The Development and Future of
Python at STScl

Perry Greenfield
Science Software Branch
Lorentz Workshop 2015

Outline

Prehistory

By HST launch SSB was developing software
for IRAF
e |t didn’t take long to see unhappiness with the
choice:
— Stagnant facilities
— Inability to enhance system
— Closed architecture
— Non-standard languages
* Looking for a way out by mid-90’s
— Movie provided inspiration

Foot in the door

PYRAF: Sold as a better IRAF CL
Python at the time was the only reasonable
choice for a scripting language

The big surprise was that it was a fantastic
development language too. We wanted to
write everything in it.

But that meant lots of basic tools were
needed to allow that

\.‘.‘ i Bl

But Really, Why Python?

Gives us an excuse to watch Monty Python
and purchase related paraphernalia

It’s fun to use
Excuses use of silly names
Escape from IRAF

4T €Lk

Slightly more seriously

Escape from IRAF

Out-IDL IDL

Unify developer and astronomer languages
Leverage much broader efforts available

More satisfaction developing
— increase “moxie factor”

Avoids Mggse bites

Basic Foundations Needed

e Better array tools
— Numeric at that time, but not good enough
— = humarray =2 numpy

e Efficient and powerful way of reading and
writing FITS files.
— No complete tool available
— Adapted and expanded Paul Barrett’s pyfits

e Visualization
— the situation was a mess
— = chaco =2 matplotlib

Initial use of Python

* HST pipelines and associated software
— CALCOS
— Multidrizzle/astrodrizzle
— Pysynphot
* Rewrote Java-based ETCs in Python
— Though not just for the hell of it

Data Analysis demands more

Operations uses are comparatively narrow

General data analysis requires much broader
toolset that is easier for astronomers to use.

Large numbers of existing tools for IRAF
without corresponding tools in Python.

Tools need to be broader than just what HST
and JWST need.

HST never really had resources to fund this
JWST now comes into the picture.

w

Role for JWST

e Calibration Pipelines
— A chance to learn lessons from HST pipelines

— There were a lot of them:
* Uncoordinated pipelines for different instruments
* |nconsistent standards, algorithms

FITS WCS is unsuitable for raw data

Too much time wasted on calibration utilities

Limitations of FITS itself for data organization

Flexibility for algorithms most important than highly
optimized code

Role for JWST (continued)

e Data Analysis:

— Needed tools to support new modes HST didn’t
have:

 MOS and IFU spectroscopy

— Launch delay provided an opportunity for more
systematic attempt to provide a more complete
suite of data analysis tools

* Did we really want to depend on IRAF to the end of the
mission?

* i.e., we need to replace most useful IRAF capabilities

The Good

 Request to fund “IRAF replacement” well
funded.

* Significant resources added (~ 5 people over 5
years or so)

* Very unusual to see this kind of support for
Data Analysis work.

But...

The Bad

* Such resources are vulnerable to:
— Priority demands
— Political needs
— Budget problems

* Potentially worse:

— Process entanglement

Digression: what works and what doesn’t

e Successful (IMHO):
— |RAF/STSDAS/TABLES
— IDL/astrolib
— AIPS
— Sherpa
— MIDAS

— PyRAF, pyfits, numarray/numpy, matplotlib,
astropy

— None of these had a heavy formal “Program
Management” development process (at least to
start). Some had virtually none at all.

Digression continued

e Unsuccessful (circumspection requires that |
be somewhat vague.)
— Early HST DA efforts (pre-launch); all tossed out.

-
- Data Analysis project

— Most US .-related DA projects

* All these had heavy Program Management
Processes
— No doubt there are other factors, and
— It may just be a coincidence, but nevertheless...

Astropy born in 2011

JWST Data Analysis plans

General issues:

* Significant overlap with Calibration Pipeline
needs

* Make it generic as possible

— If not able to fill in all needs, make it as easy as
possible for others to do so.

e E.g., supply templates and examples of how to do so

e Use Astropy as the focus (either in core or as
affiliated packages)

JWST Plans: Core capabilities

* More useful WCS library

— FITS standard is a very inflexible model
— Essentially unusable for distorted data
— Aids increasing desire to avoid resampling

A more useful data format than FITS (ASDF)

— We need this to store the new WCS info anyway
— Easy to generalize to cover most FITS use cases.

* Modeling/Fitting

— Useful in many contexts for JWST

JWST Plans: Core tools

Supporting (among other things):

Spectral cube visualization and analysis

Multi-Object Spectroscopy visualization and
analysis

Spectral model fitting

PSF matching and related PSF tools
Coronagraph reduction tools
Image Utilities

Source identification and characterization
tools

Philosophy

* Replace important IRAF functionality, but not
necessarily the same approach.

e Rather than large black-box tasks, a layered
approach of useful low, medium, and high-
level libraries and tasks.

* Leverage existing functionality in scipy and
other existing packages

— But may need to wrap to present a consistent and
convenient interface for astronomers.

Dealing with Interactive Use

* Important use case, but

 QUIs are very, very expensive to develop

— Complex ones can be 10X more work than command line
equivalent functionality

— Very easy to waste a lot of resources with mistakes in design
choices

— Early and fast progress gives a false impression of the total
amount of work required

e Effort grows very nonlinearly

— Basic design and technical decisions here have long-standing
conseguences.

— One of my biggest worries.

— Need to be very tough about allowing feature growth
* Rely on plug-ins for extending functionality
 While comparatively primitive, IRAF dealt with this issue in
a very smart and economical way.

— Possibly the fallback approach.

Basic GUI questions

What underlying technology to use?
Web-based vs desktop GUI?
Web pros:

— Avoids installation issues regarding GUI framework

— Much of GUI development moving that way

— Makes remote use very easy (e.g., server side
computations)

Web cons:

— Implies lots of development in Javascript

— Can one really wall off what needs to be in JS?

* Is there a slippery slope of re-implementing many tools
already in Python?

— Raises potential performance issues.

Basic GUI questions (cont.)

* Desktop GUI pros:
— No need to use Javascript

— Avoids potential Python/Javascript interface and
performance issues

— Existing tools mostly available as desktop GUIs

* Desktop GUI cons:
— Frameworks can be difficult installs
— Dwindling interest in general?

* Decision: Desktop GUI for now
— Easiest way to show lots of initial progress

— Binary packagers solve most of the installation issues (e.g.,
Anaconda)

— Users need to install Python anyway, so in this case web
interface doesn’t avoid users having to install software.

Desktop GUI issues

Qt is the obvious choice (for now)

Modern interface with many features and
tools

Cross platform (supports all common OS’s)

Used by the tools we are most interested in
adopting, namely:

— Glue

— Ginga

Reusing these should save a lot of effort. Both
are written in Python

Ginga

e Basic, responsive Image viewer developed by
Erik Jescke at Suburu.

 Well set up to handle plug-ins for customized
applications

e Can be used within Glue!

Glue

* Visualization tool written in Python developed by
Harvard and Chris Beaumont to explore
relationships between different representations
of data

 We are expecting to use it for MOS visualization
and analysis, as well as spectral cube viewing.

* Trying to make it work in different contexts

— E.g., make it easy to go back an forth from interactive
terminal session (or ipython notebook) to the
application.

— Making tools work outside of glue as well as within.

Interactive modeling

Currently working on splot kind of functionality.

Display multiple overlaid 1-d spectra, model fits, residuals,
etc

Interactions include selecting regions, setting initial
parameters (e.g., lines to be fit), etc.

Separate but coordinating widget to interact with models
— changing definitions of models

— adding constraints
* Upper, lower bounds
e Equations relating to other parameters, e.g., fixed wavelength ratios.

— fixing or unfixing parameters

Keep the basics generic enough to use in other contexts
— E.g., modeling widget for use in image fitting or WCS fitting
— 1-d visualization for time series, etc

Wah

SpecPy

Nawe

Imanac \idanc Shanninn Mara =

Raarnh t

08 O+ &

en0n

Plot Options Layer Options

5001

Dispersion [Angstrom]

e Model Editor

GaussianAbsorption1D

© CaussianAbs...

amplitude 0.2
mean 5001.824
stddev 0.0923

Levenberg-Marquardt

Fit Model

0 @ Data

8 sunl
[E] Layer 1
I0) Layer 2

8 ngc0036_1158
[E] Layer 1

8 ngc0036_3042
[E] Layer 1

8 ngc0036_4017
[E] Layer 1

0 @ Measurement Info

Data set: sunl
Layer: Layer 2
Statistics
Mean: 0.731102
Median: 0.853867
Std. Dev.: 0.239203
Total: 73.6517

vare

ata

faft

runc

aul

and

jton

hsci

Engaging Users in Development

STScl using “sprints” to try to engage staff
astronomers in helping define data analysis tools.

3 2-week sprints held so far with 2 per month or
so planned.

Using Trello as a means of floating tasks and
features that should be considered as part of a
sprint.

Not sprints in the usual software sense, but still
very useful to get feedback

— Essentially commits an astronomer to be available for
helping prioritize features and define user interfaces.

Not clear if it can be sustained.

Engaging Users (cont.)

| think it is necessary to involve individuals
outside STScl to make this work.

In other words, make user involvement
astropy-wide.

We welcome others that are interested in
providing input on priorities, use cases, user
testing (and even code!)

What is the best way of interacting with the
community on when we want info?

— Mailing list?

Random Observations

lgnorance is good (in some contexts)

Do not over-analyze or over-design software

— Much better to implement and redesign than try
to get everything right the first time.

Worse is better (!7?)

Don’t force Python on those not open to
trying it!

