
Appendices

1. Simlulated community structures

I randomly assigned each species pair an interaction magnitude, βij , drawn from
an exponential distribution with rate parameter 1. I also randomly assigned
three quarters of the interaction coefficients to be negative, and the remaining
quarter of the coefficients to be positive.

For the simulated landscapes where the abiotic environment was constant across
locations, each species’ α coefficient was drawn from a normal distribution
with mean -1 and standard deviation 1. For the remaining landscapes, two
environmental variables, x1 and x2 were sampled from independent standard
normals with different values for each location. Each species’ response to these
two environmental variables was a linear function of these two environmen-
tal variables, with coefficients drawn from normal distributions with mean 0
and standard deviation 2. In this way, species’ α coefficients (and thus their
occurrence probabilities) depended on external environmental factors.

Once the “true” coefficients had been generated for each site on the landscape,
I generated possible landscapes using Gibbs sampling. In each round of Gibbs
sampling, I cycled through all the species, randomly updating each one’s pres-
ence/absence vector in response to its conditional occurrence probability:

p(yi) = logistic(αi +
∑
j

βijyj),

where the logistic function is 1
1+e−x (Murphy 2012). After 1000 rounds of

sampling, I continued this procedure until I obtained a landscape matrix where
all of the species occurred at least once. I treated the resulting matrices as
“observed” data for analysis.

2. Log-likelihood gradient

The energy of a Markov network is defined as

E(y;α, β) = −
∑
i

αiyi −
∑
i 6=j

βijyiyj .

The energy function can be used to define the log-likelihood of a given y vector
as

logL(y;α, β) = −E(y;α, β)− log(Z(α, β)).
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Here, Z(α, β) is the partition function, a scaling factor defined as

Z(α, β) =
∑
y∈Y

e−E(y;α,β),

where Y is the set of all possible y vectors.

The partial derivative of the log-likelihood with respect to αi is

∂

∂αi
logL(y;α, β) = yi − p(yi;α, β).

The first term, yi, is zero if species i is absent in the observed assemblage and
one if it’s present. The latter term, p(yi;α, β), describes the expected probability
of observing species i under the current values of α and β. It comes from the
derivative of the partition function, as derived in (learning Boltzmann machines,
Murphy 2012, etc.). Following the gradient of αi adjusts the expected probability
of observing species i until it matches the observed value and the two terms in
the gradient cancel one another out.

The partial derivative of the log-likelihood with respect to βij can be derived
similarly as

∂

∂αi
logL(y;α, β) = yiyj − p(yiyj ;α, β).

Following this gradient adjusts the expected probability of co-occurrence between
species i and species j until this value matches the observed co-occurrence
frequency and the two terms in the gradient cancel one another out.
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