

Transparent conductive oxides for silicon heterojunction solar cells

TCM 2018, TCM-020.ID182 | P. Carroy, D. Muñoz, F. Métral, H. Fournier, J. Veirman, J.F. Lerat, P. Lefillastre

Introduction: presentation of the National Institute for Solar Energy (INES)

Silicon heterojunction (SHJ) solar cells

- Structure and operation
- Role of TCOs in SHJ cells
- SHJ solar cells and modules at INES

TCOs for SHJ cells

- Baseline TCO at INES
- Alternative TCO options
- Example of alternative TCO options tested at INES

Conclusions

Ceatech **INES (National Institute for Solar Energy) – CEA LITEN**

Introduction: presentation of the National Institute for Solar Energy (INES)

Silicon heterojunction (SHJ) solar cells

- Structure and operation
- Role of TCOs in SHJ cells
- SHJ solar cells and modules at INES

TCOs for SHJ cells

- Baseline TCO at INES
- Alternative TCO options
- Example of alternative TCO options tested at INES

Conclusions

a-Si:H/c-Si heterojunction solar cell

- High η (25.1% ^[1], 26.7% IBC ^[2]) thanks to very high V_{OC}
- Bifacial device
- ➢ Low temperature (< 200⁰C) processes</p>
- Simple process
- Compatible with thin wafers

BUT:

Very low conductivity of a-Si:H (<10⁻² S/cm)
→ Lateral conduction is not enough for carrier collection (↓ FF)
a-Si:H does not have antireflecting properties (↓ J_{sc})

[1] D. Adachi et al., Applied Physics Letters, 107, 233506 (2015)[2] K. Yoshikawa et al, Nat Energy. 2, 17032 (2017)

Need

of TCOs!

Ceatech SILICON HETEROJUNCTION (SHJ) SOLAR CELLS Role of TCOs in SHJ cells

Electrical requirements

- 1. Carrier transport to the metal contacts at the front and back side
- 2. Low contact resistivity with metal contacts and with a-Si:H layers

Optical requirements

- 1. Antireflection coating
- 2. <u>Transparence</u> 300-1200 nm, limited IR absorption

No degradation of the a-Si:H layers

- **1.** <u>Soft deposition</u> conditions (T<200°C, low ion bombardment...)
- 2. <u>Diffusion barrier</u> to metallic impurities (Cu...)

Adapted for module integration

- 1. <u>Stability</u> in time, no reaction with encapsulation material
- 2. <u>No ageing</u> with air/water...

SILICON HETEROJUNCTION (SHJ) SOLAR CELLS SHJ solar cells and modules at INES

Pre-industrial production line for silicon heterojunction solar cells

- <10h from wafer to cell</p>
- Up to 2400 wafers/hour
- **R&D** with statistics

Numerous industrial and institutional partners

MEYER BURGER

Configuration	Record η	_
4 busbars (BB4)	22.8%	
5 busbars (BB5)	23.1%	
6 busbars (BB6)	23.1%	
Busbar-less (BB0)	23.5%	

DISC

Introduction: presentation of the National Institute for Solar Energy (INES)

Silicon heterojunction (SHJ) solar cells

- Structure and operation
- Role of TCOs in SHJ cells
- SHJ solar cells and modules at INES

TCOs for SHJ cells

- Baseline TCO at INES
- Alternative TCO options
- Example of alternative TCO options tested at INES

Conclusions

Sputtered In₂O₃:Sn (ITO)

- Industrial in-line sputtering tool by Meyer Burger: up to 2400 w/h
- In₂O₃/SnO₂ 3 wt% rotary targets
- Simultaneous front and back side deposition

Limitations of sputtered ITO

- 1. Limited mobility
 - \succ σ/T compromise → FF/J_{SC} compromise
 - $\succ \sigma = qN\mu$
 - But: high N generates free carrier absorption (FCA)

need of high µ material

- 2. High ion bombardment induced by sputtering
 - ➢ Degradation of a-Si:H layers → V_{oc} and FF ↓

need of soft deposition techniques

3. Scarcity and costliness of In

need of In-free TCOs to ↓ costs

Alternative TCO options

Ceatech

Alternative TCO options tested on INES SHJ cells

Tested on SHJ cells produced at INES

Presented here

Alternative TCO options: sputtered In₂O₃:H (IOH)

ЮН				
Very low R _{sheet} thanks to very high µ	R _{sheet} (Ω/□)	N (cm⁻³)	μ (cm²/V/s)	A _{300-1200nm} (%)
Very low absorption thanks to limited N	30	1.4E20	140	1.1

Electroplated BB4 cell results	Front/back contact	V _{oc} (mV)	J _{sc} (mA/cm²)	FF (%)	η (%)
	ITO/ITO	723.8	36.8	80.3	21.4
	ITO/IOH	728.9	37.4	79.2	21.6
	IOH/IOH	728.3	37.5	79.4	21.7

Ceatech

 $\eta\uparrow$ with IOH thanks to significant $J_{SC}\uparrow$ and despite FF \downarrow due to worse electrical contact

Alternative TCO options: sputtered In₂O₃:H (IOH)

IOH: where is the current gain?

Ceatech

↑ EQE in the near-IR range when replacing ITO by IOH \rightarrow low N of IOH layers leading to lower FCA in the near-IR

Alternative TCO options: sputtered In₂O₃:W (IWO)

Developped by CSEM (Swiss Center for Electronique and Microtechnique) and integrated on INES SHJ cells in the framework of EU project AMPERE

Strong J_{SC} ↑ with IWO as front TCO, even higher J_{SC} with doubleside IWO application Similar FF as ITO Significant efficiency gain with IWO compared to ITO

Alternative TCO options: sputtered In₂O₃:W (IWO)

IWO: gain confirmed in module

- 1-cell mini-modules for this 1st test
- 2 modules/condition

Potential: +7-8 W in a 72-cell module

Alternative TCO options: sputtered ZnO:AI (AZO)

In collaboration with 💥 🍹 MEYER BURGER

AZO

Ceatech

- Cheap In-free material
- \succ High R_{sheet} due to low μ
- Slightly higher absorption than ITO

Slightly lower J_{SC} with AZO

FF $\downarrow\downarrow$ with AZO, especially when integrated at the back

η ↓ with AZO But: acceptable performance with front AZO only

R_{sheet} Ν A_{300-1200nm} μ $(cm^{2}/V/s)$ (cm⁻³) **(Ω/**□) (%) 200-300 2.5-3E20 7-14 3 Bifacial BB0 cell results 0.729 38.1 38 0.728 37.9 s7.9 37.8 37.8 37.7 37.7 €^{0.727}) > 0.726 37.6 0.725 37.5 0.724 37.4 ITO/ITO ITO/AZO AZO/ITO AZO/AZO ITO/ITO ITO/AZO AZO/ITO AZO/AZO 78.0 22.0% 77.0 21.5% 76.0 21.0% (%) ₩ 75.0 (%) 20.5% 74.0 20.0% 73.0 72.0 19.5% ITO/ITO ITO/AZO AZO/ITO AZO/AZO ITO/ITO ITO/AZO AZO/ITO AZO/AZO

What about stability?

Alternative TCO options: sputtered ZnO:AI (AZO)

In collaboration with 💥 🕻 MEYER BURGER

AZO: module reliability

- 4-cell mini-modules
- 4 TCO configurations: ITO/ITO, ITO/AZO, AZO/ITO, AZO/AZO
- 2 different encapsulations: polyolefin (PO) vs ethylene-vinyl acetate (EVA)
- module degradation after 1000h and 2000h damp-heat test (85°C, 85%) humidity)

Front/Back TCO

IEC-61215 norm: <5% degradation after 1000h of DH

Good reliability of the ITO/ITO modules regardless of encapsulation material AZO/ITO + PO: OK after 1000h of DH But: after 2000h of DH, bad reliability of all modules containing AZO

Ceatech TCOS FOR

TCOS FOR SHJ SOLAR CELLS

Alternative TCO options: spatial ALD AZO (SALD AZO)

V.H. Nguyen et al, J. Renew. Sustain. Energy 9, 21203 (2017)

Ceatech

Alternative TCO options: spatial ALD AZO (SALD AZO)

AP-SALD AZO: application on CEA-INES SHJ solar cells

Introduction: presentation of the National Institute for Solar Energy (INES)

Silicon heterojunction (SHJ) solar cells

- Structure and operation
- Role of TCOs in SHJ cells
- SHJ solar cells and modules at INES

TCOs for SHJ cells

- Baseline TCO at INES
- Alternative TCO options
- Example of alternative TCO options tested at INES

Conclusions

Best alternative to sputtered ITO: new In-based TCOs by RPD

| 22

Thank you for your attention!

3

Ceatech

Acknowledgements: CEA LHET and LMPV teams @ INES Meyer Burger Swiss and German teams EU H2020 AMPERE project ANR DESPATCH project (special thanks to V. Nguyen)