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The experiments here described are merely a preliminary 
to large scale experiments in actual closed circuit telegraphy 
the writer hopes to be able to try later on. 

One drawback to the magnetic induction form of telegraphy 
is the rapid rate at which the effect falls off with the distance. 
In the case of true radiation at long distances the forces vary 
inversely as the distance, but a more rapid rate of decay, 
something between the inverse cube and inverse square, holds 
good for the inductive effect at least at short distances. 
Hence the use of magnetic oscillators as transmitters is never 
likely for this reason alone to rival the electric or open 
oscillator, but there may be circumstances under which it 
isi possible to use them with advantage. In conclusion the 
author desires to mention that the "lctual measurements 
recorded in this paper were taken by his assistant, Mr. G. B. 
Dyke, B.Sc., with the kind help of Mr. K. W. McMillan, 
and to these gentlemen is due an acknowledgement of their 
share in the work, in making these observations with much 
intelligence and care. 

LXIX.  The Asymptotic ]~.:cpansion of Bessel Functions of High 
Order. By J.  W. NlCaOnSOZ% D.Sc., B.A., Isaac ~ewton 
St~utent in the University of Cambridge ~. 

I N certain investigations in the theory of diffraction by 
large obstacles the authoi recently found it necessary 

to obtain some approximate formulae for the Bessel functions 
whose order is half an odd integer. The results can be 
applied to a large nmnber of physical problems~ and in fact 
supply the key to the solution of the majority of problems 
connected with the bending of waves round large spheres, 
with which little progress has hitherto been made. The 
Bessel functions are of several types, determined by the 
relation between their order and argument. The attention of 
investigators has been mainly confined to the types in which 
the order is small in comparison with the argument, which 
may be of any magnitude. In this paper, expressions will 
be obtained ibr fufietions of large argument, and of order 
comparable with, but less than that argument. This special 
problem has received little attention, and a memoir by Lorenzt 
appears to furnish the only contribution yet made to the 

* Communicated by the Author. 
t (Euvres Scientifiques, i. p. 405 et seq. 
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subject. The results obtained by Lorenz may be sum- 
marized as follows : -  

Writing 
J 
,.+} 

J �9 ( z ) = ( - l n  ~zz cos~b, (2) 

in all cases in which n+�89 is less than z, which is large; 
then, if z - - n - - }  is of higher order than ~,  

nTr n - b ~  
dP~-(z2--n+�89 ~2- + ( n + } )  sin-1 z (4) 

The formulm deduced by Lorenz for higher values of n, 
more closely equal to, or greater than ,z, are not relevant to 
the present purpose. 

~rhen z and n are only moderately large, these forms cease 
to be good approximations, and in this paper it is proposed 
to generalize them, and to carry the calculation to higher 
orders. 

Making, with Lorenz, the substitutions (1) and (2) in the 
relation 

2 
Y J - J ' J = ( - - ) ' ~  . ~ ,  
+ - -  - q~  

it appears, after some reduction, that 

de 1 
3 ; = ~  . . . . . . . .  (5)  

.But for extremely great values of z, in comparison with 
n, Lomlnel's* ordinary formula yields 

nw 
~ , - -  - ~  �9 

oo 

in the more general case when n is of order z. 
The differential equation for the functions J must there- 

fore be satisfied by the form 

. . . . . .  

JE. g., vide ~rhittaker, l~{odern Analysis, 1902, p. 294. 
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Substituting this expression in the equation 

dSf 2 J ;  ( n . n + l '  
~ . - ~ + i 7 ) f  =o, 

it appears that 

RR"--~R's+(I n. n+l) 
' ~ 2RS--2=0,  

where the accent indicates differentiation with respect to z. 
I f  this be again differentiated it becomes ]inear, and yields 

R" '  + 4(1 n .  n +  1) . n + l  ~ a' +~-~:~-. R=0,  (8) 

which may be integrated in series. 
By reference again to Lommel's formula*, it appears that 

when z is very great in comparison with n, R takes the 
value unity. 

The series solution of (8) satisfying this condition is 

n . n + l  1 n - - 1 . n . n + l . n + 2  1.3 
R = i +  - 7 ~ - - . ~ +  ~ . ~ . ~ + . . .  (9) 

When n is of order z, and z--n is not sinall, this leads at 
once to 

Z 

as proved by Lorenz. The value of' r in (4) ibllows by (6). 
We proceed to obtain a definite integral for the function R. 

Writ ing m---2n + 1, so that m is an odd integer, 

m~-- i  ~ i m~--l~.m~--3 ~" 1.3 
R =  1 + 4z s "2 § (4:zS) ~ " 2.4 + " "  

where 

S(@~ l+m~i I~ . eos"e~z ~ +-m:-l~" mS- 3 ~ i  "\~7S7/e~ e]' + "'" (10) 

But by a well-known result'r, since m is odd, 

m s _ I  s . .~ m ~ - I  s .m s - 3  s 
sin hmmt = sinh t + ~ .  sinb t + 5 ! sinh~t + " "  

"~ Z, oe. cir. t Vide Chrystal's Algebra~ Part II. p. 180. 
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Thus, if  

then 
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sinh t ~ u cos0 
2 z  ' 

2z sinh mt  m2-- 12 3 (cos  0"~ ~ 
 coso 

But when s is an integer,  

Hence S(0) - -  2z e -~ sinh m t d u  ; 
COS 

or, since u cos 6 = 2z sinh t, 

+ . . . . . .  

~Z2 ~0 ~162 - -  e - - 2 z  sinh t/cos 0 sinh m t  eosh t dt,  S(0) m cos 8 

a n d  R = 2 / "  s(e) e. 
7rjo 

The usual rules for the change in the order of integration 
are satisfied by the presence of the exponential factor, and 

7/" 

R = m~'Jo sinh m t  eosh t d t  see~0, dO. e -x~e~ (11) 

where X =  2z sinh t. 
Let  K0(~) be the second solution of Bessel's equation of 

order zero, with independent variable X, defined by 

~rKo(X) = e -xc~ du . . . . .  (12) 
0 

Then writ ing cos 8 =  seth u, 

f/ f/ se~ ~ ~ .  d~ e -xS~e0 --" cosh u. d u .  e -~~176 ~ 

= ) .  

Thus R = - - -  sinh mt cosh t Ko/(2z sinh t) dt  
m o 

4z "'~ d 
- -  sinh mt  ~ {Ko(2Z sinh t) }dt,  

~ t  0 

or R = 4z Ko(2Z slnh t) cosh mt  dr, (13) 
o 

after integration by parts ,  m still denoting 2n + 1. 
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As a double integral of reversible type, 

R---- 4z f ~ f ~  e_2_ ,.i~h t cosh ~ cosh mt dt d~. (14) 
~rdo do 

First  approximation to R .  

The most significant portion of the integral, with the 
assumed magnitudes of m and z, occurs near t = 0 .  Thus 
writing sinh t = t ,  and integrating over a small range which 
is itself capable of being regarded as infinite owing to the 
large argument of the exponentials, 

4z f R = _ ~  d ~  e -2~'t~~ q' cosh mt dt, 
~rJo 

to the first order of approximation. 
This leads to 

. .  ( 1 1 
R = ~r d,l~ l 2z cosh ~ - - m  + 2z cosh ~ + m 

8z_ 2 ~'"~ d (sinh ~)  
- -  7r ,~o 4z'Z-- m2 + 4z~ sinh2 

2z 
- . . . . . . . . . . . .  ( 1 5 )  

in accordance with (3). 

ApTroximation 02" an~/ order to R .  

Wc:proceed to obtain an expansion of the integral 

I = e -~' dt, . . . . . .  (16) 

dv . 

where X is large, and v r or ~ is never zero.in the range of 

integration, v also being everywhere positive. By an in- 
tegration by parts, 

E 1 e_~ ~ 1 ~ d ( 1  I =  --~VVv, + X ~ ~ d t kv , ) e -~Vd t .  

Under the conditions supposed, the second term is of lower 
order in X than the first. Continuing the process, an 
asymptotic expansion is obtained, each term being of a higher 

] 
order in ~ than that immediately preceding. Although not 

in general convergent, this series may be used for calculating 
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R to a high order, as in the usual theory of asymptotic ex- 
pansions. The series is evanescent at the upper limit on 
account of the exponential, and thus, if' % = 0 ,  

( 1 ~t 1 ) 
I ----" Xlv, + X-%a d t"  ~ "q- "'" ,=o" 

d" 1 d 
I f  E denote the operation ~v ~ ~ dt ' 

i = 1 ( 1 +  Eo Eo 2 ) 1  (17) ~ + V + . . .  ~,, 

which may be symbolically written 

= (X--Eo) -~ . 6,o') -~ . . . . .  (18) 
where the sign of equality denotes asymptotic equivalence. 

2 z  i ~ ~ N O W  R ~- ~ 2 o  ([1 -~- [2) (t~t,g, �9 , . . (19) 

w h e r e  (I1, ][2) ~ e -2zsinhtc~ dt .  
0 

I f  m is of the same order as z, and such thag z - m  is not 
of low order, these integrals are of the form treated above. 

Writ ing X =  2z eosh ~ ,  m = X/~, g <  1, 

and denoting I~ or I~ by I, 

Yo t -~- e - a ( s inh  t +~Odl . . . . .  ( 2 0 )  

Thus in the above notation, 

v = sinht T/~t,  v0=0, V o ~ = l ~ ,  
voO") = O, Vo(Zn.1) = 1. 

By help of these results it is readily proved that, if w = v o  z, 

. . . . .  0 

E 4 [ l ~ _  1 10 
0\.,)- - w 6  + w~ 

E = _ w s-1 + w  ~ 

where w = 1 T ~, 

I 
"2sol 
W lo .J 

(21) 

and so on, X w = 2 z c o s h g r ~ m .  
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Accordingly, 

1 1 1 10 1 56 280 I - -  
Xw X~w ~ x'~w ~ + ~2w - - ~  -- X~w ~-  + i~W ~ -- XZw ~ + ... .  

which may obviously be expressed in the form 

z ~3 
I =  1 + ~ !  ~z~m 2+ 

z b ~ 10z ~ 5 6 

5! 3zi~m "~ + 6! ~)zr ~ 

z b T 56z e b s 280z a ~ } 1 
+ 7!bzbm ~ +  sl b~b~nn ~+ ff~.- bz3bnr + '" X,~ 

= D  1 
"XW' 

where D denotes tile operation in brackets. 
Accordingly by (19), 

~r2  o 

2z;o~ { 1 1 } d ,  
-- ~" D 2z-eost~-~m + 2z cosh ~ + m 

since the integral obviously satisfies all necessary conditions 
for differentiation. 

~T 
The value of the integral is (4z~_m2) ~ as in (15), and thus 

R = 2 z {  z 2 ~ ~ D 1 , D 2 ~ +  z 1 + ~-! DID~ + 5! D~D~4 + ~ D1D~6 

56Z~D ~D *• 280z31) ~D 6 + - ~ - .  ~ ~ - ~ - .  1 ~ + . . . }  1 
�9 

where D I - - ~ . ,  D.~ ---~-~- m. 

I f  m __ n + { _ sin a, the second approximation becomes 
~ Z - -  Z 

1 
R = sec a - 8z-- ~ (cos 2 a + 5 sin 2 a) see 7 a. (24) 
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Second form for the function R. 

The formula just proved suggests the existence of an 
asymptotic series of the form 

2 : -  x + ~ + " + (25) X5 . . . . . .  , 

where x=(4z~--m2)i and ~1----1. 

Such a series may be obtained directly from the differential 
equation. Writing R=2zy  in (8), it is found that 

[ ?Tt 2 ~ 1 \ ~ y " +  3y"+  + 4 j = 0 , .  (26) 

where 4n.n-I-1 has been written as 4m:--1. With a new 
independent variable x-----(4z ~ -  m~)�89 this may be reduced to 

~ (.~ + .~)~ j ' "  + 3~ (x ~ - m % "  + 3~',j '  + ~'(1 + ~ ) J  + ~ y  = 0 

. . . .  (27) 
Writing Y =  X 1 "~ ~L 2 

~7. . ~ +  . . . . . .  

the relation between successive coefficients (s odd) becomes 

(s + 3) ~(s+4 + (s + 2)3~ks+2 + 2m2s. s + 1. s + 2. X, 
�9 q-m4s, s - - 2 .  s q - 2 .  )ks-2=O, (28) 

and corresponding to ~1= 1, 

x ~ = - ~ ,  Xo=~(27-24m')  

X~=lh  ( 1 1 6 O m ~ - l J ~ 5 - 4 o . e ) .  (29) 

Any succeeding coefficient may be at once found by (28). 
Every third term in the resulting series is two orders (in m 
or x, and therefore in n or z) smaller than that immediately 
preceding. Thus the second is two orders smaller than the 
first, the fifth two smaller than the fourth, and so on. 

Finally, 

R 1 1 27--24m ~ 

1160m ~ -  1125 - 4 0 m  4 
+ 16 (4z~_ m:)_~ + ...... (30) 

The terms here written give the value of R correctly to 
four places of decimals when z is only 10, and n=8 :  a case 
in which n and z are nearly equal. 
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The fm~ction c~. 

~ z - - R - ~  +--x ~ + ~ + ' ' '  

where x 2 = 4z 2 -- m ~. 

Thus 

where 

~ ' tL~ . . . ) ,  
~z 2z(  l + t t ~  - - =  .~ + ~  + 
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(3~) 

~o = - x ~  + x~  = ~(2~, ,+-  2~), ~ ,(3~) 

t ta= --xz + 2X3X~--X33 = ~ (40m 4 -- 1112m ~ -  1073). } 

and so on. 
Thus by (6) 

u~" x =~- - 1 
~ - z -  2 = x ~ :c 4 ' '"  

where 

o r  

and finally 

, ~ m  ,~ , , t  1--cos 0 ttl tane O_/~4 tan4 0 )dO, 

s i n a =  2- ~ , . . . . . . . . . .  (33) 

r  =i- - 2 s in  ~ z - Z  \ l - I v  V 

- - - - ~ f o  ( / z l + ~ 2 t a n : O + ~ t a n 4 0 + . . . ) d O  

~b=- ~- + z  cosa--2-  - -~ t . s ina  ~t tt2 tt~ 
?It 4 

a--  ~tan a ) +  ~t ( tan  a--  

tan' a:+ ~ tan 

Final Results. 

Collecting the results, it appears that when n and z are 
both large, and z - n  is of order not too small in comparison 
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with z, and if 

Then 

(2 /2R i J ")  =~V/ ~z-z sin ~b 

�9 . 2Rco%b . . . . . .  

m = 2 n + l = 2 z s i n ~ .  ) 

where 

~'3 3 ~5 R=sec  ~ + ~ .  see sec "~ ~ + + "" ' 

(35) 

(36) 

(s + 3)X,+ 4 + (s + 2) 3 X,+2 + 2m~s . s + 1. s + 2. ~.~ + m' s. s ~ -  4.X~-~ = 0 

x3=-�89 xT=  (1160,. -1125-40m4) 
(37) 

and every third term, commenceing with the second, is two 
orders smaller than the one preceding. Moreover, 

~ = ~ + z  c o s ~ - - ~ - . a s i n ~  m = ~4'--]  

,21 { gm~ tan tt-- g~3, (tan a--  1 3 ~t) +~:r m ~. 73 tan ~ -- 

~tanl ~ 5tan 5 1  ~)_ ,, + - . . . ) ,  (38) 

where the coefficients/~ and X are connected by 

/~ k. (1 d-~I q - ~  + . . . )-" (1 q-~-a q - ~ - 4 - . . . ) - 1 , .  (39) 

and every third terra of the brackets in ~b, commencing with 
the second, is two orders below the one preceding. 

In calculating results to a definite order, the coefficients 
may be simplified. For example, if R is required to order 
z-2 inclusive, it is sufficient to take 

X3=--~, G = - 3 m  2, M = - - ~  m4, ~9=0. 

For most physical problems connected with the intensity 
of shadow behind large spheres, the approximation to order 
z -2 is sufficient. 

= ~: + z cos a - -  ~ - -  ~ sin ~ , ( 4 0 )  

it is found that to this order, on reduction after substitution 
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of the values of R and ~, 

. . . . . . .  t j siur 
~+~ v 7rz \ 16z ~ ..'~ z 

. . . .  ~ ~ ( l  16z, . l §  1--~z. 2 " z ' 

(41) 
where c =  ~ seca (1§ -5 fan 'a ) ,  2n-t-1-----2zsiu a. (42) 

When n and z differ so little that a is approximately 90 ~ 
the character of the expansion changes, and an independent 
investigation is required. This will be given in a subsequent 
paper. 

L X X .  On the Stability of the Steady State of Forced 
Oscillation. B~j ANDREW STEPHENSON ~. 

1. I N  the case of a simple system, that is a system in 
I which the restoring force is exactly proportional 

to the ~displacement,' the motion under a periodic force 
is made up of a definite oscillation isochronous with tlle 
generator and an independent free motion of amplitude and 
phase determined by the initial conditions. I f  the system 
is subject to kinetic friction, the free element is gradually 
damped out and the motion approaches asymptotically to the 
state of steady forced oscillation. Although in practice the 
spring of a system varies to a certain extent with the 
amplitude, the results obtained for the ideal simple system 
are in general a~reement with actual phenomena, and 
are tacitly assumea as being practically of universal appli- 
cation. From observation, however, of the behaviour of a 
system such as the simple pendulum when resonant to a 
force of nearly its own period, it is natural to question the 
validity of this assm~ption in certain cases, even for moder- 
ately small amplitudes ; and it is our object here to seek out 
the circumstances in which the simple rules of the approximate 
theory do not apply. 

When account is taken of the variation in the restoring 
force, the equation of motion is to a first approximation 

x'lT21r (i.) 

There does not appear to be any practicable method o[ 

* Communicated by the Author. 


