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Introduction.

1. In this paper I propose to develop the theory of Cesaro's mean
value process for summing a series, when non-integral " orders of summa-
bility " are considered.

Disregarding the way in which Cesaro originally built up his method,
I take as the basis of the extended theory the general formula which is
arrived at* for the r-th mean, viz., SfiplA^, where

r) _ (r+n\ _ (r
)_ (r+

- \ n n\
V

In these formulae r may be supposed to have any real or complex
values whatever, save negative integral values, which for obvious reasons
are throughout excluded. Then, if

tends to a definite limit Lr as n -*> oo, the series will be said to be

• Bromwich, Infinite Series, §§ 122-12R.
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sumviable by Cesaro's method of order r, or, briefly, summable (Cr).* If
no limit exists, but the same function of n oscillates finitely as n -> co,
2wn is said to be finite {Cr)*

When r is restricted to be zero or a positive integer, it is well known
that if 2un is summable (Cr), it is also summable (C r+1) , with the same
" sum " ; also that un,'n

r -> 0 as w-> oo , and 2unx
n -> Lr as x -> 1.

Moreover, if 2wn is summable {Cr) and lvn is summable (Cs), r and s
being zero, or positive integers, then the product series 2w?n, formed
according to Cauchy's rule (i.e., wn = ttoVn-H*i^i-i+----f-M«-i%+^«uo) i8

summable (Cr+s+1) , with a " sum" equal to the product of the sums
of Hun and l,vn.

In the present paper I have confined myself to real values of r,\ posi-
tive or negative, integral or not. It will appear that the properties of the
extended method of summation are quite different on the two sides of the
point r = — 1. All the ordinary properties which hold for positive in-
tegral values of r also hold for non-integral values of r which exceed — 1 .
The marked changes in the formal theory for lower values of r are illus-
trated by the fact that divergent series exist (see § 7) which are summable
(Cr), r being < — 1, with the sum zero.

2. The extension of Cesaro's method to positive non-integral orders of
r is of little advantage in assisting us to find the actual " sum " of a non-
convergent series; it is almost invariably simpler to do this by using the
Cesaro mean value process of some integral order (in §§4,5 it is shewn
that the sum is the same in either case). The value of non-integral
orders of summability lies in the closer information which we may gain
by their use concerning the degree or amount (speaking in a general way)
of the non-convergence of series; and by which we can more narrowly
predict the behaviour of a series when multiplied by other series, or by a
sequence of convergence factors (see §§ 10, 18-17, et seq.).

When the order of summability is negative, on the other hand, Cesaro's
method (for r > — 1) is wholly inapplicable to non-convergent series. It
is useful only for convergent series, and here again, not because it enables

• This convenient notation was introduced by Mr. Hardy in a paper which appeared in
the Proe. London Math. Soc, Ser. 2, Vol. 6, p. 257. The notion of a series being finite (Cr)
is due to M. Bohr, Comptes Bendus, 1909.

| Save in dealing with the class of series 2»'e*"\ in § 23 and § 26.
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us to find their sum* (which maybe supposed already known), but because
of the insight into the nature of the convergence of series, which the
method enables us to obtain.

Note.—The idea of non-integral orders of summability (with Cesaro's method) is not
entirely novel, as I discovered after this paper was written. Dr. Marcel Riesz had stated
several interesting theorems in the Coniptes Reizdus, June, 1909, in which such " orders " are
considered. As he has not yet published more detailed statements and proofs of his theorems,
it is difficult to say how far our work has coincided ; but, so far as I am aware, this does not
extend beyond the theorems of §§ 17, 18. My attention was drawn by Mr. Hardy to Dr.
Riesz's writings after my own work was completed.

In two recent letters to me (December, 1910, and March, 1911) Dr. Riesz mentions that
Knopp has also considered such orders of summability as are here dealt with (Inaugural
Dissertation, Berlin, 1907, and Sitzungsbcrichte der Berliner Math. Gesellschaft, 1907 ; Archiu
der Math. u. Phys., Bd. 12). I have, unfortunately, not had an opportunity of reading
Dr. Knopp's memoirs.

The extension of Cesaro's method to convergent series, by using negative values of r,
is a particular case of the application of methods of summation,f in general, to convergent
series, a treatment of the latter which appears never to have been considered before. This
idea, amongst other recent extensions, in the theory of summability (in particular, Dr. Riesz's
elegant and powerful method of summation^) is discussed more generally in a paper by Mr.
Hardy and myself (written since the present paper was completed) on " A General View of the
Theory of Summable Series. "§

Part I of this paper deals with the general theory of the extended
mean value process, for all real values of r. Parts II and III contain
those parts of the theory (and some of its applications) which relate
more particularly to non-convergent and convergent series respec-
tively.

Part IV contains a few theorems in the closely parallel theory of
summable integrals; they are naturally suggested by the corresponding
theorems for series, but their proofs take a more elegant form, and they
were consequently thought worthy of inclusion.

* Of course the " sum " found by the extended Cesaro method must evidently agree with
the sum as ordinarily defined, if serious complications are to be avoided in the use of the
method.

| We refer to methods which are applicable only to convergent series; of course most
methods which will sum non-convergent series will also sum convergent series, but no new in-
formation concerning the latter is gained from that fact.

$ See §3 of this paper for a brief description of this method, and reference (9), § 2, for
the memoirs in which the method was first described.

§ Quarterly Journal of Matiiematics, 191

2 B 2
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For convenience I here append a list* of the memoirs to which I shall
have occasion to refer. This list does not purport to be at all a complete
bibliography of the subject.! Further, I would make a general reference
to Dr. Bromwich's Theory of Infinite Series, §§ 122-128, where an
account of Cesaro's method for positive integral orders of summability ia
given ; hereafter I shall refer to this treatise by the initials (I. S.f p. ...)•

PART I.

§§ 3. Preliminary formulae.
4, 5. The condition of consistency.

6. On the limit of 2w,,x" as x->l.
7. Divergent series may be summable.
8. General condition of consistency.
9. The index of summability.

10. The generalized multiplication theorem.

11. If 2u,, is summable (Cr), r > — 1, lim -"• = 0.
ii—>» u

3. The following formulae (4)-(6) will constantly be needed. They
hold good whether r is integral or not,

r 2snx
n (4)

\ (5)

(6)

All these series converge absolutely for | x | < 1, if 2w,j is summable (Cr)
or finite (Cr).

* 1. E. Cesuro.—Bulletin des Sciences Mathematiques, 2e serie, t. 14.
2. L. Fejer.—Math. Annalen, Bd. 58, 1903.
3. G. H. Hardy.—Proc. London Math. Soc., Ser. 2, Vol. 4, p. 247.
4. C. N. Moore.—Trans. Amer. Math. Soc., Vol. 8, 1907.
5. G. H. Hardy.—Math. Annalen, Bd. 64, 1907.
6. T. J. I'A. Bromwich.—Math. Annalen, Bd. 65, 1907.
7. G. H. Hardy.—Proc. London Math. Soc, Ser. 2, Vol. 6, p. 255, 1908.
8. H. Bohr.—Comptes Rendus, January 11th, 1909.
9. M. Riesz.—Comptes Rendus, June, July, November, 1909.

10. G. H. Hardy.—Proc. London Math. Soc, November, 1909.
11. L. Fejer.—Cowptes Rendus, December, 1900; April, 1902.
12. L. Fejer.—Mathematikai 6s Physikai Lapok, 1902.
13. L. Fejer.—Math. Annalen, Bd. 58, 1904.
14. G. H. Hardy and S. Chapman.—Quarterly Journal, 1911.

t A more extended list of cognate memoirs will be found in the paper (14) of the pre-
ceding footnote.
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From (5) it follows that

and hence un = ^ - ( " " j " 1 ) .Sf^+CJM ^l,-..., (7)

where (for ;i ̂  r+2) there are r + 2 or n+1 terms according as r is or is
not a positive integer.

It is important to notice that, if /• > — 1, A™ is positive ; if

—p+1 <r< —p,

p being a positive integer, then A\? alternates in sign as n takes the values
0, 1, ...,p-\-l, after which its sign is constant, that of (—iy. Also, if
r > 0, A^ steadily increases as n -> oo ; if — 1 < r < 0, A\? steadily de-
creases to 0 as n -> oo .

Evidently A™ = pn. r n
r/T (1 + r ) ,

where, as n -> oo, r remaining constant,

Hence, since ) = A)/,

- 1 . ( ' )cK-) H - 1 . ( ' )

JiZL — V ,, ±±z^

O(') 1 il— 1 / . . . \ i- ..

Therefore lim '-£•>= lim S ^?tt_w ,. uHl (1 ) -f lim —?
'«->V5 y l y «—>•/! _pn>,(. TO = 0"^ ' \ «/ .i—>« A)l'

v "v1 /i ; / i \ '
= J i m 2 fln-m, , M W ( 1 I ,

since lim^>,(|t. = 1, lim ujn1' = 0 (see § 11).

Now let us consider the method of summation invented by Dr. Riesz.
Here the " sum " of a series is defined by the limit, as n tends con-
tinuously to infinity, of

\{n)J '

where [n] denotes the greatest integer less than n, X (n) is a monotonic
positive function of n (such as n or log n) tending to infinity with n ; and
n is the order of summability (R, X)—in Mr. Hardy's notation. If the
limit exists, the series is said to be summable by Riesz's method of order r,
or, briefly, summable {R, X, ?•).
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When X(n) = n* 2£} takes the form

2 um 1 ) ,

the limit of which (since pn,r-> 1 as ?i->oo) may be expected to be
almost identical with that of $>n /A* . As a matter of fact, the existence
of either limit follows from and involves that of the other, and the two
limiting values are identical; though this would not be the case if n in
2n were only required to tend to infinity through positive integral values
(as in S» / i l l , instead of continuously, t

Thus Cesaro's method, and that particular case of Riesz's method for
which X(«) = n, are completely identical in range. Therefore all the
theorems proved in this paper for series summable {Cr) hold good for series
summable (R, n, r). Many general theorems seem easier to prove directly
for Cesaro's than for Riesz's method ; but it often happens that (as in
§ 24) the latter method is the easier to apply in order to find the sum and
summability of particular series.

4. From (4)—(6) it appears that

c(r> _ e<r+1> o ( ' + l ) i
On — u,, — O,i_i I

j ( ' ) _ A(r+1)-Air+X) I '

for all values of r. By Stolz's extension I of Cauchy's theorem it at once

follows that, ifZunis summable (Cr), it is also summable (Cr+1), pro-
vided that r > — 1.

Stolz's theorem is that

lim -r- =

provided that the latter limit exists, while b,, steadily increases to infinity, as n->oo . Put

then 6,, steadily increases with n if r > — 1.

* We shall here confine ourselves to this case. For a treatment of the general case, which
has very interesting properties, the reader is referred to (9) and (14) of our list.

t For this information I am indebted to the courtesy of (Dr. Riesz, to whom the stated
theorem is due. In the original announcement of the theorem in the CompUs Rendus, July
»nd November, 1909, there was some ambiguity, owing to the crowding-out of certain impor-
tant explanatory remarks. Dr. Riesz has apparently considered only real positive values of r ;
but his proof can be extended down to r > - 1 . In a shortly forthcoming article in the
Cmnptes Rendus, Dr. Riesz intends to prove the theorem in full.

* Bromwich, Infinite Series, App., §152, II.
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5. Further, if ~2un is summable {Cr), then it is also summable (Cr+1),
with the same sum, for r < — 1, provided that ?.iLnx

n has a finite upper
limit as x-> 1.

In particular, the theorem is true if, as in the case of all convergent
series, *Lunx

n tends to a finite limiting value as x -> 1.
By a limit theorem similar in form to that of Stolz (I. S., § 152, I),

lim ^ = lim^+1~fw,

provided that the latter limit exists, that bn steadily decreases to zero, and
that an ->• 0. The existence of the second limit above involves the
existence of lim an, for

I art+i—an | < K {bn—bn+i) ;

and therefore | an+m—an j < K(bn — bn+m) < Kbn,

which (since bn -> 0 as n -> oo) is a sufficient condition for the existence
of lim an.

In this limit theorem put an = -S^+1), 6,l = ^S[+1); bn satisfies the
stated condition provided r < — 1, and the right-hand limit exists.

Hence lim Sn
r+1) exists, i.e., the series 2 S^ is convergent. Thus, by

Abel's theorem,
lim Si;+1) = lim 2 S<WV

n—><*> x—>\ n=0

by (5). If lim 2unx
n is finite, and r < — 1, it follows that

lim S T " = 0,
n—>a>

and all the conditions of the limit theorem are fulfilled. Consequently
lim S£+l)/-<4n+1> is equal to lim S^/A^p, which proves the theorem.
it—><n

6. The theorem that, if 2wn is summable (Gr)t then

lim £unx
n := Lr,

x—>l

was proved by Dr. Bromwich.* His proof, of course, dealt only with
positive integral values of r, but also applies to general values, under

* Math. Annalen, Bd. 65, 1907.
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certain limitations. It rested on a well known theorem due to Ceearo, viz.,
00 rt

Xanx'1 2 an

lim-J = lim -J—,

provided that the latter limit exists, % being a series of positive terms.
By (5) and (6), it follows that

Hence lim "2unx
tl = lim = lim * _. = Lr+ij

provided that the latter limit exists, and that A(*+1) is positive for all
values of n.

Now, if Lr exists, and r > — 1, both these conditions are satisfied,
and Lr = Lf+i. Therefore, if 2w,i is summable (Cr) and r > — 1.

lim 2wna;n = Lr.

The condition r > — 1 is sufficient but not necessary, because the
theorem holds true for convergent series which are summable (Cr),
whether r is > or < — 1 ; by § 5, Lr+\ for such a series is equal to Lr.

7. Since, if Lr exists for any value of r > — 1, 2wwa;,, ->Lr as x -> 1,
it follows that only convergent and oscillatory (not divergent) series are
summable (Cr) for r > — 1. But it is easy to give an example of a
divergent series for which Lr =• 0 for suitable values of r < -— 1, and for
which, of course, I.unx'1 -*• oo as x -> 1.

The simplest instance is the series for which un = A^\ where k is positive but not
integral. Then

Thus Slf ^ ^ = 0 for n ^ 1. Now ^4^"**^ ^ 0 for any value of n, though ->0 as u->oo.
Hence L.k-t = 0, and the series is summable (C — k—2), But it is not summable (C — k — 1) :
L.k-\ is " properly infinite." It is easily seen that L-k-m is 0 if m is a positive integer greater
than unity, and is infinity if m is ositive but not integral.
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8. We shall now prove the following very general theorem:—

If I,un is summable (Cr), wliere r > — 1, then it is also summable (Gr')t

where r' > r (r and r' need not he integral); and the two sums are the
same.

Cesaro, in the memoir already cited, stated, without proof, the follow-
ing theorem :—

If an\n
T -> at and bjn' -> b, as n -> oo, then

He stated no limitations on r and s, but it appears at once from the proof
(which is easy, and over which we shall not delay here) that the theorem
is necessarily true only if /• > — 1, s > — 1.

By (5), we have 2<Sir+<t>a;tt = ( l - x ) - ( r + 8 +

XT On _ On ^0 +On-1-^1
Hence - ^ ^

Remembering that

T **• n *•

,t->oo n
s~l T(s)

o('0 cr(r) i W T
. On ]• On **-n *-* t

A 1
lim I1.. = F̂T

by an obvious application of the above theorem of Cesaro we see that

r ( s )

provided that r > — 1, s > 0. Putting r+s = r\ we get the result as
stated.
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COROLLARY.—Every series summable (Cr) where r < 0, and for which
2iinx

n has a finite limit as x -> 1, is convergent.

For, by repeated application of the theorem of § 5, we can shew that
the series is summable (Ck) where — 1 < k < 0 ; by the above theorem
the series is then summable (CO), i.e., it is convergent.

Hence no oscillatory series summable (Cr), where r > 0, can also be summable (Cr) for
r < 0, because 2u,,x" has a finite limit as x->l, for such series. Thus abnormal series like
that in § 7 differ fundamentally from those aummable by positive means, in that for the
former series the members of the sequence i,^i, Lr.->, ..., Lr+Fll, ... must oease to be finite
before r + HI > — 1.

9. When positive integral values of r are alone considered, it is natural
to speak* of the " degree of indeterminacy " A; of a series, when k is the
least positive integral value of r for which 2wn is summable (Cr). But
when r may range over the whole continuum of real number, there is not
necessarily any least value.

The series 1 — 1+ 1—... is an example ; it is summable (Cr) provided r > 0 , while it evi-
dently is not summable (CO).

If the series 2wn is summable (Cr) for r ^ k, and if I is the lower limit
of all such possible values of k, I will be called the index of summability
of 2wft; it will further be said to be attained or unattained according as
I,iin is or is not summable (Cl).

This definition is so framed to exclude such series as that of § 7, being said to have -co,
as index; arbitrarily large negative values of r exist for which that series is summable (Cr);
but a series will only be said to have -co as its index when (like the geometrical series
1 +1 +1* + ..., where 11 \ < 1) it is summable (Cr) for all positive and negative values of r.

10. The extension to general real values of r, of Cesaro's multiplication
theorem, will now be given.

THEOREM.—// 2un is summable (Cr), and has sum Lr, and 2,u'n is

summable (Cr) and has sum L'r>, then ~2wn is summable (Cr-\-r'-\-l), and
has sum LrL'r, provided that r > — 1, r' > — 1 ; where

Wn =

By (5), we have (l-x)-<r+l)2unx
n =

* As does Dr. Bromwioh in his treatise already oited.
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Hence (l-s)-<r+r'+» lwnx
n = ZSiV.ZS;(rV

™ k ^ « c"(r+f+l) _ ^r) G '(O c(r) Q '<r") ,
where &« = o0 (Sn +61 on-i + -
Hence, by Cesaro's limit theorem, quoted in § 8, we have

»(r Q

im pj+T+i) = j™ ^ Z

= LrLr',
provided that r > — 1, / > — 1.

Thus the index of 2wn does not exceed by more than unity the sum of
the indices of *Lun and ?*un.

This theorem only gives an upper limit to the index of lwn; the real value, as will be seen
in Part III of this paper, often falls below this upper limit.

The index of (1 —1 + 1 —...)J = 1—2 + 3—... does not exceed 1, by the above theorem. It
is easily seen to be 1 unattained, so that in this case the value equals the upper limit. The
usual form of the multiplication theorem, where only positive integral values of r are considered,
would give the upper limit of the degree of indeterminacy as 3, while the value of the'' degree''
is 2. The use of the index of a series, combined with the above generalized theorem, will
usually furnish much closer information about a product series than the older method did.
(I. S. ,§126, Ex. 2.)

Again, if a0 - a , + Oj— ... is a convergent series with sum s {i.e., index > 0), then

h a s i n d e x }> 0 , a n d s u m %S ; f o r i t i s t h e p r o d u c t o f ( 1 — 1 + 1 - . . . ) a n d ( a 0 — O i + a 2 — • • • ) •

11. We shall now prove the generalization of an important theorem
which, for the case when r is integral, is given in Dr. Bromwich's Infinite
Series, § 127.

THEOREM. — If ~Zun is summable (Cr), then lim uJnv = 0, provided
-1 71—>00

Since, by (6), 1 = ( l -

we have, for n > 1,

Making similar use of (5), we have

— re<r> T j ( r h
Un= lon —LnAn ]

Ar) , Ar) (r+l\

= An en-\-An-i ( 1 j

where en -*• 0 as n -*• oo.
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Remembering the properties of A*? noticed in § 3, it is evident that

where Sn-+0 as n -> co.

[Note.—The (>i-f-l)-th term does not vanish, as the above formula
would seem to indicate, but it is easily seen to tend to 0 as n -*• oo , pro-
vided r > — 1. For brevity, therefore, it is here neglected, only the first
n terms being considered.]

An arbitrarily small positive number e being assigned, an integer m
can be determined such that for all values of n > 2m, hm the upper limit
Of

I O n I * I O ) t - 1 | > • • • > I O n - i l l | ,

is < e/8/c, where

Further,

while

il~^) < i r for m<p<Jt>
1 is convergent for >•> — !, because

CT) = I A<-r-'2) I

and

Thus, if r > ~ l , 2 (r+l\
\ V I

converges with the series 2 -—, • Let Rv

be its remainder after m terms. Then*

2

If K' be the upper limit of | 8X \, \S%\, ..., in can be chosen large enough
to satisfy the former condition and also

K'Rn e
2r 3 *

* [|»t] means | n or | (n—1), according a8 w is even or odd.
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Lastly,* 2

Here r may be negative, so that ( l——j need not have any upper limit

if n—p remains finite. But the last expression evidently is less than

K'" f1 (1— x)rdx
nr+1 ) h xr+2 '

where K'" is a constant. Since r > — 1, nQ can be found so that for
n > n0 the value of the last expression is less than ^e.

Collecting these results, it is evident that by taking the expression

for -j in three parts

it can (by taking n > w0 > 2m) be made less than e. Thus under feh&
sole condition r > — 1 the theorem holds as stated.

We can now give a simple example of a series which has its index attained. The series

2 ( —l)"+l (logn-i-i)-- is convergent if a > 0 . But since for no negative value of r does

.UJL ->o, the series is only summable for values of r ^ 0, i.e., its index is 0 attained.
nr

PART II.

Oscillatory Series (r > 0).

§§ 12. Introductory.
13-15. Convergence factors.

16. An extension of Abel's theorem.
17. The convergence factors n~'.
18. The index of S«B/(ra +1) does not exceed that of 2«H, less 1.
20. The index of a Fourier's series and its derivative.
23. The index of the series l ' - 2 ' + 3'—... .

12. As already stated, since all series summable (Cr), where r > 0, are-
such that ~Zunx

n has a finite limit as x -> 1, no such series can be strictly
divergent. Hence only finitely or infinitely oscillatory series will be con-
sidered in this section of the paper.

Neither finitely oscillatory series, nor infinitely oscillatory series, are necessarily summable

* K" is a finite constant depending on K'.
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(Cr) for any positive value of r. As examples we may quote l — t + P—... (t > 1) among series
with infinite oscillation, and among finitely oscillatory series, the one for which

2t*,,x» = 2(-l)Hxu".

Mr. Hardy has shewn* that for this series Sit,, x" has no definite limit, and therefore 2u» as so
defined cannot be summable (Cr) for r > 0.

Another interesting possibility has been shewn to exist, by Mr. Hardy, viz., that series
2tt,, may be found with as large an index as we please, while u» -> 0 and lim 2u,,x" exists ;

thus the series 2 (e'"*/n"), where 0 < b < 1, 0 < a < 1, is summable (Ck) if a + (k +1) 6 > 1.
Mr. Littlewoodf has constructed an example of a series 2«» for which un -*• 0 and

lim 2u,,x" exists, which is not summable for any value of r; his series is 2 (e'i |o'rf/na).

13. A very considerable amount of work has recently been published
on extensions, in various directions, of Abel's theorem on the limiting
value of l.unx

n as x->l. Those extensions which make use of the pro-
perty of Cesaro-summability generally take the form of the statement of
conditions under which an oscillatory series is reduced to convergence
when its terms are multiplied by corresponding members of a sequence of
variable quantities (hence called by Dr. C. N. Moore convergence factors) ;
and further, the additional restrictions to be placed on these convergence
factors in order that, as their independent variable tends to some specified
limit, the sum of the convergent series obtained by their aid may tend to
the Cesaro-sum of the original series. The latest results are due to Mr.
Hardy and Dr. Bromwich. See references, 2-10, § 2.

By the consideration of non-integral means, it is possible to place less
stringent conditions on the convergence factors, just as we were enabled
by the same means to gain more precise information concerning the index
of the product of two summable series. Hence as a contribution to the
abstract theory of summable oscillatory 3eries such an extension of the
known theorems seems to possess some interest.

The complete theorem falls naturally into two parts, A and B.

14. THEOREM A.—If Zun is summable {Cr), or finite (Cr), where
r > 0, then Hunvn converges, provided that

(a) lim nrvn = 0,
n—>•»

and (b) 2nr \ Ar+1 vn\ < K ;l

* Quarterly Journal of Mathematics, Vol. 38, p. 269, 1907.
t J. E. Littlewood, "The Converse of Abel's Theorem on Power Series," Proc. London

Math. Soc. (present volume).
J This, of course, implies the absolute convergence of 2» A11 xvH.
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also its sum equals that of the series 2SS,r>Ar+1wn, which is absolutely con-
vergent.

Here A r + 1 i ' n = lim A;+1?;n,

provided this limit exists ; where

A ; + V = vn-

to p —n-\-l tenns.
If condition (a) is satisfied, then Ar+1vn exists. For the series which

defines it is absolutely convergent when all the v's are replaced by unity,
when r > — 1 ; and for r > 0 we have | va | < K for all values of n.

The following lemma is first required :—

LEMMA.—Conditions (a) and (6) being satisfied, and r being > 0, we
have „

lim 2 nr^vn— 2 n'\r+'vn.
"-*"00 u - l « = 1

By virtue of (a), we can choose p0, an arbitrarily small positive number
e having been assigned, such that for in > p0,

| vmmr\ < e;

also we have ( ) < ——
+ 2 '

where if is a constant for all values of m.

Hence* if p > p0,

= nr

^ / I (p—n-\-\)r+z {p—n+2)r J

< tfe

by an easy integral summation, provided n <.p.

* K is used here, and throughout the subsequent work, in the sense introduced by Borel.
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Hence
p 1

< Ke 2 —

where A" is independent of p. The truth of the lemma is an immediate
consequence.

15. To prove the main proposition we proceed thus :—

By a transformation which is easy, but tedious to write out, it follows
that

2 unvn= i
n=0 >i=0

by making use of the identity (7).*

Now, provided that 1,un is summable or finite (Gr), we have

2
/!=0

<K
>t=0

K is a constant not depending on p. Hence, by the lemma just established,

Urn 2 S[r>A;+1vn= £ S<?&r+1vn,

which is absolutely convergent by comparison with the series

2n r |A r + 1 » t t | .

Therefore £

as the theorem states.

£ un vn = £ S^ Ar+lvn,
0 0

16. THEOREM B.—If tlie convergence factors vn are functions of a
variable x, and are such that lim vn= 1, then, provided that conditions

x,—*c

ia) and (6) hold for all values of x> c, the K of condition (6) being a
constant, we have

lim ~LunVn = L r .
x—>c

We nrst notice that lim A'+1wn = 0 for all values of n; for Ar+lVn is

* A similar transformation is set out at length ia Dr. Bromwich's paper in Math. Annalen,
Bd. 65.
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an absolutely convergent series, and so also is

S> = 1 - ('+1) + C+1) - . . . = (1-1)-' = 0.

Since \vn\ < K for all values of x > c, and all values of n, Ar+lw» is uni-
formly convergent for x > c, by Weierstrass's ilf-test, S' being the com-
parison series. Hence

r+1DB = S' = 0.

Using a device which is frequently of service in this kind of work, we con-
sider the convergent series for which

ao=l, fl9 = a 8 = . . . = 0, s[) = sl = ...= l, S'n^ = A ^ .

Thus, by Theorem A,

2 anvn = v0 = 2 S^ A''-+1 vn = 5 4W
0 0 0

Hence

and since

we have

(Sti»«»-Lrt;o) = 2 [ S ^ - L , ^ ^ ] Ar+l vn,o

Lr as oo

^—LrA^ \ < eMnr for « > w0;

eno can, of course, be taken as small as we please by taking n0 sufficiently
large.

Consequently,

Etlo 2n'Ar + 1»n |

where S can be taken as small as we please by choosing a sufficiently
small interval for x—c, since

lim Ar+1vn = 0,
x—>c

and na is fixed.*

* Ar+1v» does not necessarily -> 0, as x -> c, uniformly for all values of n.

8BB. 2 . VOL. 9 . NO. 1091. 2 C
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Thus lim 5 (S(r)-^(r)Lr)Ar+1vn = 0,

X ^c It n n

whence it follows that

lim 2unvn = Lr lim vQ = L«.

17. After vn = xn, c = 1, which evidently satisfy the conditions of
Theorems A and B, and lead to part of the general theorem of § 6, the
most important convergence factors are vn = (w+1)*. Consequently we
shall prove that they satisfy the general conditions, and so deduce the
following theorem*:—

If 2wn is summable or finite {Cr) r > 0, then Hun(n-\-l)~s is con-
vergent, provided s > r.

Condition (a) is obviously satisfied. It only remains to shew that

2t t r |Ar + 1(?i+l)- s |
is convergent.

We have T(s)m,-S =

Hence '^t;* = £ [\ e~^+n+^xxs-1dx(—l)vl

»=o LJ0

By a well known test,+ the order of summation and integration can
be inverted, and we thus obtain

e-(n+»xxs-1 f 2 (-

= f
Jo
f
o

Thus Ar+I?i~* is positive, and decreases as n increases, just as when r is
integral.

None of the ordinary tests seem to suffice to prove that

is absolutely convergent; we therefore proceed as follows. Consider the

I€=\ z«-1(l-e-*)r+1 2 nre-<n+1)tdx.
Je »="*

* See the note to §2 of the Introduction, p. 371.
f See, for example, Bromwich's Infinite Series, § 176 A.
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A finite constant Km can be found such that the n-th term of the series

^ (n+m)re~nx is less than the corresponding term of the series

»i=o n ( 1 — e ~ x ) r + i

for all values of n, m being fixed. Here Km is independent of e, but is
a function of m. Evidently

where K' is independent of both m and e. Therefore

for all values of p. Consequently
/-co

T <" K \ r*-xp-±, -^. x\.m 1 J: e

m+p f«°
or 2u n \ x \i—e ) e ax <. -—rr^-. <-.

for all values of p and all positive values of e « 1, say). Now let e->•().
Since the number of terms on the left is finite, we have

TrcMim f x^Hl—e-*)r+le-{"+1)xdx = T nr f x*-l{l-e-xy+le-(n+y)xdx
n=m t—>0 J e ?i=w Jo

2

Hence, since K' is independent of p, and s > ?*, the series 'Lnr£r+lvn is
absolutely convergent.

The theorem above has an immediate corollary: If 2wn is summable
by Cesaro's method and has an index of summability k ( > 0), then
CO

1, un(?i-\-l)~l is convergent, provided l> k.

Obviously this corollary enables us to obtain less rapidly diminishing convergence factors
of the type n ~' than the theorems dealing only with positive integral orders of summation ;
and the analysis by which the result has been obtained is only very slightly more complex
than that needed for those theorems.

The corollary gives us some information about the index of a series (supposed summable).
If k is the lower limit of the positive numbers I, for which SttnW.-' is convergent, the index of
2«n is ^ k. If 2M,, is summable of order r, then u,,/wr->0 as u-+co ; hence 2«,,/n'*2 is
absolutely convergent. Therefore such values of I always exist and have a lower limit. But
the series may be reducible to convergence by such factors and yet not be summable, of course.

2 c 2
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If the index does exist, however, wo can find a lower limit to its possible values. Thus
1'—2' + 3"... cannot have an index -c s (s > 0). Also, since «*„/»»•' = ± 1, if the index is s, it is
unattained.

Many further types of convergence factors might be investigated, but
I shall not here multiply examples of such, as the general consequences
of the extension of the theorems to non-integral values of r have been
sufficiently indicated.

18. Dr. H. Bohr* and Dr. Marcel Rieszt have given the theorem that,
if Sttn, is summable (Cs), then 2^/ (^+1) is summable {C s—1), s being
a positive integer. The following extensiont of this theorem is interesting
in itself, and will be of use later.

THEOREM.—If T,un is summable or finite (Ck) ivhetJier k is integral

or not, POSITIVE OK NEGATIVE, then 2w,,/(w+l) is summable (Cft+1).

Let Tn be the function related to the series 2ztn/(?i+l) in the same
way as S^~X) is related to Sttn. Then, by (2) and (3), we have

rp _ y A(k-l) Ur _ y q(fc)n
r=0 n 71+1 r=0

substituting for ur from (7) and making a transformation similar to that
in § 15. Here Bn>r denotes

AZl? _ (k+l\ A^ZiU , (k+l\ A$I^ _
r+1 V 1 / r+2 \ 2 / r+8

to n—r+1 terms (as the theorem has previously been proved for the case
when k is a positive integer, and, as k cannot be 0 or a negative integer,
it will be supposed that k is non-integral). Evidently

= (1—a?)"fc ( xr(l—x)k+1dx {x < 1).
Jo

(a)

• Comptes Rendus, January 11th, 1909.
•f Ibid., June 21st, 1909. These theorems were not stated as above, and also included

further results which are not considered here ; but the form above is immediately deducible
from the theorems.

* See the note to § 2 of the Introduction, p. 371.
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Integrate (r—1) times by parts. We get

2 Bn,rXn + l

* 1 1 JJ) I X

k+Q

r\x(l-x)k+l+1

f X ( l -

The coemcients of x'1 on the right vanish, as we know from (a), up to
n = r + 1 ; also it is easy to see that the coefficient of xr+l is (r+1)""1,
and of xr+* is (Jc—r—l)(r+l)-l(r+2)-1. The coefficients of the higher
terms come, as is seen from (J3), from the expansion of the term

\ o n(l-x)k (h+r+2)\ o
Hence

» — ! /> — k—n p r!
n(n-f-l)

—2. Therefore

The s«tm of the last two terms is readily seen to tend to 0, though they
separately do not -*• 0 as n -*• ao . Also

fe+1]

Tu An
Hence - ^ = (k+1) - ^ 2 ( f c + f . + 1 ) ( j f c + r + 2 )

where e7l -> 0 as ?i -* oo .

Since | St'V-^r I < -^ for all value of r, by comparison with the series
21/r2, we see that

rp M

the latter series being absolutely convergent. This proves the theorem.
CO

We thus have as a corollary:—The index of a series X-i*»/(?i+l) does
not exceed k—1, where k is the index of
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By repeated application of the theorem, we have: The index of a series
2wn being k, the i)idex of 2un/(?i+l)m is }> k—m, vi being a positive
integer (k—m must not be a negative integer).

As applied to convergent (or finitely oscillatory) series, the theorem
must thus be stated : 2wft being a convergent or finitely oscillatory series
[such are easily seen to be always finite (Cr) for any positive value of r],
tJie series 2 {uJ(n-{-l)\ is summable (Cr) for any value of r > — 1, i.e.,
its index (whose existence is thus proved) is !J> — 1.

For the series is finite (Ce) where e is any positive number, however
small; hence 2wn/(rc+l) is summable (Ce—l).

19. One of the most interesting of the applications of Cesaro's method
was that made by Feje"r in a number of papers* on Fourier's series. He
shewed that, if f{x) is integrable and periodic in 2-7T, then the Fourier's
series n

2 (atl cos x-\-btl sin nx)
o

i r
where ao = — f{a)da,

2-7T J

2-7T J _

a,i 1 f r, N cos ,
= — /(«) • nada

On 2-7T ) _ n
J Sin

is summable (Cl), and has the sumt %[f{x+0)+f(x —0)] at any point
x at which the latter limit is definite.

Fejer considered only the case when f(x) has a Riemann integral; wide
generalizations of his theorems have been published by Dr. Hobson and
Lebesgue, in which f(x) is subject to the less stringent condition of

Lebesgue-integrability. I
These theorems may still further be extended § by the consideration

of non-integral orders of summability, and we so obtain the following
theorem, which is of some theoretical interest:—

If f(x) be any function, limited or unlimited, in (—x, TT), lohich has
a Lebesgue integral, and therefore a corresponding Fourier series, then

* See memoirs 11-13 of the list appended to § 2.
t This expression, of course, denotes lim ^[/(a:+ h)—f(x — h)].

hX>

X For references to original memoirs and a full account of the whole subject, reference
may be made to Hobson's Theory of Functions of a Real Variable, ch. vii.

§ Only the main outline of the proof will be given ; it is similar in many ways to the
proof in §§ 469 et seq. of Dr. Hobson's treatise, where the series is shewn to be summable, and
to this place reference may be made to complete the detailed proof.
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the latter series is summable (Ck) for any value of k > 0, and the sum
is equal to £ [ / ( x + 0 ) + / ( x —0)] at any point x at which this limit
exists. Further, the convergence as n -> <x> of the sum-function SfV^?
is uniform in any interval contained within an interval in which f(x)
is limited and at every point of which / ( « + 0 ) +/(x—O) exists.

Thus at such points, if a Fourier's series is not convergent, it only
just oversteps the bounds of convergence. Its index of summability is
then zero.

20. We shall suppose, for convenience, that 0 < k < 1; this, of course,
implies no ultimate restriction. The point x is understood to be one at
which the limit [f(x-\-0)-{-f(x—0)] exists as a definite number. We have

• 2n+l ,
r s i n — - — (a' — x)

2x J_v sin f (a'—x)

Write a' = x-\-2a. Remembering that f{x) is defined as a periodic func-
tion, for values of x not necessarily in the interval (—IT, tr), we have

/ \ 1 K ; / i o n ; / o n sin(2rc+l)a ,
sn(x) = — \J(x + 2a)+f(x — 2a) ] -r- da.

X J sin a
sin a

Hence, denoting S,» fAn , for the point x, by Ln(x), we have

Ln(x) = — (
7T Jo

i ,i \ 1 ^ j(k-i) sin(2n—r+l)a
where 0(a, n) = -** 2 Ay } J—= • •

An r=0 s m a

a . f*" sin(2n+l)a , TTSince —L^—!—— da = —,Jo sin a 2

1 f4"we have — <b(a, n)da = i .
7T Jo

1 f*"
Therefore L n ( x ) - ^ [ / ( a ; + 0 ) + / ( x - 0 ) ] = — F(a, x) 0(a, n)da,

7T Jo

where F(a, x) = f(x + 2a)+f(x-2a)-f{x+0)-f{x-0),

so that Km F (a, x) = 0.
o—>0

Now, by Abel's lemma, since 0 < k < 1,

2
r=0
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where K is a finite constant independent of n and a, provided that

7T

Hence

for

Thus we have

A ix

0 < e < a < ~2 *

1 P" i
— I F{a, x) <f>(a, n)da i

K
An

| F(a, x) | da,

whence it follows that w0 can be so chosen that, for n > n0,

— F{n)x)(l>{a}n)da

and moreover, if x lies within an interval contained in an interval in which
f(x) is limited and at every point of which /(*H-0)-+•/(»— 0) exists, n0 can
be so chosen, independently of x, that this inequality is satisfied for all
points x in this interval.

We shall now show that

1 fe •
— <p(a, n) | da < K,
ir Jo

where K is a constant which is independent of TO.*
Since for 0 < a < IT/TO,

sin(2?i—

sin a

it is easily seen that

[^ I </>(a nS I rfn <T - ^ —I | 9>^a, ?ij | a a <^ ^(k) ^

Hence we have only to shew that

| <p(a, n)\da< K;

* K will have this meaning throughout the remainder of § 20; but its value is not
necessarily the same in each inequality, or even in different parts of the same inequality.
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this involves some rather tedious but not very difficult analysis, and is
best done (as was kindly pointed out to me by Mr. Littlewood) by replacing
the sum ̂ >(a, n) by the analogous integral ^-(a, n), where

i r m l-i fw+i
^(«>n) = \(k\ • xl~l sin (2?i+ 1 — 2x)adx.
r A™ sin a Ji

Evidently

*<* -> = i k & j b J. ^'sin <2"+1 a-w *•
Since we are considering values of a ranging from ir/n to e, the lower

limit of the last integral will vary between these values, while the upper
limit will range from TT to )i^~kir. Hence, writing 2

\U(a, n) = -77775—rr̂ -. 1 yk 1 sin (n'a— 2y) dy
r v ' ' A™ a1 am a \)a

 J y

+ f"+ a]/-lsm(n'a-2y)dy\ .
Jw I

Since 0 < k < 1, the first of the integrals within the last bracket has a
finite upper limit independent of n, and the same is true of the second,
because the infinite integral

I yk~x sin (n'a—2y) dy
Jtr

is convergent (though not absolutely). Consequently

a, n) < k
sin a nka

k k

| \fs(a, n) | da < K'n~k a~k~l da < —•— = K.

Hence it only remains to shew that

I | 0(ct, u) — \{s(a, n) \ da <i K.

Now, by means of Stirling's expression for the gamma function i/.S.,
p. 462), it is not difficult to prove that for w > l , k > 0,
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where 4 is a constant independent of n. Therefore

a?i*

»(o,n)-lyi*?* i m*-1 sin(2w^

sin a m=i ?r sin'a a?i

, • f§ Kda _ il .
and since I —r- < —r log n,

Kda
—r
an?

which tends to zero as n -*• GO , our problem is finally reduced to proving
that

f 2
iJ)L»sma

has a finite upper limit as n -*• oo.

We notice that

fTO + l

mfc~x sin {n' — 1m) a — \ xk~1 sin (??' — 2a;) a (2x

= 7nt-1 sin (»' — 2wi) a— 1 {m-\-y)k~1 sin (nf — 2m—2y)ady
Jo

in (n' — 2m) a fl— ( l + —) cos 2yad?/J

+1 (m>-\-y)*~x sin Zyady cos (n' — 2m) a.
Jo

m

where S has a finite upper limit for all values of y and m considered-
Hence the above difference is equal to

fc-i • / i n \ I~i sin 2o , K ~\
mK * sin (n —2m) a 1

L 2a m A

— \ (m+y)fc ~J sin (̂ i*5^ 2mj a sin 2?/ a dy,
Jo

where if has a finite upper limit for all values of m and a under con
sideration.
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Summing from in =• 1 to m = it, we have

1 ' " _i fW+1 i i • r )

" sin (w — 2m) a— xk 1 sin (;t —2,x)adx
Ji '

r n / "̂\
2 mA-1cos(//'-2^)a(A"a2+ —

|_TO=1 \ 111 I

yf~x sin {n1—2??t)(

Z ' being a constant depending on a but not on m. Now

1cos(w' — 2m) a

1 sin (M' — 2///') a

2 m

o ' '"'-1 sin

2
TO=1

2 < A'tf-'/i

< A"nk-\

Hence

fw+1
1 sin(w' — 2m)a— 1 ^A~xsin(n' — )

fl ,, sin 2?/ a
4 —r-̂ —f l

Jo sin a

1

J

and therefore the integral of the left-hand side, from a = ir/n to a = e, is
also less than K.

This completes the proof that

where K is independent of n.

We can now see that

(a, OJ) ^(a, n)da < KF(e, x),

where Fie, x) is the upper limit of F{a, x) in the interval 0 ^ a ^ e.
Now as e -> 0, F{e, x) -*• 0, and this convergence to the limit is, moreover,
uniform in any interval at every point of which /(x-f 0)+/(z—0) exists,
f(x) being limited in the interval. Therefore the same is true also of

I F(a, x) 0(a, n)da.
Jo
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Collecting our results, we see that

lim L.(aO

and that this convergence to the limit—i.e., the summability (Ck)—is
uniform in such an interval as has been specified. This proves the
theorem.*

21. Fej6r has also shown that, if f'(x) satisfy the condition of in-
tegrability, then the series obtained by term-by-term differentiation of
the Fourier's series for f(x) is summable (Cl) with a sum equal to /'(»),
save at ± TT, if f[x) has a finite discontinuity there. It is easily proved
that the differentiated series has an index

For the Fourier's series for f'(x) is

o d cos nx-\-b'a sin nx),

where «''= ^ f / W« = ̂ f -

a'n = — I / '(a) cos-uada = -—- -\-nba,

i r

b'n = — I /'(a) sill nada = —naH,

where p, q are the limiting values of f(x) at — TT, IT.

Thus / ' (x) = %-7T-£ + 2 -—— cos nx-\-n (bn cos nx—a,, sin nx) \.

Now the series^—•- [ £ + 2 cos?ix] may very easily be shewn t to have
7T7T

index 0 and sum 0 save at the points x = 0, lir, . . . . Hence, by sub-
traction it follows that

/ ' (a;) = Hn {,bn cos nx — an sin nx),

* This theorem has been proved in an entirely different way by Dr. Riesz (Comptes Rendus,
November 22, 1909), as was pointed out to me by Mr. Hardy.

In a paper shortly to be published in the Quarterly Journal of Mathematics, and entitled
"Notes on the General Theory of Summability, with applications to Fourier's and other
Series," I have proved the same theorem (with various others) as a particular example of a
systematic theory.

t This is a very special case of the theorems of §§ 25, 26, but of course a much simpler
proof can be given in this particular case.
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except at 0 and 2ir, if q^p, and that this series has index 3> 0; and
this series is the one got by term-by-term differentiation of the Fourier's
series ior f(x).

22. In Dr. Bromwich's Infinite Series, it is proved that the series
1*—2*-(-3*—..., where s is integral, is summable (Cs + D- The method
there employed in the proof may easily be adapted to shew that the series
is finite {Cs). It therefore seems probable that the index of the series is s
unattained, and that this is also true even when s is not integral. This
theorem seems by no means easy to establish directly; but the following
chain of argument, based on theorems already published* (without proofs)
by M. Bohr and Dr. Marcel Riesz, appears to meet the case.

M. Bohr has shewn that if Hun is finite (Cs), s being integral, then
Xujn* is summable (Cs), if a > 0. Next, Dr. Riesz has proved that if
2an is summable (Cs), s being integral, then *Lanjn

u (where k > 0, integral
or not) is summable (C s — k). Hence F—2p-f-3p—..., where

p = s—a—k,

is summable (C s — k); Therefore, r being any positive number, integral
or not, an integer s, and numbers k and a, can be so chosen that
s—k — a = r, whence it follows that l r—2r+8r—.. . is summable
(Cr+a), where a is only subject to the condition of being positive, how-
ever small. Hence the index of the series is n, and it is evidently (by
§ 11) unattained.

By the theorem of § 18 the same result holds good also when s is
negative, the series then being convergent.

Though we are compelled to adopt the above indirect proof to establish
the theorem that the index of Is—2S+3S—... (s positive or negative) is s,
when Cesaro's method of summation is used, it is not very difficult to
prove the same result directly when, instead of Cesaro's, we use Dr. Riesz's
method of summation in the particular case A(«) = n; and, as we have
already mentioned, the two methods are coextensive (S 3).

The direct proof is given in § 26 of Part III of this paper. It applies
not only to convergent series (when s is negative), but also to all values of
s, integral or not, positive or negative, real or complex.

Moreover, the proof is easily modified, as is there explained, so as to
apply to the case of the more general series 2nseaiw, where 0 < a < 2ir.

See (8) and (9) in the list of references.
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We thus find that, for all values of s, the series

2ft* cos na,

2n* sin na,

are summable OR, n, s') if s' > s, and 0 < a < 27r.
Further, it is readily proved that for values of a such that

| sin a | > e > 0,

€ being any fixed positive quantity, these series are uniformly summable
with respect to a.

If we care to consider complex values of s', corresponding to complex
orders of summability, the theorems still hold good provided that the real
part of s' is greater than the real part of s.

PART III.

Convergent Series.

§§ 23. The index of a convergent series.
24. The index of l - ' - 2 - ' + 3-».

25, 26. Direct determination of this index, for Eiesz's method.
27. The " dilution " of series.
28. The index of an absolutely convergent series.

23. It seems advisable here to say a few words on the use and mean-
ing of the index of a convergent series. Absolutely convergent series are
usually regarded as being essentially more convergent than conditionally
or semi-convergent series (as the very names imply). But, as we shall
shew, a series may be absolutely convergent and yet have index 0
(attained, of course), so that a semi-convergent series may have a lower
index than an absolutely convergent series. The index only measures the
evenness and the rate of the approach of the partial sum sn to its limit.

My original object in considering the summability of convergent series
was to endeavour to prove the multiplication theorems for an absolutely
convergent series with a like series or with a semi-convergent series, as
particular cases of the general multiplication theorem of § 10. But it is
evident that the latter theorem would then require the index of an abso-
lutely convergent series to be — 1 , and § 11 shews that this is not usually
the case. Thus in the case of an absolutely convergent series a knowledge
of its index seems to be of little interest; in the case of semi-convergent
series, however, such knowledge does add to our insight into the non-
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convergence of the product of two such series. In his original memoir,
Cesaro shewed that the product is at most simply indeterminate ; if we
know the indices r and s, we know also that the index of their product is
at most r-f-s+1, so that if r-\-s < 1, the product series is convergent. It
must, however, be noted that if r or s be < — 1, on account of the
limitations of the multiplication theorem, it must be replaced by — 1 .

24. The results of § 18 and § 23 give, in combination, the result that
the index of l~s—2~s+3~5—... is — s unattained, since if —s+1 = r > 0 ,
lr—2r-f3r—... has index 0, and therefore

has index r— 1; if —s+1 < 0, — s-\-m can similarly be taken (in integral),
the theorem of § 18 being repeatedly applied.

By § 10, taken in conjunction with this, certain multiplication
theorems due to Cajori and Pringsheim follow immediately; as, for in-
stance, that the product of l " r —2" r +3- r —. . . and l~s—2-s+3"s—...,
where r < 1, s < l , is a convergent series provided r-\-s > 1 ; for the
index of the product series is not greater than — r—s+1 < 0. More
generally, the continued product of n series of the same type, with indices
—rlf —/'a, ..., —rM each r being << 1, is convergent provided that

When rj = ra = ... = /•„, we have another of Cajori's theorems, viz., that
the n-th power of the series l~s—2~s+3~s—... is convergent, provided
s> 1 —1/w.

25. We now proceed to consider the summability (B, n, r) of the series
I s — 2 S + 3 S - . . . .

(a) First we shall consider convergent series, i.e., series for which s is
negative; or rather, for ease in writing, we shall deal with the series
l~s—2~*-f-8~*—..., where s is positive. Denoting

by 2$~r), we have

uv 1
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where a product of two repeated absolutely convergent integrals has been
transformed into a double integral; this change is legitimate. The above
expression is arrived at by applying the well known formula

Jo

to the expression of uv and (n—v)~r.
Continuing, we have

t-\ ur-l ± e '

o e

o Uo
changing to repeated integrals again. Now

whatever the value of y ( > 0), and

whatever the value of x ( > 0). Thus

whatever be the value of n. If we write it in the form

we see that it steadily increases with n, and hence tends to a definite
limit S, say. Again,

r rr
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As before, this repeated integral tends to a finite limit as n - • oo, and
consequently the whole of the last expression -* oo, S, or 0 according as
r is > , = , or < s. Thus, if r>s, 2<-r) is infinitely oscillatory, while
the series is finite CR, n, —s), and summable (R, n, —r) when r<s.
The index of summability (Bn) is therefore — s, and the sum is

J y e dy

Choose Y so that yr~le~vdy < e,

e being an arbitrarily small positive number. Then

Again, NQ can be so chosen that for n > No, 0 ^ y ^ Y,

Thus, for n > i^0,

i r ie-v m dtf_ J _ r "̂̂ r(«y

Hence the " sum " of the series is

1

which is readily seen to equal the ordinary value of the series.

26. (b) We now pass on to the more difficult case when s is not nega-
tive. By using contour integrals the same method may be extended to quite
general values of s (real or complex, integral or not). Instead of using
the formula (in which s is supposed negative)

T(—s)m+ = \ e-^x-
Jo

we employ the expression

f
SER. 2. VOL. 9. NO. 1092. 2 D
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for m*. The integral is supposed to be taken along a curve commencing
at -f oo, circulating round the origin in the counter-clockwise direction,
and returning again to + 0 0 ; aud (—x)~a is to mean e~sXo8(-~x\ where the
real value of log (—x) is to be taken when x is negative, and the logarithm
is to be rendered one-valued by the stipulation that the variable is not to
cross the real axis at any point on the positive side of the origin.

All the integrals being absolutely convergent, on account of the
presence of e~x or e~y in the integrand, the transformations used in the
first part (a) of the investigation are valid when s has any value. It
follows, by making trifling modifications in the preceding work, that quite
generally the series

is summable {R, >/, r), provided that

B(r)> R(s);

R here means " real part of." And the " sum " is

dr.

The existence and position of the lines of summability which were
introduced by Dr. H. Bohr* are rendered very evident for the case of the
series considered, in the last portion of the proof.

(c) A slight further modification of the proof suffices to deal with the
more general series

s „

If s is negative and equal to —s (say), the expression for ?%~r) which was
found in part (a) of this section becomes

Provided that | sin a | > e > 0, this may be treated as in (a), and the

* See reference 8 in the list of memoirs appended to § '2.
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series thus shewn to be summable (B, n, —r), provided r < s, with the
sum

e",at C™ X*'~ * I'~X(Ix

(?) Jo 1-«-<*-*>•

Moreover, for all such values of a, the convergence of 2\~r) to its limit
is uniform, i.e., the series is uniformly summable (B, n, — r) with respect
to a.

In the general case, when s is not negative, for the same range of a
corresponding modifications of the proof indicated in part (6) of this sec-
tion may be made, and are sufficient to prove the general results relating
to the series

2ns cos nit,

2?ts sin wot,

which were stated at the end of § 28.
The expression to be considered in this last and most general case, is

easily seen to be

where C is a contour of the kind described in the x-plane, and C is a
similar contour in the y-plane. The second term is oscillatory, as n in-
creases, and the condition that it shall vanish is that

Mir) > B(s), 0 < a < 2TT.

As before, this repeated integral tends to a finite limit as n -> oo, and
consequently the whole of the last expression - • oo, ,S, or 0 according as
r is > , = , or < s. Thus, if r > a, l\~n) is infinitely oscillatory, while
the series is finite iB —s), and summable (R —/•) where r < s. Thus the
index of summability by Riesz's method is — s, and the sum is

C D. i&^~' "*] <"le"' •"•
for 0 < >• < s.

27. Some little attention has been paid to the effect on the summability
and the " sum " (by Cesaro's and other methods, such as Borel's) of the

2 D 2
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insertion of zero terms between the original terms of a series. For
brevity it is convenient to speak of such insertion as " dilution " (by an
obvious analogy). Such dilution may be termed uniform if between every
pair of original terms of a series is placed a constant number of zero
terms, and non-uniform when this is not the case.

Non-uniform dilution may destroy the property of Cesaro-summability
of a series, as is shewn by the example (due to Mr. Hardy) quoted in § 13.
Here the series 1 — 1 + 1 — .., is rendered non-summable by suitable dilu-
tion. Non-uniform dilution, however, need not affect the summability or
the sum. An example of this is given in Bromwich's Infinite Series,
p. 388, Ex. 1. An example of how what we may term semi-uniform
dilution may affect the sum of a series is given on p. 263 of the same
treatise.

Uniform dilution, on the other hand, can affect neither the sum nor
the summability of a series. For it is not difficult to prove that if 1>un is
summable (O), where r is integral, then the uniformly diluted series 2vM)

obtained by inserting (m— 1) zero terms between each original pair, is
also summable (Cr). A proof can easily be based on equation (2) of § 124
of Dr. Bromwich's treatise. Assuming this theorem on the summability,
the fact that

2vnx
n= 2unx

mn,

and

have the same limiting value as x -> 1, shews that the two sums are the
same.

Though I have not troubled to write out a formal proof, the above
theorem on summability of a diluted series can probably be extended to
the case when r is not integral.

For further remarks on the summability of diluted series we may refer
to § 29 of the paper (15) cited in § 2.

28. THEOREM.—An absolutely convergent series 2wn, such thai nun-*0
as n -*• ao , has an index of summability >̂ — 1.

Evidently all absolutely convergent series of terms arranged in
descending order of magnitude come under this theorem. The proof is
not difficult, but as the theorem holds not only for Cesaro's method of
summation, but also for Dr. Riesz's much more general method, a general
proof will be given.

To make the one proof suffice for Cesaro's and Riesz's methods, we
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shall consider the limit of

Mr, X) _ V , [ 1 _ ±2 ]
7ii=l \ A n /

where pn-m is unity if Riesz's mode of summation be considered, while it
tends to unity as n -*• oo if Cesaro's mode be used (in which case \m = m).

Consider the first On terms, where 0 < 0 < 1 ; by Tannery's theorem
their sum tends to the sum of the series, as n -> oo. Now the p's are
always finite, and moreover nun -> 0 as n -> oo , if u is the function inverse
to X, i.e., if

\m = M, m = fx(M).
Hence the sum of the remaining terms of 2£'x) is less than

here K denotes a constant independent of n, e ^ O a s n - * * , and

fix) - J L - - h i x - K

Thus, if lim (Xto/m) be finite, the sum of the remaining terms of

2£f k) tends to zero as n -> oo, provided that r > — 1; the result follows.
It may be noticed here that the same theorem holds for summable

integrals.
If the condition nun -> 0 as n -> oo is not satisfied, by § 11 the index

must be ^ — 1. It is evident that we can so dilute an absolutely con-
vergent series as to make the transformed series* 2w» such that nku^ does
not tend to 0 as n -> oo t for any positive value of k whatever. The trans-
formed series, being convergent, has by the theorem of § 11 the index 0
attained.

The general multiplication theorem of § 10 would only give

0+0+1 = 1
as the upper limit of the possible values of the index of the product series
formed from two such transformed absolutely convergent series. By
Cauchy's theorem it is thus evident that in this case the upper limit so
given is greater than the actual value of the index by at least unity.

In conclusion, we may remark that series may be found with as large

* Choose any sequence of positive numbers k0, klt kit ... tending to 0, and any sequence of

positive integers b0, bu b2, ..., such that 6*"ttn -• oo as n-> oo . Then dilute the series so that

u' = un, all other values of u' being 0.
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a negative index as we please, or even with — oo for index. It is not
difficult to pro.ve that if | iilun | < K for all values of n, where t > 1, the
index of 2wn is $> — t; while the geometrical series 1— x+x*—..., where
| x | < 1, has —oo for its index, i.e., is summable (C —k) however large
k may be.

PAKT IV.

Summable Integrals.

29. The extension of Cesaro's methods to the summation of infinite
integrals was first considered by Mr. Hardy ;* only a first " mean " of an
integral was there taken, however. Very shortly afterwards Dr. C. N.
Moore published a papert on the same subject—also considering only
summation (Cl)—in which he proved many properties of integrals so
summable; in particular he dealt with the introduction of convergence
factors into integrals summable (Cl).

The general extension is obvious. Thus an integral is said to be
summable (Gr) if the limit as re -> oo of

-Hr] \ •.. f(£)d£dardat.-l...da,
X Ja Ja Ja J.t

exists and is finite; r is necessarily a positive integer here. The above
repeated integral can immediately be transformed into

which is evidently analogous to Dr. Riesz's method of summation of series,
for the case \n = n. (Mr. Hardy has considered the integral analogue of Dr.
Riesz's most general method of summation.I) In the latter form r need
not be integral, and consequently this form is adopted as the basis of the
general theory of summable integrals.

30. I shall first state the theorem for integrals analogous to Cesaro's

* Quarterly Journal of Mathematics, Vol. 35, p. 54.
f Trans. Amer. Math. Soc, Vol. 8, 1907.
£ I think it extremely probable that Dr. Biesz has himself considered the same problem,

though I have not seen any reference to it in his published works.
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theorem for sequences, which was used in § 8.

If ~^T- -* F* ^T -+G,asx^>cc, then provided that r > — 1, s > - 1 ,

Jim -pk

Here/(a;) and g(x) need not be continuous. As far as I am aware, the
above theorem is new. Its proof presents no difficulty, and will not be
set out here.

The first theorem required in this subject is the one analogous to that
of § 8, and which shews, of course, that in the case of convergent integrals
the condition of consistency is fulfilled.

r
If the integral \ <p(x)dx is summable (Cr), with sum S, r being any

J«
real number > — 1, integral or not, then it is sununable {Cr') with the
same sum, provided that r' > r.

This theorem has been established independently by Mr. Hardy for
r > 0, by a somewhat similar method of proof.

Write r' = r + s + l, so that s > — 1. In the analogue of Cesaro's
theorem, substitute ,x

/ (* )= </>iP)(z-p)rdp,
Ja

g{x) = xs.

Then f(x)/xr-> S, g{x)lxi-*\, as .C->OD. Hence

—^ (* (x-a)s[
X Ja Ja

L i , r(r+i)r(s+Do
tends as x -> <x> to —p , , , ' S.

If 0(/3) is continuous we may evidently invert the order of integration,
and obtain

TOI f 009) f (a-/8)' (x-aY dad/3
Ja J/3

r+s+1,
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Hence S = Km - ^ n f 0(£)(a;-0)r + 4 + 1^.

Since r - f s + 1 = r'» this proves the theorem.

81. The well known theorems of Cauchy, Abel, Mertens, and Cesaro,
on the multiplication of series, have interesting analogues for integrals.
Mr. Hardy has shewn* that if a(x), b(x) be continuous functions of x, such

A{x) = I a(x)dx, B(x) =
Jo Jo

have definite limits as x -» a>, then if

f*c(x) = I a(w)6(x—tt)dw,
Jo

the integral C(x) = 1 c(x)dx,

Jo

is at any rate simply summable, if not convergent.

This theorem is a particular case of the following:—if \ a(x)dx is

!
» Jo

b(x)dx is summable (Cs), with sum B,
o

r»

then if r > — 1, s > — 1, the integral \ c(x)dx is summable (Cr+s + 1),
xoith sum AB.

In the analogue of

Then

Therefore

has the limit

Cesaro'

/(*)

9(x)

f(x)/x

1
xr+s

i

8 theorem, write

= I a(u)(x—u)T du,
Jo

= I b(u){x—u)'du.
Jo

r-»A, g{x)lx'-+B.

+i fiz)g{x—z)dz
Jo

r-fl)r(s-f-l)

* Proc. Lo»idon Math. Soc., Ser. 2, Vol. 8, p. 301.
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as x -»• oo. Now

\ f(z)g(x—z)dz=\ \ a(y)(z—y)rdy\ b(u)(x—z—uYdudz
Jo Jo Jo Jo

)x fx—u rz—u

b (u) du a (y) dy \ (z—y)r(x—z—u)* dz,
o Jo jy

changing the order of integration, which is evidently legitimate uuder the
stated conditions.

Put 6= z~y .
x—u—y

We get

J(z)g(x-z)dz = T

if r > — 1, s > — 1. Again invert the order of integration. Using our
former result, we have

lim 5^+1 \X(x-y)r+>+1dy?b(u)a(y-u)du
*->» x Jo Jo

which proves the theorem.


