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ON THE ZEROES OF CERTAIN CLASSES OF INTEGRAL TAYLOR
SERIES. PART I.—ON THE INTEGRAL FUNCTION

By G. H. HARDY.
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1. This paper and another which I hope to publish before long are
intended as a contribution to the solution of the following problem:—" To
find particular (but as large as possible) classes of integral Taylor series,
such that the nature of the zeroes associated with the essential
singularity at infinity can be determined with precision."

This problem is somewhat different from and less ambitious than the
classical problem of the theory of integral functions, the object of the
works of Poincare, Hadamard, and their successors in this field.
The degree of precision attained by the results proved in these papers
is, as will be seen clearly later on, wholly incompatible with initial
hypotheses of the same degree of generality as those adopted by the
writers referred to. If we start, as they do, by supposing known merely
certain limits for the increase (croissance) of the moduli of the reciprocals
of the coefficients, all that is generally possible is to determine corre-
sponding limits for the increase of the roots. This problem has, of
course, up to a certain point, been studied with conspicuous success ; and
it seems as if all that can be done further in this direction is to impart
some additional precision to the known results.*

* The original memoirs of Poincare and Hadamard were: Poincare, " Sur les fonctions
entieres" (Bull, dela Soc. Math, de France, 1883); Hadamard, "E tude sur les proprietes des
fonctions entieres " (Journal de Math., 1893, p. 171).

Numerous references to further writings on the subject up to 1900 will be found in
M. Borel'8 Lemons sur lea fonctions ••ntiires, 1900.

Among later publications I may mention : P. Boutroux, <; Sur quelques proprietes des
fonctions entieres " (Acta Math., Vol. XXVIII., p. 97); E. Lindelof, "Memoire sur les fonctions
entieres de genre fin i " (Acta Soc. Fennicae, Vol. xxxi., p. 1); E. W. Barnes, " A Memoir on
Integral Functions" (27a/. Trims., A, Vol. 199, p. 411); A. Wiman, "Sur le cas d'excep-
tion dans la theorie des fonctions entieres " (Arkivfor Mat. Ast. och Fysik, Vol. I., p. 327) ; Edm.
Maillet, "Su r les fonctious entieres et quasi-entieres" (Journal de Math., 1902, p. ^29);
J .-L.-W.-V. Jensen, " Sur un nouvel et important theoreme de la theorie des fonctions," Acta
Math., Vol. XXII.

There are other writings, too numerous to mention, by MM. Lindelof, Wiman, and others.
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My object in these and in some earlier papers* on particular integral
functions has been to " find asymptotically " the zeroes of the function
under consideration ; that is to say, to determine an enumerable sequence
of points such that, if cr be an arbitrarily small positive quantity, and
circles of radius <r be described with the points as centres, we can choose
B so that all the zeroes whose distance from the origin is greater than R
lie within the circles, each circle containing one and only one.t

It is evident that to have any hope of obtaining results as precise as
this we must confine ourselves to " particular cases." In the case of a
Taylor series, for instance, we must in general suppose known not merely
the increase of the reciprocals of the coefficients, but also their analytical
nature. At the same time what is, from the point of view of the
general theory, an altogether special case may still include a considerable
variety of interesting functions; and, for this reason, I hope that the
analysis contained in this and the following paper may be of some interest
to those who are engaged in the study of the general theory of integral
functions.

The first step in all such investigations must necessarily be the
determination of asymptotic representations of the function some one of
which is valid in every region of the plane. When this has been done
the asymptotic determination of the zeroes is generally easy enough ; at
any rate, it is generally easy enough to find a series of points in whose
neighbourhood the zeroes must be sought for. To find a precise proof that
one and only one zero is associated with each point is sometimes a matter
of greater difficulty.

It will be generally found, with functions such as we are naturally led
to consider, that the whole plane with the exception of certain " barrier
regions " E can be divided into a number of regions D, within which the
function is given asymptotically by an equation of the form

f(x) = <pD(x)(l+Px),

px being a function of x which tends uniformly to zero with 1/x, and (f>n{x)
a function which has no zeroes in D. It then follows that fix) has no

* " On the Zeroes of the Integral Function x — sin.e " (Messenger, Vol. xxxi., p. 161) ; " On
the Zeroes of certain Integral Functions" (Messenger, Vol. xxxn. , p. 36); " T h e Asymptotic
Solution of certain Transcendental Equations " (Quarterly Journal, Vol. xxxv., p. 261) ; " On the

Roots of the Equation — = c " (Proc. London Math. Soc, Ser. 2, Vol. 2, p. 1); "Note

on an Integral Function " (Messenger, Vol. xxxrv., p . 1).

t The approximation is not always quite as precise aa this.



334 MR. G. H. HARDY [NOV. 10,

zeroes except perhaps in the barrier regions E. Suppose, for instance,
that there are two regions D separated by a single region E. Then the
asymptotic determination of the zeroes will be found to rest upon a proof
that within the region E

f(x) = ^

and that the zeroes are to be found near the points for which

0 = <pn(x) + (f>iy(x),
at any rate asymptotically.

In these two papers I deal with two classes of functions closely con-
nected with the ordinary exponential function. I have no doubt that
similar investigations might be carried out for classes of functions
similarly formed from other standard functions—from Prof. Mittag-
Leffler's function n

EM = So r(on+l)'

for example. I have not attempted to carry out such investigations for
the reason that Prof. Mittag-Leffler's long promised memoir on the
function Ea(x) has not yet appeared.t

Of the two classes of functions which I consider the second! seems to
me the more interesting in itself. Theoretically, however, the first is
perhaps more so, on account of the extreme simplicity of the method
employed, which proceeds directly from the Taylor series, depending
merely on a development of the idea, originally due to M. Borel, of the
preponderant importance for certain functions of the numerically greatest
term in the expansion. In dealing with the second class a preliminary
transformation of the series into the more easily manipulated form of a
definite integral seems to be essential. §

2. The first class of functions is that formed by a suitable selection of
terms from the exponential series itself, that is to say the class of func-
tions defined by a series of the form

(1)

* Mittag-Leffler, Comptes Rendus (2 Mare, 1903).
+ I do not know whether Prof. Mittag-Leffler has asymptotically determined the zeroes

of Ea (x).

t The functions 2 , 2 • are typical members of this class.
+ Va + n+1) (H + a)"»! r

§ A third class of functions whose zeroes may be investigated by very elementary methods

is the class denned by series of the type 2 — — , when the increase of | bn | is rapid.
0O O
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where <p(ri) is a function of n which is positive and integral for all positive
integral values of n, and increases steadily with n. It is very easy to see
that the increase of such a function cannot be very far removed from that
of eB. In the first place, if the maximum of the modulus of the function
is denoted by M(r), it is obvious that

M (r) < er.

But, on the other hand, we obtain an inferior limit for M(r) by considering
the increase of the greatest term in the expansion of er. Now this term
is the one for which

i.e., the [r]-th. The value of this is

rr/r\ ~ e

Hence it follows that the increase of all the functions with which we are
Concerned lies between that of er and that of er/Vr- I n M- Borel's nota-
tion t we may say that, if i is the order of infinity of M(r) for ?• = oo, then

It is, of course, only for certain forms of the function <p, which we may
call normal forms, that the precise determination which is desired can be
made. Moreover, for it to be practicable it is essential (in general) that
the increase of <j>(n) should be sufficiently rapid. I shall first work out
in detail what appears to be the simplest case, that in which

0(n) = n\

and then indicate the various generalisations which can be made.

The Function f(x)= I ^ .

3. It follows from Stirling's theorem that

* By f(a) ~ </>(«) I mean, in this paper, \imf/<p = 1 ; the symbol was introduced by Du

Bois-Reymond.

t See his Lemons sur lea aeries d termes positifs, chap. iii.



836 MR. G. H. HARDY [NOV. 10,

where | p | < iJT/?i3.*

Suppose that x = reie, vn = \ xn*jns! | .

Then we find by an easy calculation that

*•>.+! = (nVr)w+t*+1 e*(w+1) U+/>) (| P \ < Kjn).

If y = N*, where N is a large integer,

(3) t>NlvN+i = *mim+p) (\P\<KIN),

while, if n > N,

(3')

"We can fix a large integer No, and then take N large in comparison
with No. Then, if N0^n<N, r = JV3 > (?i+l)3, and

(8") - ^ < K (-?
Vn + i \n+V

From (3), (3'), and (3") it follows that

And thus it is evident that, if N is sufficiently large in comparison with No,

(4) /(«:)= 2 ^ = ^

T tf AT3N3

when r = N*. Now ^ = ^ - e x p

Thus along the circle of radius r =

(5) f(x) =&Trr)-

where | p \ <. K/r*. We have thus defined a series of circles round each
of which the modulus of f(x) is large, being substantially of the order
of e'701.

4. From this formula it is evident that when x travels round the circle
of radius N* the amplitude of / (x) is increased by 27T.N3. Hence it follows

• In this paper I use K to denote a number not the same in different inequalities, but alwayfi
lying between certain fixed limits, say 1,000,000 and 1/1,000,000. I need hardly say that p also
is not the same in different inequalities or equations.
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that, if N is sufficiently large, there are exactly N3 zeroes of f{x) within a
circle whose centre is the origin and ivhose radius is N*.

I shall now proceed to determine more precisely the positions of the
zeroes which lie between the circles r = JV3, r = CZV-f-1)3.

5. Suppose then that N*<r< {N+1)3.

If n^N+1, vnlvn+i>e*\

while, if No < n < N— 1, vnlvn+1 < Ke~^n.

Hence it follows that
r N

3 UN+VP

(6) fte) = ^(X+p) + JL—sl(i+p) (\P\<KIN).

As r increases from N9 to (N+l) 3 the importance of the second term
grows at the expense of the first, and, if x is situated at one of the zeroes,
it is evident that

(7)

or

(8) f =

and

or

(9)

k being an integer. From these two equations we easily deduce

(10) r =

and

(ID e = w

It would be easy to carry the approximation further, but the above
formulae give as much information as is necessary for my present purpose.
I may remark in passing that we can always find a lower as well as an
upper limit for the number of zeroes of a function f(x) lying within a
circle of radius r, if \f(x) \ is large for all points on the circle. These
limits may be at once deduced from M. Jensen's well known formula

!

2TT

log \f(x) I d6 in terms of the zeroes,
o

SEE. 2 . VOL. 2 . NO. 8 7 2 . Z
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Thus the 3 1 ^ + 8 ^ + 1 zeroes of f(x) which lie between the circles
r = HP and r = {N-\-1)3 are given approximately by some or all of the
3iV2+3JVr+l points defined by the equations (10) and (11).

It is natural to suppose that one and only one root of / (a) is thus
associated with each of these points; and this is, in fact, the case. I
have not thought it worth while to set out the proof of this in detail, as
I have given formal proofs of similar points with respect to other functions
on several occasions,* and the present case is not one in which any point
of particular interest or difficulty arises.

The function f{x) is therefore (roughly speaking) what Mr. Barnes t
has called a ring function; its zeroes lie (roughly speaking) on circles,
separated by circles along which its modulus is everywhere large.

It is easy to see that, if we exclude the zeroes of f{x) from the plane
by a series of circles with their centres at the zeroes and of fixed, but
arbitrarily small, radius, then throughout the rest of the plane

| f(x) | >Kr-*er.

The function has therefore the property that its modulus tends (in general)
to infinity when x approaches infinity in any direction.

Generalisations.

6. The preceding analysis at once suggests various generalisations.
For it clearly depends only on the fact that a series of circles can be
defined on which the behaviour of f(x) is completely dominated by the
behaviour of one of its terms, while between any two circles it is com-
pletely dominated by the behaviour of two. The analysis would therefore
be equally practicable for any function of the form

f(x)= *
{<t>(n)\!

provided the increase of <f>(ri) is regular and sufficiently rapid; for in-
stance, if <p(n) were

n\ n5

In general we find that the value of fix) on the circle r = <p (n) is given by
the formula (5), just as in the special case when <j>{n) = «8, so that the
number of zeroes within the circle is exactly <p(n). Moreover, the form

* See the papers referred to above (p. 333),
t I.e., p. 424,
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of f(x) may be altered in another way, as the argument applies equally
to

— y.
n=o \<p(n)}\

provided that \fs (n) satisfies certain conditions easily defined. In this case
the form of (5) is of course slightly modified. Or, again, we might con-
sider the function m . . . AM

but the principle will have been sufficiently illustrated by what precedes.
I may, however, remark that the argument will not apply in its present
form to n,

n=0

the increase of n2 not being sufficiently rapid, as is easily seen on working
out the necessary approximations.

[As a matter of fact asymptotic formulae for fix) and for its zeroes,
analogous to those found in the case when <p (n) = n3, may be determined ;
but the investigation is more difficult, and involves the theory of elliptic
functions, and it is no longer true that the behaviour of f(x) is dominated
by that of one or two terms. I find that, for r = N*,

where <f>(6) = 2 e"
— 00

In particular, if 0 = 0, f(x) =

where A =
i

There are N2 zeroes of f(x) within a large circle of radius N2, and the
2IV+1 which lie between the circles r = N2, r = (JV+1)2 are given
approximately by

^T[ <? = 1, 2, .... 22H-1).

—Added November \.ih, 1904.]
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