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THE object of the following discussion is to make somewhat more
precise the connexion between Laplace's definite integral solution of linear
differential equations with rational coefficients and of "rank"* unity
in the neighbourhood of z = oo and the development of this solution
in the form of a power series with an exponential factor. Poincare has
shewnt that these developments are "asymptotic expansions'" of the
integrals from which they are derived, and as such serve to calculate
numerically the value of the integral for large values of the variable.
But from the function theory point of view asymptotic expansions are
of little value, inasmuch as they do not represent unique analytic
functions. In fact, if we consider the integrals of a given differential
equation, not only does an asymptotic expansion fail to represent a definite
solution, but a definite solution has different expansions for different
phases of the complex variable.

Now it seems clear that there should be some more definite relation
between the divergent series and the integrals of the equation than the
foregoing seems to suggest, and it appears that some approach to this
connexion may be made on the lines of Borel's theory of summable
(sommable) divergent series. 1

The divergent expansions we have to consider are of the form

Leaving out of account for the present the exponential factor, we shall
extend Borel's theory to include series of the form

• Foreyth, Linear Differential Equations, p. 271.
t Ada Math., t. vm., p. 296.
X E. Borel, Leqons tur les Series Divergentes. pp. 97 ff.
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p not being an integer. We require first a generalized form of the V
function. It is well known that for all values of z

J . - , - ,
2 sin

the integral being taken along a contour which goes from infinity along
the axis of t to the origin, makes a small positive circuit round the origin,
and returns to infinity along the axis. Integration along such a path
as this will be denoted by the suffix A. The path may be shown diagram-
matically by the figure

Integrating with respect to a along a like contour, we have

I UrCL —aj / i \ — ( z + r \ I r» •

Consider now a series

u = tto

which may be divergent; and let

Then we have the formal equation

Further u \ a; / \a; / r(^+l)

and T - ^ - W ( «""«. (—) da = 2
1 ~n" ) \ I

X I x

the equation being once more merely formal so far.
We proceed to show that, if we agree to call the definite integral on

the left-hand side the sum of the divergent series on the right, Borel's
propositions regarding the sums of divergent series are equally true of the
more general series and their sums so defined.

* Whittaker's Analysis, p. 181.
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We shall assume that z is not an integer; for otherwise the expression
on the left is illusory. If z is a positive integer, Borel's method of
summation is applicable without modification. If z is a negative integer,
the series begins with a finite number of positive integral powers of x and
the remainder of the series can be summed by Borel's method.

Assuming then that z is not an integer, let

be a series diverging for all values of x, however large.
Let /(£) denote the associated series

and let this series be convergent within a finite circle about £ =• 0; and,
by continuation, define an analytic function, existing over the whole plane,
isolated singular points excepted ; and suppose that none of these singular
points occur within a certain angle 0 bounded by two lines through £ = 0
between which lies the real axis, nor within a circle of finite radius
including £ = 0. Further, suppose that a quantity k, real, finite, and
positive, can be found such that

tends uniformly to zero as £ bee* -mes large within this sector.
NOW r I n x f JI.

J \X I JB X

where on the left the integration is taken as before, and on the right
a straight line inclined to the real axis takes the place of that axis in the
path of integration. Such integrations will in future be expressed by
the suffix B. The path may be shown diagrammatically by the figure

The integral on the right exists if the straight line in question lies within
the angle 9 ; and, if this is so, that path may be taken along the real
axis without changing the value of the integral. We must also have the
real part of x ^ k. The existence of the former integral is contingent
upon (a/x) lying within the angle 6 ; a being real and positive,
x must lie within an angle such that x~l lies within 0. Let the region
which fulfils this condition, and also R (x) ^ k, be called 0 ; in the future
the variation of x will be supposed restricted to the region 0.
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00

The series x~* 2 unx~n will be called " absolutely summable " within
n=0

the region 9, and either of the above written integrals will be denoted by

u being called the " sum " of the above series.
It will now be shewn that the series

CO

x~* 2 unx~n,
n=l

obtained by omitting the first term of the previous series, is likewise
absolutely summable within 0, and has for sum u—uox~s.

The associated series is here

a
z+l

z

\.{z)

the series j-* \f{£)\ being convergent within a finite circle, and giving by

continuation throughout the plane the analytic function f{£). Hence,
since e~fcf | /(£)|, e~&\f'(()\, ... tend uniformly to zero within 0, the
integral ,

I e~a<f>{a, x)da

exists, and the said series is absolutely summable within 0.
Its sum

Conversely, if a series be absolutely summable within 0, the series
obtained by prefixing a term is so also; and its sum is the result of
adding the term prefixed to the original sum. The proof of this is
a natural extension of Borel's proof for the more limited definition, and
need not be given in full.*

From these two propositions it follows immediately that the addition
or subtraction of any finite number of terms at the beginning of a series

• Lemons mr lea Series Divergentet, pp. 101-2.
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does not affect its summability; and, therefore, that the interchange of
any finite number of terms in a series affects neither its summability nor
its sum. Next it is clear that two series of the same index z or of
indices differing only by integers may be added or subtracted term by term,
the result being a series absolutely summable in the region common to
the two series, its sum being the sum or difference of the sums of the
two separately.

We may similarly extend Borel's proposition as to the multiplication
of two such series. Let

be two series having a common region within which they are absolutely
summable. Then, if

Wn = UQVn-\-.

the series a;-(p+<r) \wQ+ ~i + . . .

will be absolutely summable within that common region, and, if u, v, w
denote the sums of the three series respectively, w = uv.

Letting u(a), v(b) denote the associated series

x

the product of the sums of the series is given by

{l—e-2ml>)(l—e-2ma)uv = [ e~ttu(a)da 1 e~bv(b)db.

Inasmuch as e~au(a) and e~bv(b) tend uniformly to zero, as a and b
become infinite along the given contours, this product may be written as
a double integral, viz.,

LI, e-la+b)u(a)v(b)dadb.
IA JA

Call this integral W, and let the variables be changed to

c = a-\-b, y = a—b.

8KB. 2 . VOL. 3 . NO. 8 9 2 .
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The range of integration with respect to c and y will be specified a
little later.

Let \uy~Q)vy-K^~)-n' be denoted by w (c); so that

W — \e-cw(c)dc.

This integral from its formation is known to be valid.
Within the common circle of convergence of u(a), v(b) these two series

may be multiplied together, giving an absolutely converging double series
of powers of a and 6. The typical term in the product is

or (2a;)'>+r+<r+1T(p+r+l)r(cr+s + l ) '

Cail this term wrt.
Now as to the paths to be described by the variables c, y during the

integration :—
For a given value of c, = a-\-b, y describes a path from —c to -\-c, a

small positive circle round the latter point, returns along itself to —c, and
closes the path by a small positive circle round —c.

The variation of c is then represented by the diagram used above :—

The y contour may be represented diagrammatically by

and an integration along such a contour will be denoted by I .
jo

Supposing | c | so small that the corresponding y contour lies wholly
within the region for which <Hc+y) and ^(c—y) lie within the circles of
convergence of u(a), v(b), the integral w(c) can be integrated term by
term. The typical term is

Put now c + y = 2c£,

so that c—y = 2c (1 — t).
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Then f (c+yy
+r(c-yy

+sdy = [ t<>+r(l-t)'T+sdt(2cy+r+''+s+\
Jc Jc

where in I the contour is of the same kind as in , but the points — c
Jc Jc

and c are replaced by 0 and 1. The integral last written is equal to

I P ( l ~
J 2 ( + +J g2.

taken along the contour represented diagrammatically by

and the integral in this expression is Pochhammer's generalization of the
Eulerian function of the first kind.* It is equal to

4sin i Q o + r + l M sin \(*+

_ (1—

Thus Aw dv- u'v'<f" r+inus 2^wrsdy -

If now all the terms of w(c) which have the same value for (r+s) be
grouped together, we obtain

_

provided c lies within a certain circle.
Since u\%{c+y)},. v{%{c—y)} are analytic functions which exist for

all values of c and y, so too is w (c); thus, without the circle of convergence
of the series for w(c), the continuation of this series will give the value of

if u{1s(c+y)\v{l(c-y)dy.
Jc

It is now necessary to see that w (c) satisfies the sam-1 conditions that
u(a) v(b) satisfy, viz., that e~e|w/A)(c)| tends uniformly to zero as c tends to
infinity, when x lies within the region we have called 9.

* Math. Ann., t. xxxv.
M 2
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Within this region we have

and |«li(c-y)H<li8«»(e-y)|,

a, /S being assignable finite constants.

Hence M*(c+y)| v{l(c-y)\\<\eeaP\;

therefore | io(c) |<2 <2a/3|cec|,

or, putting c/x = £ w(gx)

The left-hand side is now independent of x, and this inequality holds

for all points within the region 6. Let K be the least value of B(x) within
this region. Then _.i - , v.;D e e|w(c)|/aj

Hence, provided B(x) > K, e~cw{c) tends to zero when £, and therefore c,
tends to infinity. Similarly, we may show that, since u'{a), v'(b) also
satisfy this condition at infinity, so also does w'(c), and so on.

Consider now the integral

e~ew(c)dc = [e"eM(c)L+l e~c*-w{c)dc =
A JA <JC J

what we have just proved being sufficient to ensure the existence of this
integral. But

so that {l—e-*n<*+')}uv=( e-
edcw(c)

where iu{c) is the function defined by the series

w

This series is exactly the series associated with the divergent series
2 w7l/z

p+<r+n, and, inasmuch as we have proved that

Lt \e-e\wM(c)\\ = 0

within the region 0, this series is absolutely summable, and we have
shewn its sum to be uv.
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Next consider the series formed by differentiating the series x~?yZunx
n

term by term.
For convenience put x = \\z. Then, with the extended definition of

absolute summability which has been adopted, we may apply all Borel's
propositions as to the summability of the derived series to the series

The proofs are so identical with those which he gives that they need not
be repeated here.*

Thus, if the last written series be denoted by u(z) and its sum by u,
the divergent series

is absolutely summable within the same, region as u(z) and has for sum
du\dz. Keverting to the original series in powers of 1/x,

— \u(x)\ = — x~'2u'(z).

But x2 may be looked upon as the limiting form of a series absolutely
summable within any assigned region, and u'{z) has been shewn to
be so within a certain region. r^.husu'(x) is absolutely summable within
that region, and has for sum

_ jdu _ du
dz dx'

Thus the propositions as to differentiation are extended to series proceed-
ing in descending powers of x.

We may therefore state the following proposition, which includes
practically all that has been developed, and which is the generalization
of Borel's theorem :—t

Let u, u, w, ... be series absolutely summable for x = x0 and each of
the typical form

and let P{u, v, w, ..., w(A), vw, iok, x)

be a polynomial in the series u, v, w and their derivatives, the coefficients

* Borel, Lefotu, pp. 108-115 ; Ann. de VSeole Norm., 1899, pp. 94-5.
t Borel, Lemons, p. 114.
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being developable for |x| > |xo| in the form x~m \ao-\—* +•••[, m being
\ X )

any index and the series being convergent.
Then, if the polynomial P is calculated as if the series were absolutely

convergent, and the terms whose indices differ by integers are collected
together, the result is an aggregate of series absolutely summable for
x = 6xQ, 6 > 1 : and, if the sums of these series be substituted in their
place, the result is what would be obtained by substituting in P in the
first instance the sums of the series u7 v, w, ....

Further, it is clear that the sum of an absolutely summable series
is identically zero when, and only when, each coefficient vanishes
separately. Hence, if the equation P(u, v, ..., x) = 0 is satisfied
formally by the absolutely summable series u, v, w, ..., the analytic
functions defined by these series also render the polynomial P identically
zero.

We now proceed to consider expressions of the form

e x |MO1- x + . . . , ,

where x~"pjw0-}-••.} is absolutely summable within a certain region, and
is denoted by u, its sum being u.

Two such expressions with the same exponential factor may clearly
be added term by term to give a like expression. Two series e^.u and
efo.v, if multiplied formally, give eh+®xuv, and the product uv is
absolutely summable, giving the product of the sums of u and v, that is, uv.

Consider now the process of differentiation applied to such expressions.
Differentiating formally, we have

A {e^.u} = er*{u'+au\.
CLX

Now u' is absolutely summable and may be added term by term to au;
so that

±{er*u} = «-tfl>
ax l

where w(1) is absolutely summable. Further, the sum of

Thus the process of differentiation gives a series of like form whose sum is
the derivative of the sum- of the original expression.

It is now clear that the general proposition stated above may be
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extended to the case where u, v, w represent absolutely summable series,
each multiplied by a factor of the form e"*, and where P may also contain
explicitly expressions of the same form.

We may now bring what has been said above into line with the normal
series satisfying linear differential equations with rational coefficients, of
rank 1 at infinity, and of order n. Subject to the condition that a certain
algebraic equation has its roots all different, we know that there are n
expressions of the form

eaXx~p\uQ-{'-*> + . . . [

which formally satisfy the equation.
Assuming that this series is absolutely summable for certain values of

x, it follows that the sum, viz.,

I>+2) xi=hHfnr^+^^"^
is an integral of the equation for those values of x.

Now this integral may easily be changed into Laplace's definite
integral solution.

Put a = — x(t—a). Then the above sum becomes at once

The contour now consists of a line from infinity to the point t = a,
encircling that point and returning to infinity in the direction whence it
came, namely, the direction such that x(t—a) is real and negative. Calling
this path B' and integrating by parts, the sum becomes

The assumption as to the absolute summability of the series causes the
quantity within brackets in the integrated part to vanish at the infinite
limits. Thus we are led to the conclusion that, provided

converges uniformly to zero when t becomes infinite in a certain direction
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for all values of x within a certain region 0, the integral

exists and is an integral of the given equation*
Now it has been shown directly from the recurrence formula for the

coefficients uT that the series within the last written integral satisfies the
equation known as Laplace's transformation of the given equation,* and
hence that a finite number X exists, such that, as t becomes infinite by
real positive values,

for all values of n such that R(jx) > X.t

We have thus arrived directly from the normal series at an analytic
function satisfying the equation within a given region of the x plane, and
therefore throughout its region of existence; that is to say, we have
shown that a normal series formally satisfying an equation defines a
unique integral of that equation by the method here developed, and that
these series may be added, multiplied, and differentiated within a certain
region as if they were absolutely convergent.

Poincar6's proposition that they asymptotically represent the definite
integrals is included in the fact of their absolute summability. The proof
is essentially the same as that which Poincare" gives.!

As was stated at the outset, the object of this discussion has been
rather to make closer the connection between the divergent normal series
and the ordinary integrals of the differential equation than to obtain fresh
knowledge of the integrals from the divergent series apart from the known
integrals. One tangible result, at least, emerges from this reversal of the
procedure which begins with the definite integral, viz.:—If two differential
equations with rational coefficients, and each of rank 1, are satisfied
formally by one normal series, these equations have a common integral,
even if that series be divergent; and consequently, if one equation be
irreducible, the second admits of all the integrals of that one as integrals
of itself.

* V. Schlesinger, 1.1., § m.
t V. Foreyth, Linear Differential Equations, pp. 319-322.
% See also, Le Roy, " Memoire BUT lee Series div.," Ann. de la Fae. dei Sex. de Tout., 1900,

p. 427.
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Suppose two such equations to be denoted by B and S, S being irre-
ducible, and R containing all the integrals of S, and being therefore of
higher order than S.

If the Laplace transformations of these two equations be called U, V
respectively, then at least one integral of V must satisfy U; and, if V is
irreducible, all the integrals of V must satisfy U. In this case, therefore,
U must be of higher order than V, unless the equations are identical.

But the order of the Laplace transformation is the degree of the first
coefficient in the given equation. Hence, if a linear equation of rank 1
with rational coefficients is irreducible, and also its Laplace transformation,
and a normal series exists satisfying this equation and another equation of
rank 1 with rational coefficients, this other equation must not only be of
higher order, but must have its coefficients of higher degree. In par-
ticular, it follows that no two equations of Laplace's type, i.e., with linear
coefficients, can be satisfied by a common normal series.


