Über die Grundlagen der Mengenlehre und das Kontinuumproblem.

Von

Julius König in Budapest.

(Zweite Mitteilung.)

Die folgenden Zeilen schließen sich genau an die Entwicklungen an, die ich unter demselben Titel vor einigen Monaten (Math. Annalen, Bd. 61, S. 156—160) gegeben habe. Es wird jedoch die dort unter 3. gegebene Schlußweise*) hier gar nicht benützt. An ihre Stelle tritt, zur Erhärtung meiner unverändert gebliebenen Ansichten, eine neue Methode, die im wesentlichen auf einer Verschärfung und Verallgemeinerung des Begriffs "endlichdefiniert" beruht.

Diesen Auseinandersetzungen möchte ich eine prinzipielle Bemerkung vorausschicken. In den Grundlagen der Mengenlehre handelt es sich um die Formalisierung und Legalisierung von Tatsachen, die der inneren Anschauung unseres Bewußtseins entnommen sind, so daß unser "wissenschaftliches Denken" selbst Objekt des wissenschaftlichen Denkens ist. Dieser Zusammenhang der Mengenlehre mit Logik und Erkenntnistheorie ist unlösbar und tritt schon in den Elementen der Arithmetik zutage.

So nützlich auch in dieser Richtung die bisher nach mathematischen Analogieen erfolgte Algebraisierung der Logik ist, so kann uns diese allein über die vorhandenen Schwierigkeiten nicht weghelfen. Die "Tatsachen" und "Gesetze", die unserem wissenschaftlichen Denken zugrunde liegen, müssen genauer als bisher untersucht werden, und — vor allem — eine Disziplin geschaffen werden, die ich nach Analogien der "mathematischen Physik" eine Theorie der logischen Evidenz nennen würde.

Diese Richtung hoffe ich sehr bald in einer ausführlicheren Publikation weiter zu verfolgen.

^{*)} Diese Schlußweise muß und kann im Sinne der hier gegebenen neuen Begriffsentwicklungen umgeformt werden.

1. Die endlich definierten Elemente des Kontinuums bilden eine abzählbare Menge, die man im Typus ω folgendermaßen schreiben kann:

Die a_{ik} sind hier beliebige positive ganze Zahlen, da wir das Kontinuum als die Menge der Dinge

$$(a_1, a_2, \cdots, a_k, \cdots)$$

definiert haben, wo a_k jede beliebige positive ganze Zahl sein kann. Mit Hilfe der Reihe (I) kann nun durch das dem Cantorschen Diagonalverfahren nachgebildete Gesetz

$$a_k = a_{kk} + d$$

ein neues Kontinuumelement $(a_1, a_2, \cdots) = a^{(d)}$ definiert werden, wenn d>0 eine fest gegebene positive ganze Zahl ist. Die Definition von $a^{(d)}$ ist aber nur dann widerspruchsfrei, wenn man voraussetzt, daß $a^{(d)}$ in der Reihe (I) nicht vorkommt, d. h. nicht endlich definiert ist. Würde $a^{(d)}$ (z. B. an der *n*-ten Stelle) in (I) vorkommen, so könnte (II) für k=n nicht erfüllt werden, da $a_n=a_{nn}$ ist und zugleich $a_n=a_{nn}+d$ verlangt wird. Es scheint demnach, daß die Definition von $a^{(d)}$, die wir in einer endlichen Anzahl von Zeichen fixieren, in der Tat sich selbst widerspricht, also unmöglich ist. Andrerseits ist es uns aber ebenso unmöglich, die unmittelbar unsrer Anschauung entlehnte "Tatsache" als unrichtig abzulehnen, daß mit Hilfe jenes Diagonalverfahrens ein neues Kontinuumelement wirklich gebildet werden kann. Gerade dieses äußerst merkwürdige scheinbare Paradoxon führt aber zu einer fundamentalen Vertiefung der in der Mengenlehre anzuwendenden logischen Methoden. Der Sinn des Diagonalverfahrens ist klar und unanfechtbar, der Widerspruch entsteht nur durch die Forderung, diesen Sinn in der Form einer endlichen Definition auszudrücken. Die Erfüllung dieser Forderung ist unmöglich. Könnte man aber - ohne den Sinn zu ändern - die Form unserer Definition so umändern, daß sie keine endliche Definition ist, so hätten wir es mit einer wirklichen, widerspruchsfreien Definition des Kontinuumelementes $a^{(d)}$ zu tun. Wir müssen demnach, wie dies auch sonst häufig, eigentlich sogar bei jeder wesentlichen Verschärfung unsres wissenschaftlichen Denkens geschieht, unsere "Sprache" vervollkommen, und dies kann in der Tat folgendermaßen geschehen.

Zu den endlichen Definitionen ziehen wir gewisse "pseudoendliche" Definitionen heran, die aus (abzählbar) unendlich vielen Zeichen (Wörtern, Buchstaben) bestehen sollen und zwar so, daß von einer gewissen, n-ten Stelle an (n eine endliche Ordnungszahl) nur ein gewisses Zeichen (N. V.)*) vorkommen soll. Um nun auch diesen Definitionen einen Sinn (Inhalt) zu geben, sagen wir: diese pseudoendliche Definition soll dem Sinne nach mit der endlichen Definition äquivalent sein, die aus der unendlichen entsteht, wenn sämtliche (N. V.) weggelassen werden, d. h. die aus den ersten n Zeichen gebildet ist. Die unendliche Zeichenfolge ist dann und nur dann eine logische Definition, wenn die entsprechende endliche Zeichenfolge, die wir auch als den Hauptteil der pseudoendlichen Definition bezeichnen wollen, dem Sinne (aber nicht notwendigerweise auch der Form) nach ohne Willkür und Widerspruch ein Kontinuumelement definiert.

Aus einer endlichen Definition können auf diesem Wege verschiedene pseudoendliche Definitionen entstehen, indem man das $(N.\ V.)$ ω -mal, $\omega+1$ -mal, $\omega+2$ -mal, \cdots , im allgemeinen α -mal hinzusetzt, wo α eine beliebige Zahl der zweiten Zahlenklasse $Z(\aleph_0)$ ist.

2. Nach dem Vorstehenden gibt es Elemente des Kontinuums, die durch den endlichen Hauptteil ihrer Definition wohl vollständig bestimmt sind, deren Definition jedoch der Form nach nur dann widerspruchsfrei wird, wenn diesem endlichen Hauptteile (H) das Zeichen $(N.\ V.)$ ω -mal hinzugefügt wird. Die Definition eines solchen Elementes wird durch das "Bild" $H(N.\ V.)^{\omega}$ vollständig charakterisiert; doch muß dieses Bild von der Definition selbst streng unterschieden werden, da diese letztere, um auch formell widerspruchsfrei zu sein, unendlich viele Zeichen enthalten muß. Die Gesamtheit jener Elemente des Kontinuums, deren Definition durch ein solches Bild $H(N.\ V.)^{\omega}$ gegeben ist, muß — auch nach Heranziehung aller endlich definierten Elemente — eine abzählbare Menge bilden, da zwei verschiedenen Elementen gewiß auch verschiedene endliche Hauptteile entsprechen müssen und diese eine abzählbare Menge bilden.

Jene abzählbare Menge von Elementen der Kontinuums ist aber — auch mit den endlich definierten zusammen — durch ihre endlich definierten Hauptteile im Typus ω gegeben. Auf diese abzählbare Menge vom Typus ω , die ausführlich geschrieben

^{*)} (N. V.) = ne varietur.

sei, kann nun wieder das Diagonalverfahren angewendet werden. Das Gesetz

$$b_k = b_{kk} + d$$

ist seiner Form nach, da es endlich ist, wieder keine widerspruchsfreie Definition für $(b_1,b_2,\cdots)=b^{(d)}$. Der Widerspruch verschwindet aber nun auch dann nicht, wenn $(N.\ V.)$ ω -mal hinzugesetzt wird, da die Definition auch in dieser Form in (III) vorkommen muß, z. B. an der n-ten Stelle, so daß $b_n=b_{nn}+d$ nicht erfüllt werden kann. Wird aber $(N.\ V.)$ $\omega+1$ -mal oder "öfters" hinzugesetzt, so erhalten wir eine widerspruchslose Definition. Verfährt man so weiter, so erhält man endliche Zeichenfolgen, die erst durch $\omega+2$, $\omega+3$, \cdots malige Hinzufügung von $(N.\ V.)$ eine widerspruchsfreie Definition geben.

Es sei nun α die kleinste Zahl der zweiten Zahlenklasse von der Beschäffenheit, daß die bestimmte endliche Zeichenfolge H (Hauptteil) eine widerspruchslose Definition wird, wenn $(N.\ V.)$ α -mal hinzugetzt wird; wir sagen dann, daß H den Rang α besitzt. Die so entstandene pseudoendliche Definition wollen wir durch

$$H(N. V.)^{\alpha}$$

bezeichnen. Dies ist aber natürlich wieder nicht als die Definition selbst aufzufassen, denn diese muß ja unendlich viele Zeichen enthalten. Sie ist nur ein charakteristisches Bild jener Definition. Gehört zu einem α ein solches H, so nennen wir α von der ersten Art. Dies ist also der Fall, wenn

$$H(N. V.)^{\alpha}$$

das Bild einer widerspruchslosen pseudoendlichen Definition ist, aber für jedes α' , das $< \alpha$ ist

$$H(N. V.)^{\alpha'}$$

noch einen formellen Widerspruch enthält.

3. Die bisherigen Auseinandersetzungen ergeben schließlich das Resultat, daß die zweite Zahlenklasse, wenn sie als Menge, d. h. als Gesamtheit durchwegs begrifflich gesonderter Elemente aufgefaßt werden könnte, auch abzählbar sein müßte. Wir beweisen nämlich, daß unter dieser Annahme einerseits die Zahlen erster Art abzählbar sind, und daß andererseits jede Zahl der zweiten Zahlenklasse von der ersten Art ist.

In der Tat: die Menge der endlichen Zeichenfolgen H ist abzählbar, also gilt dasselbe für die Menge der Zahlen erster Art, da der Definition nach verschiedenen α verschiedene H zugeordnet sind.

Wäre andererseits nicht jede Zahl der zweiten Zahlenklasse von der ersten Art, so gäbe es jedenfalls ein kleinstes (erstes) α_0 , das nicht von der ersten Art ist, während ω , $\omega + 1$ usw. von der ersten Art sind

Das führt aber zu einem Widerspruch. Die endlichen Zeichenfolgen, die eine Zahl der zweiten Klasse als Rang besitzen, sind nämlich abzählbar, da das für die Menge aller endlichen Zeichenfolgen gilt. Sie können also folgendermaßen im ω -Typus geschrieben werden: H_1, H_2, \cdots Sei $\alpha_1, \alpha_2, \cdots$ der entsprechende Rang. Die pseudoendlichen Definitionen (IV) $H_1(N, V)^{\alpha_1}, H_2(N, V)^{\alpha_2}, \cdots$

sollen nun die folgenden Kontinuumelemente definieren:

Das Diagonalgesetz

$$a_k = a_{kk} + d,$$

welches sich auf (IV') beziehen soll, bezeichnen wir mit H_0 . Nun enthält $H_0(N.\ V.)^{\alpha_0}$

keinen Widerspruch, da nach unserer Annahme (IV) keine Definition der Form $H_0(N, V_{\cdot})^{\alpha_0}$ enthält. Jedes α_i , das kleiner als α_0 ist, erscheint in der Reihe (IV); und die Definition $H_0(N, V_{\cdot})^{\alpha_i}$ ergibt demnach einen Widerspruch. D. h. H_0 ist vom Range α_0 ; oder mit andern Worten die transfinite Ordnungszahl α_0 ist von der ersten Art. Die Annahme, daß die zweite Zahlenklasse auch Zahlen der zweiten Art enthält, hat somit einen Widerspruch ergeben.

Budapest, 2. Jänner 1906.