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Abstract5

Inferring species interactions from observational data is one of the most controversial tasks in6

community ecology. One difficulty is that a single pairwise interaction can ripple through an7

ecological network and produce surprising indirect consequences. For example, two8

competing species would ordinarily correlate negatively in space, but this effect can be9

reversed in the presence of a third species that is capable of outcompeting both of them10

when it is present. Here, I apply models from statistical physics, called Markov networks or11

Markov random fields, that can predict the direct and indirect consequences of any possible12

species interaction matrix. Interactions in these models can be estimated from observational13

data via maximum likelihood. Using simulated landscapes with known pairwise interaction14

strengths, I evaluated Markov networks and several existing approaches. The Markov15

networks consistently outperformed other methods, correctly isolating direct interactions16

between species pairs even when indirect interactions or abiotic environmental effects largely17

overpowered them. A linear approximation, based on partial covariances, also performed well18

as long as the number of sampled locations exceeded the number of species in the data.19

Indirect effects reliably caused a common null modeling approach to produce incorrect20

inferences, however.21
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Introduction24

Ecologists’ intense interest in drawing inferences about species interactions —especially25

competition—from presence-absence data has a long history (MacArthur 1958, Diamond26

1975, Connor et al. 2013). If nontrophic species interactions are important drivers of27

community assembly patterns, then we should expect to see their influence in our data sets.28

Despite decades of work and several major controversies, however (Lewin 1983, Strong et al.29

1984, Gotelli and Entsminger 2003), existing methods for detecting competition’s effects on30

community structure are unreliable (Gotelli and Ulrich 2009). More generally, it can be31

difficult to reason about the complex web of direct and indirect interactions in real32

assemblages, especially when these interactions occur against a background of other33

ecological processes such as dispersal and environmental filtering (Connor et al. 2013). For34

this reason, it isn’t always clear what kinds of patterns would even constitute evidence of35

competition, as opposed to some other biological process or random sampling error (Lewin36

1983, Roughgarden 1983).37

Most existing methods in this field compare the frequency with which two putative38

competitors are observed to co-occur against the frequency that would be expected if all39

species on the landscape were independent (Strong et al. 1984, Gotelli and Ulrich 2009).40

Examining a species pair against such a “null” background, however, rules out the possibility41

that the overall association between two species could be driven by an outside force. For42

example, even though the two shrub species in Figure 1 compete with one another for43

resources at a mechanistic level, they end up clustering together on the landscape because44

they both grow best in areas that are not overshadowed by trees. If this sort of effect is45

common, then significant deviations from independence will not—by themselves—provide46
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convincing evidence of species’ direct effects on one another.47

While the competition between the two shrubs in the previous example does not leave the48

commonly-expected pattern in community structure (negative association at the landscape49

level), it nevertheless does leave a signal in the data (Figure 1C). Specifically, among shaded50

sites, there will be a deficit of co-occurrences, and among unshaded sites, there will also be51

such a deficit.52

In this paper, I introduce Markov networks (undirected graphical models also known as53

Markov random fields; Murphy 2012) as a framework for understanding the landscape-level54

consequences of pairwise species interactions, and for detecting them with observational data.55

Markov networks, which generalize partial correlations to non-Gaussian data, have been used56

in many scientific fields to model associations between various kinds of “particles”. For57

example, a well-studied network called the Ising model has played an important role in our58

understanding of physics (where nearby particles tend to align magnetically with one another;59

Cipra 1987). In spatial contexts, these models have been used to describe interactions60

between adjacent grid cells (Harris 1974, Gelfand et al. 2005). In neurobiology, they have61

helped researchers determine which neurons are connected to one another by modeling the62

structure in their firing patterns (Schneidman et al. 2006). Following recent work by Azaele63

et al. (2010) and Fort (2013), I suggest that ecologists could similarly treat species as the64

interacting particles in this modeling framework. Doing so would allow ecologists to simulate65

and study the landscape-level consequences of arbitrary species interaction matrices, even66

when our observations are not Gaussian. While ecologists explored some related approaches67

in the 1980’s (Whittam and Siegel-Causey 1981), computational limitations had previously68

imposed severe approximations that produced unintelligible results (e.g. “probabilities”69
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greater than one; Gilpin and Diamond 1982). Now that it is computationally feasible to fit70

these models exactly, the approach has become worth a second look.71

The rest of the paper proceeds as follows. First, I discuss how Markov networks work and72

how they can be used to simulate landscape-level data and to predict the direct and indirect73

consequences of possible interaction matrices. Then, using simulated data sets where the74

“true” ecological structure is known, I compare this approach with several existing methods75

for detecting species interactions. Finally, I discuss opportunities for extending the approach76

presented here to larger problems in community ecology.77

Methods78

Conditional relationships and Markov networks. Ecologists are often interested in79

inferring direct interactions between species, controlling for the indirect influence of other80

species. In statistical terms, this implies that ecologists want to estimate conditional81

(“all-else-equal”) relationships, rather than marginal (“overall”) relationships. The most82

familiar conditional relationship is the partial correlation, which indicates the portion of the83

sample correlation between two species that remains after controlling for other variables in84

the data set (Albrecht and Gotelli 2001). The example with the shrubs and trees in Figure 185

shows how the two correlation measures can have opposite signs, and suggests that the86

partial correlation is more relevant for drawing inferences about species interactions87

(e.g. competition). Markov networks extend this approach to non-Gaussian data, much as88

generalized linear models do for linear regression (Lee and Hastie 2012).89

Markov networks give a probability value for every possible combination of presences and90

absences in communities. For example, given a network with binary outcomes (i.e. 0 for91

absence and 1 for presence), the relative probability of observing a given presence-absence92
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vector, ~y, is given by93

p(~y;α, β) ∝ exp(
∑

i

αiyi +
∑
i 6=j

βijyiyj).

Here, αi is the amount that the presence of species i contributes to the log-probability of ~y;94

it directly controls the prevalence of species i. Similarly, βij is the amount that the95

co-occurrence of species i and species j contributes to the log-probability, and controls how96

often the two species will be found together (Figure 2A, Figure 2B). β thus acts as an analog97

of the partial covariance, but for non-Gaussian networks. Because the relative probability of98

a presence-absence vector increases when positively-associated species co-occur and decreases99

when negatively-associated species co-occur, the model tends to produce assemblages that100

have many pairs of positively-associated species and relatively few pairs of101

negatively-associated species (exactly as an ecologist might expect).102

A major benefit of Markov networks is the fact that the conditional relationships between103

species can be read directly off the matrix of β coefficients (Murphy 2012). For example, if104

the coefficient linking two mutualist species is +2, then—all else equal—the odds of105

observing either species increase by a factor of e2 when its partner is present (Murphy 2012).106

Of course, if all else is not equal (e.g. Figure 1, where the presence of one competitor is107

associated with release from another competitor), then species’ marginal association rates108

can differ from this expectation. For this reason, it is important to consider how coefficients’109

effects propagate through the network, as discussed below.110

Estimating the marginal relationships predicted by a Markov network is more difficult than111

estimating conditional relationships, because doing so requires absolute probability estimates.112

Turning the relative probability given by Equation 1 into an absolute probability entails113
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scaling by a partition function, Z(α, β), which ensures that the probabilities of all possible114

assemblages that could be produced by the model sum to one (bottom of Figure 2B).115

Calculating Z(α, β) exactly, as is done in this paper, quickly becomes infeasible as the116

number of species increases: with 2N possible assemblages of N species the number of117

bookkeeping operations required for exact inference quickly spirals exponentially into the118

billions. Numerous techniques are available for working with Markov networks that keep the119

computations tractable, either through analytic approximations (Lee and Hastie 2012) or120

Monte Carlo sampling (Salakhutdinov 2008), but they are beyond the scope of this paper.121

Simulations. In order to compare different methods for drawing inferences from122

observational data, I simulated two sets of landscapes using known parameters.123

The first set of simulated landscapes included the three competing species shown in Figure 1.124

For each of 1000 replicates, I generated a landscape with 100 sites by sampling exactly from125

a probability distribution defined by the interaction coefficients in that figure (Appendix A).126

Each of the methods described below (a Markov network, two correlation-based methods and127

a null modeling approach) was then evaluated on its ability to correctly infer that the two128

shrub species competed with one another, despite their frequent co-occurrence.129

I also simulated a second set of landscapes with five, ten, or twenty potentially-interacting130

species on landscapes composed of 20, 100, 500, or 2500 observed communities (24 replicate131

simulations for each combination; Appendix B). These simulated data sets span the range132

from small, single-observer data sets to large collaborative efforts such as the North133

American Breeding Bird Survey. As described in Appendix B, I randomly drew the “true”134

coefficient values for each replicate so that most species pairs interacted negligibly, a few135

pairs interacted very strongly, and competition was three times more common than136
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facilitation. I then used Gibbs sampling to randomly generate landscapes with varying137

numbers of species and sites via Markov chain Monte Carlo (Appendix C). For half of the138

simulated landscapes, I treated each species’ α coefficient as a constant, as described above.139

For the other half, I treated the α coefficients as linear functions of two abiotic140

environmental factors that varied from location to location across the landscape (Appendix141

B). The latter set of simulated landscapes provide an important test of the methods’ ability142

to distinguish co-occurrence patterns that were generated from pairwise interactions among143

the observed species from those that were generated by external forces like abiotic144

environmental filtering. This task was made especially difficult because—as with most145

analyses of presence-absence data for co-occurrence patterns—the inference procedure did146

not have access to any information about the environmental or spatial variables that helped147

shape the landscape (cf Connor et al. 2013, Blois et al. 2014).148

Inferring α and β coefficients from presence-absence data. The previous sections149

involved known values of α and β. In practice, ecologists will often need to estimate these150

parameters from data instead. When the number of species is reasonably small, one can151

compute exact maximum likelihood estimates for all of the α and β coefficients by optimizing152

Equation 1 (Appendix C). Doing so allows us to find the unique set of α and β coefficients153

that would be expected to produce exactly the observed co-occurrence frequencies.154

Fully-observed Markov networks like the ones considered here have unimodal likelihood155

surfaces (Murphy 2012), ensuring that this procedure will always converge on the global156

maximum. The optimization procedures described here and in Appendix C are implemented157

in the rosalia package (???) for the R programming language (R Core Team 2015).158

For analyses with 5 or more species, I made a small modification to the maximum likelihood159
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procedure described above. Given the large number of parameters associated with some of160

the networks to be estimated, I regularized the likelihood using a logistic prior distribution161

(Gelman et al. 2008) with a scale of 1 on the α and β terms.162

Other inference techniques for comparison. After fitting Markov networks to the163

simulated landscapes described above, I used several other techniques for inferring the sign164

and strength of marginal associations between pairs of species (Appendix B).165

The first two interaction measures were the simple and partial covariances between each pair166

of species’ data vectors on the landscape (Albrecht and Gotelli 2001). Because partial167

covariances are undefined for landscapes with perfectly-correlated species pairs, I used a168

regularized estimate based on ridge regression [Wieringen and Peeters (2014); i.e. linear169

regression with a Gaussian prior]. For these analyses, I set the ridge parameter to 0.2170

divided by the number of sites on the landscape.171

The third method, described in Gotelli and Ulrich (2009), involved simulating possible172

landscapes from a null model that retains the row and column sums of the original matrix173

(Strong et al. 1984). Using the default options in the Pairs software described in Gotelli and174

Ulrich (2009), I simulated the null distribution of scaled C-scores (a test statistic describing175

the number of non-co-occurrences between two species). The software then calculated a176

Z-statistic for each species pair using this null distribution. After multiplying this statistic177

by −1 so that positive values corresponded to facilitation and negative values corresponded178

to competition, I used it as another estimate of species interactions.179

Method evaluation. For the first simulated landscape (three species), I kept the180

evaluation simple and qualitative: any method that reliably determined that the two shrub181

species were negatively associated passed; other methods failed.182
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For the larger landscapes, I rescaled the four methods’ estimates using linear regression183

through the origin so that they all had a consistent interpretation. In each case, I regressed184

the “true” β coefficient for each species pair against the model’s estimate, re-weighting the185

pairs so that each landscape contributed equally to the rescaled estimate1. For each estimate186

of a species pair’s interactions, I used this regression to calculate the squared error associated187

with method that produced it. Finally, I averaged these squared errors for each combination188

of species richness, landscape size, statistical method, and presence/absence of environmental189

filtering across all 12 replicates; the mean squared errors associated with these subsets of the190

data determined the proportion of variance explained by each method under different191

conditions.192

Results193

Three species. As shown in Figure 1, the marginal relationship between the two shrub194

species was positive—despite their competition for space at a mechanistic level— due to195

indirect effects of the dominant tree species. As a result, the covariance method falsely196

reported positive associations 94% of the time and the randomization-based null model197

falsely reported such associations 100% of the time. The two methods for evaluating198

conditional relationships (Markov networks and partial covariances), however, successfully199

controlled for the indirect pathway via the tree species and each correctly identified the200

direct negative interaction between the shrubs 94% of the time.201

Larger landscapes. The accuracy of the four evaluated methods varied substantially,202

depending on the parameters that produced the simulated communities (Figure 3). In203

general, however, there was a consistent ordering: the Markov network explained 54% of the204

1The null model generated one Z-score outlier greater than 1000, which dominated the regression and
squared error analyses. To reduce its influence on these results, I changed its value to 32.5, which was the
value of the next largest Z-score in the null model’s results.
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variance overall, followed by partial covariances (32%), sample covariances (21%), and Z205

scores from the null model (17%).206

The models’ accuracies tended to decline when environmental filters were added, particularly207

when the number of species was small and the effects could not be diluted among many208

pairwise interactions.209

Discussion210

The results presented above are very promising, as they show that Markov networks can211

recover species’ pairwise interactions from observational data, even when direct interactions212

are largely overwhelmed by indirect effects (e.g. Figure 1) or environmental effects (lower213

panels of Figure 3). For cases where it is infeasible to fit a Markov network, these results214

also indicate that partial covariances—which can be computed straightforwardly by linear215

regression—can often provide an accurate approximation.216

Apart from the environmental filters, the simulated landscapes presented here represent the217

best-case scenario for these methods. Future research should thus examine these models’218

performance characteristics when the “true” interaction matrices include guild structure or219

trophic levels, which could make the β coefficients much more difficult to infer (particularly220

for linear approximations like the partial covariance approach; Loh and Wainwright (2013)).221

On the other hand, ecologists may often have prior information about the nature of real222

species’ interaction patterns from natural history or ecological experiments, which could223

substantially reduce the probability and magnitude of error. The rosalia package (???) has224

built-in mechanisms for incorporating this kind of information, if it can be expressed as a225

prior probability distribution or a penalty on the likelihood.226

Additionally, it is important to note that, while partial correlations and Markov networks227
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both prevent us from mistaking marginal associations for conditional ones, they cannot tell228

us the underlying biological mechanism. Real species co-occurrence patterns will depend on229

a number of factors—especially in taxa that emigrate in response to other species—and the230

β coefficients in Markov networks have to reduce this to a single number. Thus, experiments231

and natural history knowledge will generally be required to pin down the exact nature of the232

interaction (e.g. who outcompetes whom).233

Despite these limitations, the results with environmental filtering seem to indicate that the234

method can be very robust. Additionally, the fact that Markov networks provide a likelihood235

function to optimize makes them highly extensible, even when it is inconvenient to compute236

the likelihood exactly. For example, the mistnet software package for joint species237

distribution modeling (Harris 2015) can fit approximate Markov networks to large species238

assemblages (>300 species) while simultaneously modeling each species’ response to the239

abiotic environment with complex, nonlinear functions. This sort of approach, which240

combines multiple ecological processes, could help ecologists to disentangle different factors241

behind the co-occurrence patterns we observe in nature. Numerous other extensions are242

possible: similar networks can be fit with continuous variables, count data, or both (Lee and243

Hastie 2012). There are even methods (Whittam and Siegel-Causey 1981, Tjelmeland and244

Besag 1998) that would allow the coefficient linking two species in an interaction matrix to245

vary as a function of the abiotic environment or of third-party species that could tip the246

balance between facilitation and exploitation (Bruno et al. 2003). Fully exploring these247

possibilities will require more research into the various available approximations to the248

log-likelihood and to its gradient, in order to balance efficiency, accuracy, and the ability to249

generate confidence limits for statistical inference.250
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By providing precise quantitative expectations about the results of species interactions,251

Markov networks have the potential for addressing long-standing ecological questions. For252

example, Markov networks can provide a precise answer to the question of how competition253

affects species’ overall prevalence, which was a major flash point for the null model debates254

in the 1980’s (Strong et al. 1984). From Equation 1, one can derive the expected prevalence255

of a species in the absence of biotic influences ( 1
1+e−α ). Any significant difference between256

this value and the observed prevalence can be attributed to the β coefficients linking this257

species to its facilitators and competitors (cf Figure 2D).258

This paper only scratches the surface of what Markov networks can do for ecology. This259

family of models—particularly the Ising model for binary networks—has been extremely260

well-studied in statistical physics for nearly a century, and the models’ properties,261

capabilities, and limits are well- understood in a huge range of applications, from spatial262

modeling (Gelfand et al. 2005) to neuroscience (Schneidman et al. 2006) to models of human263

behavior [Lee et al. (2013); salakhutdinov_restricted_2007]. Modeling species interactions264

using the same framework would thus allow ecologists to tap into an enormous set of existing265

discoveries and techniques for dealing with indirect effects, stability, and alternative stable266

states.267

These results also have important implications for the continued use of fixed-fixed null268

models in ecology. The small simulated landscapes described by Figure 1 show that test269

statistics based on marginal co-occurrence (such as C-scores) will not always have a270

straightforward relationship with the underlying ecological processes. Moreover, the larger271

communities analyzed in Figure 3 often fell so far outside the null distribution2 that it272

2Nearly 20% of the species pairs fell outside the 99.99994% confidence intervals implied by their Z scores
(|Z| > 5), and about 10% had uncorrected p-values below R’s default numerical precision of 2× 10−16.
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probably makes more sense to reject whole model rather than to assign blame for the273

discrepancy to any one species pair. On average, the pairwise Z scores from the null model274

provided less information about direct species interactions than correlation coefficients did.275

Researchers using null modeling approaches may be able to predict twice as much of the276

variance in species’ “true” interaction strengths using partial covariances from linear277

regression, or triple them using a Markov network.278

Null and neutral models can be very useful for clarifying our thinking about the numerical279

consequences of species’ richness and abundance patterns (Harris et al. 2011, Xiao et al.280

2015), but deviations from a null model must be interpreted with care (Roughgarden 1983).281

In complex networks of ecological interactions—and even in small networks with three282

species—it may simply not be possible to implicate individual species pairs or specific283

ecological processes like competition by rejecting a general- purpose null. Direct estimates of284

species’ conditional associations may be the only way to make these inferences reliably.285
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Figure captions292

Figure 1. A. A small network of three competing species. The tree (top) tends not to293

co-occur with either of the two shrub species, as indicated by the strongly negative294

coefficient linking them. The two shrub species also compete with one another, as indicated295
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by their negative coefficient (circled), but this effect is substantially weaker. B. In spite of296

the competitive interactions between the two shrub species, their shared tendency to occur297

in locations without trees makes their occurrence vectors positively correlated (circled). C.298

Controlling for the tree species’ presence with a conditional method such as a partial299

covariance or a Markov network allows us to correctly identify the negative interaction300

between these two species (circled).301

Figure 2. A. A small Markov network with two species. The depicted abiotic environment302

favors the occurrence of both species (α > 0), particularly species 2 (α2 > α1). The negative303

β coefficient linking these two species implies that they co-occur less than expected under304

independence. B. Relative probabilities of all four possible presence-absence combinations305

for Species 1 and Species 2. The exponent includes α1 whenever Species 1 is present (y1 = 1),306

but not when it is absent (y1 = 0). Similarly, the exponent includes α2 only when species 2 is307

present (y2 = 1), and β only when both are present (y1y2 = 1). The normalizing constant Z,308

ensures that the four relative probabilities sum to 1. In this case, Z is about 18.5. C. Using309

the probabilities, we can find the expected frequencies of all possible co-occurrence patterns310

between the two species of interest. D. If β equaled zero (e.g. if the species no longer311

competed for the same resources), then the reduction in competition would allow each312

species to increase its occurrence rate and the deficit of co-occurrences would be eliminated.313

Figure 3. Proportion of variance in interaction coefficients explained by each method with314

5, 10, or 20 species arrayed across varying numbers of sampled locations when environmental315

filtering was absent (top row) or present (bottom row). A negative R2 values implies that316

the squared error associated with the corresponding subset of the predictions was larger than317

the error one would get from assuming that all coefficients equalled zero.318
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