« in F(2),
where Y (k) = 0. The part in question therefore disappears.

To deal with the other part we notice that in all the examples con-
sidered - (2) has been an integral function.

We shall suppose that y-(2) is such a function, and further that from
a certain value of 7, |a,| << ¢'/r!, ¢ being some positive quantity, a
condition that will always be satisfied by integral functions of order zero.
{See Poincaré, “ Mémoire sur les fonctions entiéres,” Bulletin de la Soctété
Mathématique de France, 18883.)

Then, from this value of 7,

la’f+l+af+2z+"'| < lar+ll +| Qr 42 l |Z|+...
O (oalaly  (gla? .
<grop It toreers T
A L]\ R e
<GFD! (1 -;-+2) <G¥DAi=1’

r+l1

r being taken so large that 42 > Aq|z|, where X is any fixed number
greater than 1. Hence, if the series

qr+1 fr (O)
ESVPE) %2

be absolutely convergent, the second part of F(z) is also absolutely con-
vergent. We may therefore increase n without limit, and use this series
to calculate the limiting values of the coefficients. So far I have not been
able to complete the demonstration and to show that these are the actual
coefficients in the expansion of f(z) itself.

28 2
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10. Application of the Theorem to Cases where ¢ (2, x) is not a Function
of zx only.

Return now to the more general case, where ¢ (2, z) is not a function
of the product 2z only. In this case the expansion in functions ¢ (k,, z) is
known by (10), when the expansion (11) of f(x) in terms of the functions
Jo@) ... fu(@), ..., which are the coefficients in the expansion of ¢(z, z) in
powers of z, is known.

Now, if f(z) be a polynomial, the expansion of f(z) in functions f,(z)
is easily obtained in the following case, namely, when f,(®), f; @), ..., fa(%)
are themselves polynomials of increasing degrees 0, 1, 2, ..., .

In this case, if f(z) be a polynomial of degree n, all the quantities

Pn+1, Pns2, ... in the expansion (11) may be taken zero. Let
So@) = qoo
fil@) = qyotaqur :
fﬁ (27) = qm'i‘qm x+q~22 x2 - (53)

[ @ = qutgnz+ges®+.. .+ qma
Let @ = agtaz+... 4o,z (54)
Then, to determine py, py, ..., Ps, We have the (n-+1) equations

Podoot P10 Paget - Pugno = ag
PrqutPegnt-. . FPugm = q

qu”+...+pnqn2 = a, [’ (55
DPnGnn = Qn
of which the solution is
— G
Pn an’
— An—1 __ _Oa qn, n—1
Por gn-1, n—-1 qnngn-1,n-1 !
gn-1,n-2 @n,n-2
Pn-z = On-2  __ __ @n-1Qn-1,n-2 an | @n-1, n-1 In, n-1

dn-2,n-2 qn-1,n-19n-2,n-2 Gn,n Gn-1,n-1 4n—-2,n-2
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Prr = e
n—r
gn—r,n—r

Ap—r+1dn—r+l, n—r

q'n—1'+l, n=r+1 q'n—r, n—r

Qu—r+l,n—r Gu-r+2,n-r

+ Oner+2 | Qn—r+), n—r+1 n—r+2, n—r+l

a-n—r+‘z, r—r+2 Qn—'r+], n=r+1 q".-r, n=r
q'n-—'r+l, n—r q't-r+2, n—r s q".—r+s—1, n—r Qn—r+s, n-r

Qr-r+l,n=r+1 fo-r+2 n-r+1 -+ Cu-r+s~1, n~r+l  Qn-r+s n-r+l

0 Gn—r+2, n—r42 --+ Qu—r+s~1,n—r+2 Qa-r+s n—r42
. .
(=1 ap~rss 0 0 o _Qn—r+s—],n—'r+s—l Qrn—r+s, n—r4s=1 -
Gr—rts, n—r+s o+ Quer,n—r
Gu—r+1l,n—r Gn-r+2,n=r e du-1,0—r qn, n—r
Qr—r+1, n—r+1@n—r+2, n=r+1 +++ Qu—1, n=v+1 @n, n—r+1
0 Qn—r+2, n—r+2 «++ qu=1, n=r+2qn, n—r+2
(—1)"a, 0 0 qn-1,n-1 Gn,n-1
+ ot fney (56)

Qn, noeee uer, n—r
80 that the coefficients p are obtained in finite form. F(2) is then known
by (10) and the expansion (6) follows.

11. Application to Functions occurring vn the Theory of Elasticity.
The equations for the mean stresses P, @, S in the plane of an elastic
plate are dP , dS _, dS.dQ _ 4

dz "dy — O dx 'dy ~
and these are satisfied by
£B o _&E
dy*’ - di? dedy’
where V'E = 0. (See a paper by the author on “ An Approximate
Solution for the Bending of a Beam of Rectangular Cross-Section,” Phil.
Trams., A, Vol. 201, pp. 63~155 ; and also a paper by John Dougall, M.A.,
“ An Analytical Theory of the Equilibrium of an Isotropic Elastic Plate,”
Trans. Roy. Soc. Edin., Vol. xu1.,, Pt. 1, No. 8, 1904. See also for an
analysis of the above Professor Love’'s Theory of Elasticity, second edition,
chapters v. and ix.)

P=—
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If we take E = (C sinh «z+ Dx cosh «z) cos xy,
then P = «*[C sinh kz+ Dz cosh «z] cos «y,
@ = — «[(Cx+2D) sinh kz+ Drz cosh «z] cos «y,
S = — «[(Cx+ D) cosh «z+ Dz sinh «z] sin «y.
It P=10, S =0, when z = + b, then
C sinh b+ Db cosh «b = 0,
(Cx+ D) cosh kb+D«b sinh kb = 0

Hence sinh 2xb—2«b = 0. 57
We have
Q = const. [z cosh «z sinh kb—«b cosh «b sinh «z+2 sinh «b sinh «z] cos ky.

It is easy to verify that when « is a root of (57)
b
j Qrdz = 0. (58)
—b

Now for various purposes it is desirable to be able to expand a given
funection of z in terms of functions ¢ (x,, ) where

¢ (2, x) = 2z cosh zz sinh 20 —2zb cosh 2b sinh zz+ 2 sinh 2b sinh 2z, (59)
where z = «, is any root of
VY (2) = sinh 226—22b6 = 0. (60)

For example, if Q be given over y = 0, between ¢ = — b and z = + b,
such an expansion will give us the coefficients of the typical terms which
build up the complete solution.

We notice, however, that, if f(x) be the function to be expanded, then,

ing to (58),
owing to (58) Y Fzde=0; 61)
—b

and therefore f(z) is not entirely arbitrary.
The expansion of ¢ (2, z) in powers of z is as follows :—

¢z, 2) = Tjg é;r)—l [(B+2)* — (b —2)2 —7 (B2 —2D) {(b+2)" 2 —(b—2)" %} ].

Thus ) 62)
f2r+1 (x) =0,
fo (z) =0,

for@ = (’QIW [O+2)? — (b—2)7 —¢ (BP—2?) { b+ ) ~*—(b—2)*2} ]

s=r 251 7.2r—-2s+1 —
-9’ z2-1) (2s—7) ]
=1 (2s—1)! 2r—2s+1)!

It follows that only an odd function will be suitable for f (z).

(63)
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It F@) = aztay+... 4 as 127,
then, since from (76) it is seen that the highest power of z in Jor (@) 18
271 we have _
f @ = pofa@ +pifi @ +... Fpor for (2), (64)

where py, py, ..., P2- can be found in the manner indicated in the preceding
section.
The equations for pg, P4, ..., P2r May be here quoted : they are

@—1) pb* | @—2) p,b* | (2—8) psd° (2—9) P2 b _ 11
ot Tt Tt gt =
(4—2) p,b* | (4— 3)101)6 (4—17) P2, 07 _ 81 aylb®
i T =t @r 32)! 2

6— 3)peb 6—7)po, b*" _ 5la,b® [
Tt T T T e

(2r—7) por 0¥ _ (2r—1)! ag,_; b¥ !
1! - 2

(65)

12. Zeroes of sinh 22b—22b = 0.

We have now to consider the distribution of the zeroes of v(2).

In the first place the expansion of sinh 2z0—2zb begins with & term in
2%, so0 that the origin is a triple zero.

To find the other zeroes write

220 = £+in.
Then sinh (£41n) = £+,
and, equating real and imaginary parts,
sinh £ cos n = §, (66)
sin n cosh & = 1. 67

If we put » = 0, we have sinh £ = §,
which is impossible, unless £ = 0; and, if we put £ = 0, we have
sing = 7,

which is also impossible, unless n = 0.
Thus no root lies on the axes, except the triple root 2 = 0,
Consider now the position of the roots of very large modulus.
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Squaring (66) and (67) and adding, we find
cosh? £ = cos? n4£2+ 72
If, therefore, | £+in] = 4/(£*+7") is large, £ must be large.

__¢
Hence, by (66), cos n = Y
and is small; therefore n=nrt+ir

approximately. Putting this value into (67), then, since cosh £ must be
positive, » must be even.

Thus n = 2rr+3im, cosh £ = 2rr+3n
very nearly, or £ = log, (4rm+)

approximately. The roots fall into groups of four, symmetrically placed
with regard to the axes, the four members of each group being given by
+ log, (4rm+7) £+ ¢ 2rm+37) approximately.

18. Additional Terms due to the Triple Zero at z = 0.

Referring to the expression (21), we see that the additional terms due
to the triple root z = 0 are

/o@ % (Gotasstbiaasatbaaud prtfi@ Z Botustbiann)p
+A@ 2 (Byain) P

and, since f,(x) =0, f,(x) =0, and f,(x) = 2zd, this reduces to

2zd :Eo (boaa+l)ps~

- _(220)® | (22B)° | (22b)r+!

Now Y(2) = 31 -I-? +...+ @i T

Thus a, = a, = a, =0, as = 0,
(2b)Fr+! 1 8!

BTl T e @
Thus the additional term is

3(17 s=r (26)2:+1
252 =1 (s 1)1 P

gince, if s > 27, p, = 0. The quantities p., are here given by (65).
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But this term may be evaluated as follows:—Rewriting the first ex-
pression (63) for fo,(z),

Sfor@) = @ )[r+1){(b+x) "—(b—x)¥} —2br {(b+a)r-1—(b—z) !}
whence

2for(e) = @% [r+1) {B+a +B—a) 1)
—b@r+1) {(b+2)"+(b—2)¥}
+2r0% {(b42)* 1+ (b—2z)* 1} ]

and

jbbffer(z)dx= L[t L apree— 280D g sy 285 ]

@ntler+2 2r+1
Q2r+1 p2ret
@41t
s=r (2b)28+1p2 1 b §=r
Thus B @ Tl b ), S peful)de

b
= %j_b zf (@) dz by (64).

The additional term in the expansion is therefore

g—;; r , zf (z) dz. (68)
Therefore
_ §_a_7_ b F(Kr)
f@ = T j_bxf(x)dx— () ¢ (kr, 7)

F(x,) [«-x cosh k,z sinh x, b—«, b cosh «, bsinh «, &

_ 8z [ +2sinh «, bsinh «, 7]
——%gj_bxf(x)dx——z 2b {cosh 2«,b—1} o
where «, is any root of (60), and
'S Pua(e) _ - 1 (2b) (__Q_Qf (2071
F) = E T 22 { 31 + . P o 2r—1)! 1
1 ( (20 (2b)5 @B)r=4 )
+?1P —3— + +p Pr gy g1
+ .
1 20)%) .
+ 2 '{pzr(gg) ] . 69)
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Consider the roots in groups of four. Connecting the two in each group
which have opposite signs, then, since F(2) contains only even powers
of 2, we may write

F (x,) [,z cosh k,z sinh k, b —«, b cosh «, bsinh .z

_ 8z (* =2 sinh «,b sinh «, 2]
J@) =55 J_,, #f (@do—2 5 Toosh 2, b—1]

(70)
where the T now extends only to those roots of (60) of which the real part
is positive.

As an example, if we wish to expand z° in such a series, we have from
(65), putting a;, = 0, a3 =1, and all the other a’s zero,

po=3
Pa=gp
Hence F@)= g—lﬁ
2
b : 5
and S zf (x) dz = 2!7_
—b 5
Therefore

[krz cosh «,z sinh k,b—«, b cosh x, b sinh «,z

1 +2 sinh «, b sinh «, 2]
3 _ 3 2__ e e e e e 1
=30 —2 25 (Gosh B b—1) :

We notice that the terms introduced by the zeroes at the origin ensure
that the function which is represented by the sum of the series in (70)
always satisfies the condition (61).

14. Limits and Validity of this Expansion.

Looking at the expression (69) for F(z), we see that the most important
terms when |z| is large involve 1/2%, the terms in 1/z being absent from
the expansion.

(2b)°
8!

by
51!

(2b)2r—l
+... +p2r m .

L P F () = p gy +

Now

ful®) = G2y (64D {2 46—}

—(2s—1) b {0+2)* 2+ (b—2)* "} ].

3 (2b)2"—1

Hence, when s > 1, Jas(d)y = 3 =1
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Thus. Jﬁﬁwﬂw+m+ngb—¢@mw+ +Par fir ()]
=3[/ O —pa f2 (B)].

But " fp (@) = 2bz.

Therefore F40) = 2b.

Hence R 2F(2) = f' (b)—%bp,. (71)

It follows that the remainder after n terms in (70)—the terms involving
conjugate imaginaries being counted as one term—is given by

?

_l_j 12F () {a: cosh zz sinh zb—b cosh 20 sinh 2z +(2/2)sinh 2b smhzx} dz
27 ¢

z

‘sinh 226—22b
(72)

the contour C being a circle passing through the points 4 ¢(47+8) 7/4b.
Referring to the results of Art. 12, we see that when » is large

£ _logr+lr
n 3@t

and this tends to zero with . The roots, after a certain value of », are
contained within an angle 2¢ enclosing the imaginary axis, where 2¢ may
be taken as small as we please.

Again, if 7 be large enough, all the roots for which » << (w/4b)(47+1)
lie inside the circle C.

For, if (£', ) be on the circle and

n = (m[4b)(4r+1), &% = (w/20) (2R —7/2b),
R being the radius of the circle, that is B = (w/40)(4r+8). Thus
§ = m[2by/(4r+2)
and £l = log {4r+1) 7w} [7a/(4r+2) =0
when r = .

Therefore, if » be large enough, (£, ) lies inside the circle C, and
the roots for which 5 << (w/4b)(4r+1) can easily be shown to lie in-
gide the circle C.

We will consider first those parts of the contour integral which lie
inside the angle 2¢ on the arc which is bisected by the positive half of

the imaginary axis; the work for the arc which is bisected by the negative
half of the imaginary axis is precisely similar.
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Let z = p+1q, as before, be any point on the circle ¢. Then

&(z, x) (x cosh 2z sinh 2b—b cosh zb sinh 2z + (2/2)sinh 2b sinh zz)
2y (2) sinh 22b0—2zb

|z |coshzz | |sinhzb|+b[éoshzb||sinhza:| :
+(2/R) | sinh zb| |sinh zz |
| sinh 22— 225 | )

Now cosh (po-higa)| < 4[4 |44 |-t
< 3 (4e7) < erl®l,

<

Similarly |sinh 2b| < ¢, |coshzb| < e”, |sinhzz|<<e?!®l

¢ (2, 2) {|z| 4+b-+2/R} er@+isd
Hhos 2y (2) |sinh 220—220|  °
Take P 80 large that sinh 2pb—2Rb > %7\ 82pb, (78)

A being some positive quantity << 1. Then
| sinh 226—22b| > |sinh 22| — | 228,
and  |sinh 220 |> 3(e*®| —3 | e | > e —3e~ %' > ginh 2pb.
Thus |sinh 2zb—22b| > sinh 2pb—2Rb > 3\ *,
and for values of p which satisfy the inequality (78)

¢ (2, 2)
2 (2)

2 2\ pus-n.
<2 ljol 4o+ 2] ovnn;

and is therefore finite if —b < z < + b, however large R may be.
The first value of » which satisfies the inequality (78) is given by

3 (1—N) e = 3¢} ORb.

This leads to a large value of » when R. is large, and thus, to a first
approximation, this limiting value of p is given by

3 (1—)) e® = 2Rb

o 2pb = log {4bR/(1—N)}.
x (47+9)
Thus » _log {4bR/A—=N} _ log | 1—X }
3 ™o/ (4r+2) 7/ @r+2)

This ratio becomes very small as » (and therefore E) increases. Hence
the parts of the contour for which p does not satisfy the inequality (73)
are on a small arc 2¢' bisected by the imaginary axis and ultimately very
small compared with the arc 2e.
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(2, )
2y (2)

R—q<p’R, q>R—p%R.

Consider now the values of over this are 2¢/. We have

Hence, a fortiors,
7> tr+9) 75— obo Log (2B T,

by increasing R the second term can be made numerically less than any
assigned quantity 6/2b, and we have

3 @r4+8)7T>290> % (4r+3) r—06
all over the arc 2¢'.

Now
| sinh 22b—22b | = | sinh 2pb cos 29b—2pb -+ (cosh 2pb sin 2qb—2qb) |

> | cosh 2pb sin 2gb—2gb |.

Now sin 2¢b lies between —1 and —cos 6. Therefore
cosh 2pb sin 2¢gb—2¢b

lies between —cosh 2pb—2gb and —cosh 2pb cos 0—2qb.
Thus |cosh 2pb sin 2gb—2¢b | > cosh 2pb cos 0+ 2gb > 3e™® cos 6.
Accordingly, inside the arc 2¢'

¢ (2, z)
2y (2)

and this is finite for —b << z < b, since in this case e?[1#1=2 L 1.

<2 {|x| +b+ %} ePU=i=] gg¢ 0,

It follows that the parts of the integral due to the whole arc 2¢ are
less than

2 2 | 2
2¢'2 {l al+o+ = } soc 0-+(2e—2¢) = {|x |+b+—ﬁ},

and. since we can take cos 6 > A, this is less than

de | 2
5 ettt g

which tends to zero with . These parts then contribute nothing in the
lirait to the integral.

Now consider the parts outside the angle 2. It is easy to show that,
if |z}~ b, then over those parts

¢ (2, x)

@ |

R=w
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and they ultimately contribute nothing to the contour integral; the latter
then vanishes when R = o, and the expansion holds.
Itz=40b,
2/z sinh® zb
sinh 220 —22b

¢ (2, x)
2y (2)

when R is large. In this case also the contour integral vanishes when
R = @. The expansion holds therefore for the ends of the range of
validity.

=1
"R

¢ (2, 2)
2y (2)

when R = o, and the expansion is not valid.

If |z|> b,




