
CosmoSIS:
A multilingual Python plugin
architecture for cosmology

Joe Zuntz
University of Manchester

 
Sarah	
 Bridle,	
 Sco.	
 Dodelson,	
 Elise	
 Jennings,	
 Jim	
 Kowalkowski,	

Alessandro	
 Manzo<,	
 Marc	
 Paterno,	
 Doug	
 Rudd,	
 Saba	
 Sehrish

URL

https://bitbucket.org/joezuntz/cosmosis

or google cosmosis and skip everything 
 about the psychedelic trance band

Parameter Estimation
• Standard Bayesian approach to

constraining models with data

!

!

!

• Need to evaluate likelihood of
particular model parameters given
data

• And then vary parameters to explore
space

P (M |D) =
P (D|M)P (M)

P (D)

logP = logL+ log ⇡ + const.

Varying Parameters
• CosmoMC cosmology

standard for 10 years

• Many other MCMC methods

• emcee, multinest, PMC,

• Grid methods

• Maximum likelihood finders

CosmoSIS Samplers
• Collect samplers, mostly

python

• Provide a uniform interface
to sampler

• Standard parallel sampler
specification

• Shared output interface for
samples

• Postprocessing

CosmoSIS Samplers
• Metropolis

• Emcee

• Maxlike

• Grid

• Multinest

• Population Monte Carlo

• Snake

• Test

• PyMC

• List *

• Minuit *

• Kombine *

CosmoSIS Samplers

CosmoSIS 
Likelihood Pipelines

• Multiple theories and
nuisance parameters models

• Painful shared systematic
and statistical errors

• Strong legacy and
community constraints

CosmoSIS 
Likelihood Pipelines

• Multiple theories and
nuisance parameters models

• Painful shared systematic
and statistical errors

• Strong legacy and
community constraints

Modular Pipelines
• Chunk of theory / likelihood calculation

• Becomes single cosmosis module 
shared lib or python module

• Isolated from other modules 
All inputs/outputs via API

• For legacy codes, simple-ish
interface file connects to
cosmosis

Advantages
• Compare & contrast

models for data

• Verify & debug
parts of code
individually

• Build pipeline at
runtime

• Mix languages

• Share code more
easily

• Automate credit/
citations

Implementation
• Tasks

• Python needs to load and run modules from  
C/C++/Fortran

• Python needs to call C API

• Choices

• Cython, SWIG, Boost, CPython

• None of the above: ctypes & np.ctypeslib

Running C/C++/Fortran
modules from python

Standard form for cosmosis-module interface:

void * setup(c_datablock * options) 
int execute(c_datablock * block, void * config) 
 
function execute(block, config) result(status)
 use cosmosis_modules
 integer(cosmosis_status) :: status
 integer(cosmosis_block), value :: block
 integer(c_size_t), value :: config
!

and then native functions in F90/C to read from block

Running C/C++/Fortran
modules from python

Compile each module into a shared library

 Just add -shared and -fPIC to gcc/gfortran

CosmoSIS opens library with ctypes: 
 lib = ctypes.cdll.LoadLibrary(filename)

and finds functions inside: 
 exe = lib.execute 
 exe.restype = ctypes.int  
 exe.argtypes = [ctypes.c_size_t,  
 ctypes.c_voidp]

Installation
• Many modules in std lib =>

Many dependencies

• CosmoSIS installer

• OSX & SLF/Redhat

• UPS package manager

• down to compiler

No affiliation with  
United Parcel Service

Outstanding Questions
• Do you have a cosmology likelihood? We would love

to package and distribute it!

• Also physics calculations that can feed into
likelihood super welcome!

• Open some issues!

• Can anyone make us a cool logo?

