ADDITIONAL NOTE ON TWO PROBLEMS IN THE ANALYTIC THEORY OF NUMBERS

$B y$ G. H. Hardy.

[Received November 27.th, 1917.-Read January 17th, 1918.]

1. This note is a short supplement to my paper "The average order of the arithmetical functions $\mathrm{P}(n)$ and $\Delta(n) "$, published in Vol. 15 of the Proccedings.* I did not point out explicitly the relation of the results which I proved there to the well known, but very difficult, theorems expressed by the equations

$$
\begin{equation*}
\mathrm{P}(n)=O\left(n^{\frac{1}{3}+\epsilon}\right), \quad \Delta(n)=O\left(n^{\frac{1}{3}+\epsilon}\right) . \tag{1}
\end{equation*}
$$

These theorems may be deduced very simply, and by two different methods, from the theorems proved in my paper ; and each deduction has points of interest. I state them in terms of $\mathrm{P}(n)$ and the associated functions.
2. In § 2.6, I proved that \dagger

$$
\begin{equation*}
\int_{1}^{x}\left\{U_{a}(\tau)\right\}^{2} d \tau=O(x) \tag{2.61}
\end{equation*}
$$

But it is easy to see that my argument really proves more than this, viz.,

$$
\int_{x^{\prime}}^{x}\left\{U_{a}(\tau)\right\}^{2} d \tau=O\left(x-x^{\prime}\right)
$$

provided only that $x-x^{\prime}>K \sqrt{ } x$. In fact the argument used at the top of p. 208 gives

$$
\int_{x^{\prime}}^{x}\left\{U_{a}\left(w^{2}\right\}^{2} d w=O\left(x-x^{\prime}\right)\right.
$$

provided only that $x-x^{\prime}>K$. If now we write $w^{2}=\tau, x^{2}=\xi$,

[^0]$x^{\prime 2}=\xi^{\prime}$ (as on p. 207), and
$$
W\left(\xi, \xi^{\prime}\right)=\int_{\xi^{\prime}}^{\xi} \frac{\left\{U_{a}(\tau)_{i}^{\prime 2}\right.}{\sqrt{ } \tau} d \tau=O\left(\sqrt{ } \hat{\xi}-\sqrt{ } \xi^{\prime}\right)
$$
we have $\left.\int_{\xi^{\prime}}^{\xi} U_{a}(\tau)\right\}^{2} d \tau=\int_{\xi^{\prime}}^{\xi} \sqrt{ } \tau \frac{d}{d \tau} W\left(\tau, \xi^{\prime}\right) d \tau$
$$
<\sqrt{ } \xi W\left(\dot{\xi}, \xi^{\prime}\right)<\left(\sqrt{\xi}+\sqrt{ } \xi^{\prime}\right) W\left(\xi, \xi^{\prime}\right)=O\left(\xi-\xi^{\prime}\right):
$$
a result equivalent to $\left(2.61^{\prime}\right)$, since $\sqrt{ } \xi-\sqrt{ } \xi^{\prime}>K$ corresponds to
$$
\xi-\xi^{\prime}>K \sqrt{ } \xi
$$

From (2.61') follows, as at the beginning of $\$ 2.7$,

$$
\frac{1}{x-x^{\prime}} \int_{x^{\prime}}^{x}\left\{S_{a}(\tau)\right\}^{2} d \tau=O\left(x^{\frac{1}{3}+a}\right)
$$

3. Suppose now that $\quad\left|S_{a}(x)\right|>x^{\beta}$,
where $0<\beta<\frac{1}{2}+\alpha$, for a sequence of values of x, say $x_{1}, x_{2}, x_{9}, \ldots$, surpassing all limit. When x increases by unity, the change in $S_{a}(x)$ is of order $O\left(x^{a+e}\right)$.* Hence

$$
\left|S_{a}(x)\right|>K x^{\beta}
$$

throughout an interval extending on either side of x_{i} to a distance greater than $K x_{i}^{\beta-a-e} \quad$ We have therefore

$$
\begin{equation*}
\int_{x^{\prime}}^{x_{i}}\left\{S_{a}(\tau)\right\}^{2} d \tau>K x_{i}^{3 \beta-a-\varepsilon}, \tag{2.71"}
\end{equation*}
$$

if $x_{i}-x_{i}^{\prime}>K x_{i}^{\beta-a-e}$. This last inequality will certainly be satisfied if $x_{i}-x_{i}^{\prime}>K \sqrt{ } x_{i}$, since $\beta-\alpha<\frac{1}{2}$. Thus we may take $x_{i}-x_{i}^{\prime}=\sqrt{ } x_{i}$ and use (2.71") in conjunction with (2.71') ; and plainly this gives
or

$$
\begin{gathered}
x^{3 \beta-a-\epsilon}=O\left(x^{1+a}\right), \\
\beta \leqslant \frac{1}{3}+\frac{2}{3} \alpha+\frac{1}{3} \epsilon
\end{gathered}
$$

We have therefore

$$
S_{a}(x)=O\left(x^{\frac{1}{3}+\xi_{a}+\epsilon}\right),
$$

for every pair of positive values of α and ϵ; and therefore, by the theorem quoted in the footnote to p. 200,

$$
S(x)=O\left(x^{\frac{3}{3}+a+\epsilon}\right) .
$$

[^1]Since α and ϵ are arbitrarily small, this is equivalent to the first of the equations (1).

It would seem that it should be possible to prove that

$$
\begin{equation*}
\frac{1}{x-x^{\prime}} \int_{x^{\prime}}^{x}\{\mathrm{P}(\tau)\}^{2} d \tau=O\left(x^{3+e}\right) \tag{2}
\end{equation*}
$$

if only $x-x^{\prime}>K \sqrt{ } x$, and so to prove that the average order of $\mathrm{P}(n)$ is $O\left(n^{\ddagger+e}\right)$ in a sense more precise than that in which it is proved to be so in my former paper. I have, however, not been able to complete the proof.
4. We can also deduce the first of the equations (1) from the formula

$$
\begin{equation*}
S_{a}(x)=O\left(x^{\frac{1}{2}+\frac{1}{2} a}\right) \quad\left(a>\frac{1}{2}\right) \tag{2.42'}
\end{equation*}
$$

an equation equivalent to (2.42) of my former paper. This deduction depends on a general arithmetic theorem proved by K. Ananda Rau.

$$
\text { If } a_{n}=O\left(n^{c}\right) \text { and }
$$

$$
S_{\kappa}(x)=\sum_{n \leqslant \lambda}(x-n)^{\kappa} a_{n}=O\left(x^{\gamma+\epsilon}\right)
$$

where $0<\kappa<1$ and $\gamma>0$, for every positive value of ϵ, then

$$
S(x)=\sum_{n \leqslant 2} a_{n}=O\left(x^{\frac{\gamma}{1+\kappa}+e}\right)
$$

for every positive value of ϵ.
This theorem, which I state in the form in which I wish to apply it, is a particular case of more general theorems proved by Ananda Rau, the aim of which is to extend, to arbitrary (non-integral) orders of integration and summation, a number of theorems proved by Mr. Littlewood and myself in a paper published in Vol. 11 of the Proceedings.* Dr. Marcel Riesz first succeeded in extending some of our principal theorems in this manner, and Ananda Rau has since investigated the generalisations more systematically. I shall not insert a proof here, as I hope that Ananda Rau will soon be able to publish proofs of the more general theorems.

In the present case we have

$$
a_{n}=r_{n}, \quad \kappa=\alpha>\frac{1}{2}, \quad \gamma=\frac{1}{4}+\frac{1}{2} \alpha ;
$$

[^2]and the conclusion is that
$$
S(x)=O\left\{x^{\frac{1+2 a}{4(1+a)}+e}\right\} .
$$

Since α may be as near to $\frac{1}{2}$ as we please, and $(1+2 \alpha) / 4(1+\alpha)=\frac{1}{3}$ when $\alpha=\frac{1}{2}$, we have

$$
S(x)=O\left(x^{\frac{马}{3} \epsilon}\right)
$$

which is equivalent to the first of the equations (1).
The best known " O " results concerning $\mathrm{P}(n)$ and $\Delta(n)$ are

$$
\mathrm{P}(n)=O\left(n^{\frac{3}{3}}\right), \quad \Delta(n)=O\left(n^{\frac{1}{3}} \log n\right) .
$$

These results may, as has been shown by Landau,* be deduced from the expressions of

$$
\underset{n \leqslant x}{\sum}(x-n)^{k} r(n), \quad \Sigma(x-n)^{k} d(n),
$$

where k is a positive integer, as series of Bessel functions. But the deduction is of a much less direct character than that outlined above.

* "Über die Gitterpunkte in einen Kreise (II)", Göttinger Nachrichten, 1915 : "Ü̈ber Dirichlet's Teilerproblem ', Münchener Sitzungsberichte, 1915, pp. 317-323.

[^0]: * Pp. 192-213.
 † I retain the notation of my paper, and the numbering of formulæ quoted from it.

[^1]: * This follows at once from the equation which immediately precedes (2.82), if we observe that $S_{\mathrm{a}}(x)$ is a continuous function of x.

[^2]: * "Contributions to the arithmetic theory of series", Proc. London Math. Soc., Ser. 2, Vol. 11, 1912, pp. 411-478.

