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The foregoing examples will illustrate the ‘great fertility of the
method employed for deducing identities which are difficult to prove
by other means. It may be noticed that, when all the b's are equated
to unity, the expression for @, vanishes identically. The equation
§ 1, (4) would lead us to infer that @, would also vanish identically
on the same supposition, as indeed is obvious from §1, (13).
Similarly, it may be shown that all the a's vanish identically when
the b’s are equated to unity. Consistently with this fact, it will be
then seen that, if in any relation connecting an a-series with &
b-series the coefficients of the a’s form a convergent series, then the
b-series vanishes identically, as in § 2, (9), § 8, Ex. 4, &c.; but, if the
b-series does not vanish identically, then the coefficients of the a’s
form a divergent series, as in § 2, (7), §8, Ex. 1, 2, 3, &c.

On Regular Difference Terms. By A. B. Kemer, M.A,, F.R.S.
Read and Received April 12th, 1894.

1. Let «, 3, v, ... be a system S, of » quantities, which may be
termed roots; and let w differences a—p, a—3; B—vy, a—y; &c., be
formed with these, each root entering into v of the differences. Then
the product of these w differences will be called a regular difference
term of the system S,, and will be said to be of degree n, order v, and
wetght w.

2. The expression
(@=-B)'(B=v)(r—98)'(4—a)

affords an example of a regular difference term of degree 4, order 3,
and weight 6.

3. We may have difference terms into which the different roots do
not all enter the same number of times; such difference terms ave,
however, srregular. A difference term will be irregular although each
of the roots which enters into it enters the same number of times as
the others, provided that there are other roots of the system under
consideration which do not enter at all. Such & difference term will,
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however, be & regular difference term of the reduced system which
consists only of the roots which do enter into the term.

4. Where the degree of & regular difference term is even, the order
may be as low as unity ; but, where the degree is odd, the order can-
not be less than 2, for we have

o = 2w,

and thus both degree and order cannot be odd.

Regular difference terms of even degree and order 1, or of odd
degree and order 2, will be called elemental terms of the system of
roots considered. Elemental terms of order 1 may be called Unear
elements, and those of order 2 quadratic elements.

5. The product of two or more regular difference terms of S, will,
of course, be also a regular difference term of S,, and its order will
be the sum of the orders of the factors. A given regular difference
term of S, may therefore be such as to admit of being expressed as .
_the product of two or more regular difference terms of S, of lower
order ; but, on the other hand, it may not be so expressible. Thus

(a=B)(a=7)(a=8)(B—e)(B—E)(v—n)(y—0)(8—1) (3—x)
X (e=8)' (r—0)* (:—x)},

a regular difference term of degree 10, order 3, and weight 15, of the
system of roots

a, ﬁ, k4] a’ e, &m0, ¢ k)
does not admit of being expressed as the product of regular difference
terms of the same system of lower order.

6. Regular difference terms which admit of being expreésed as the
product of others of the same system, of lower orders, may be said to
be decomposable.

7. Regular difference terms which are not decomposable may be
said to be primitive. Elemental terms are, of course, primitive.

8. Regular difference terms which are so completely decomposable
that they can be expressed as the product of elemental terms may
be designated pure composite terms.

9. It is known that, for a given system of n roots, the number of
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primitive regular difference terms is limited ;* so that every regular
difference term is either one of this limited number of primitive
terms, or is the product of two or more of these, or of their powers.
Some progress has also been made towards the specification of the
orders and forms of primitive terms.+

10. It does not, however, appear to have been hitherto observed
that every reqular difference term, whether decomposable or primitive,
of a system of roots S,, can be expressed as the sum of pure composite
terms of S,, and therefore as 'a rational integral function of elemental
terms of 8S..

11. For example, the primitive regular difference term referred to
in § 5, viz.:—
(a—B)(a=y)(a=8)(B—e)(B—O)(y—n)(y—0)(e—)(3—x)

X (e={)* (n—6)* (e —x)},
can be expressed in the form
[(@=B)(y=6)(3—)(e—x)((~n) ]
X[ (a=7)(B—8)(e—O)(n—6)(:—r) ]
X [(a=8)(B—7)(e=)(n—6)(:~x)]
+[(@=B) G -DE-)(e—r)(1—6)]
x [ (@=9) (B=8)(e=0)(n—6) (:—¢) ]
x [(a=3)(B=n)(y—6)(e—0) (:—n) ]
+[(@a=B)(y =) (E—e)(§—=n)(t—x) ]
X [(@a=7)(B—€) =) (e—{)(n—6) ]
X [(a=8)(B=7)(e=)(n—0)(:—x) ]
+[(@=B)(r~H@E—) (1—6)(:—x)]
x[(a=9)(B—x)@=)(e=0)(n—6)]
X[ (a=3)(B—n)(y—6)(e=0)(:—r) ],

* See ** Ueber die Endlichkeit des Invarientensystems fur biniiren Grundformen,’’
by D. Hilbert, in the Mathematische Annalen, Vol. xxxm1., where the result is
obtained by the aid of a theorem of Professor Gordan with regard to a class of
diophantine equations.

t See ‘“Die Theorie der Regularen Graphs,’”” by Julius Petersen, in the Acta
Mathematica, Vol. xv.
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that is, as the sum of four pure composite terms, each of whichis the
product of three linear elemental terms.

12. The object of the present paper is to demonstrate the theorem
of §10. This theorem is one of some importance. Thus, to confine
ourselves to one example, let @, be a quantic the roots of which are
those of the system S,; then, if T be any regular difference term of
8,, the expression ST,

where the summation extends to all terms derivable from T by
transpositions ¢nter se of the » roots, is an invariant of @,, and every
rational integral invariant of @, is a rational integral function of
invariants of that form. Now,if T be expressible as the sum of pure
composite terms of S,, every rational integral invariant of @, is
expressible as a rational integral function of invariants, such as

3B BB, ...,

where F,, B, F,, ... are all elemental terms of S,, being linear or
quadratic according as 7 is even or odd, and the summation, as
before stated, is of all terms obtainable by transposition (not of the
elemental terms F,, F, &c., but) of the roots a,8, v, ... From
this result the proof by Hilbert’s method (see foot-note § 9) of the
finiteness of the number of the invariants of a quantic @, in terms
of which the whole system of its invariants may be expressed
follows immediately.

13. A regular difference term of degree 2 is of the form
(a_ﬂ)o’ '
and is clearly a pure composite term, for each factor (a—@) is a
linear elemental term.

14. A regular difference term of degree 3 is of the form
(a=B)" (B=7)"(y—a)" = [(a=B)(B—7)(y—a) ]",

where 2m = v, and is clearly also a pure composite term, for each
factor [ (a—B)(B—7y)(y—a) ] is a quadratic elemental term.

15. We have
(a=B)(y—3) = (a—v)(B—93) + (a—8)(y—B),

and similar identities in the case of any other four roots. By the
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use of these identities any difference term A’ of a degree >3 can be
expressed in a variety of ways as the sum

A+ A+ As+...

of & number of other difference terms. Each of the latter is derived
from A’ by transpositions of roots, and therefore the number of a’s,
of $3's, &c., in each is the same as the number in A’. If, then, 4’ be
a regular difference term, each of the terms Aj, 47, ... must also be
regular.

16. The transpositions of the roots referred to in the last section
are not transpositions.such as those referred to in § 12, viz. :—of the
whole set of a’s with the whole set of 3's, and so on; but are trans-
positions of individual a’s with individual 8's, and so on. Thus to
each a in 4’ there will correspond a definite a in 4;, in 43, and so on.
Consequently, if for any root a in 4’ we substitute a new root ¢, not
one of those in 4’, and if we also substitute £ for the corresponding a
in each of the terms 4], 4;, 4, ..., the identity of § 15 will be con-
verted into another identity; and, if any term A4, of the former
identity breaks up into factors in any particular way, there will be a
corresponding term in the new identity which will break up into
factors in the same way, one of those factors containing a root £ in
place of & root a.

17. In precisely the same way, we may substitute &'s for any
number of a’s in A’, and thus obtain a new term 4, and if we also
substitute a root & for each of the corresponding a’s in each of
the terms Aj, 4;, 43 ..., and thus obtain corresponding terms
4,, A,, A,, ..., we shall have

A=A, +4,+4,+...,
and, if 4; breaks up into factors in any particular way, 4, will break
up into factors in the same way, these factors, however, containing in

some cases £'s in lieu of certain of the a’s. This result will be found
of importance in the sequel (§ 41).

18. In the demonstration which follows it will be shown that every
regular difference term of order v of a system S, may, by the use of
the identities of § 15, be expressed as the sum of certain regular
difference terms of S, of order v, designated uncrossed terms; that
each of these uncrossed terms may, by the same means, be expressed
as the sum of certain other regular difference terms of S, of order v,
called reducible terms; and that each of these reducible terms may
be expressed as the sum' of pure composite terms of order v, provided
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that every regular difference term of the same order v of any system
8,2 of (n—2) roots can be expressed as the sum of pure composite
terms of S,.,. Since, then, we know that regular difference terms of
order v and of degree 2 or 3 can be expressed as the sum of pure
composite terms, being, in fact, themselves pure composite terms
(§§ 13, 14), it will follow that every regular difference term of order
v and degree = of a system S, can be expressed as the sum of pure
composite terms, and therefore as a rational integral function of
elemental terms of S,.

19. For the purpose of the demonstration let the roots of S, taken
in any order, be represented respectively by the symbols

[1]9 [2]) [3]7 oo [n'—l]? [n] H
and let it be supposed that
[n+r] =[],
the roots being thus regarded as composing a cycle of period n. The

numbers contained in these symbols may be termed the places of the
roots they respectively represent.

20. In the case of any difference

+ {[s]—(+1},
the number (s—») (which may, of course, be negative) may be
termed the distance between the roots composing the difference.

21. A difference {[q]—-[p1}
may be thrown into the equivalent forms

—{[m+p]—[q1}.

Of these four forms, that will always be supposed to be employed in
which the distance between the roots is positive and & minimum.
Thus, where a difference

{(s]—-[1}

is considered, it is to be understood that

8>,

and s=—7 < (n47)=s.



1894.] Regular Difference Terms. 349

22. We may graphically represent the » roots of a regular differ-
ence term by small circular nuclei arranged at the angular points of
a regular polygon of % sides, and numbered successively 1, 2, 3, ... #;
and any difference

{(s1-[+1}

which is a factor of the term may then be represented by a line lying
along a side or diagonal of the polygon connecting the angular points
numbered s and . Thus the regular difference term

{[51—-[41} {[4)—(31} {(31—[2]}*{(2) - (1]} { (5]~ (11}
x {[51—([81} {[4]—[21} {[4]—[11}
may be represented by the regular graph
3

1 )

23. If p, q, 7, s be four numbers such that

§>Tr>q>p
the two differences

{s-[g]} =md {[]-[p)}

may be said to cross, or to be a crossed pair ; other pairs of differences,

e.g. {[s]-[r1} and {[g]—[p},
or {[6‘]—[1’]} and {[”]"‘[9]}»
or {[s1—[]} and {[s]—[p1},

being said to be uncrossed.

24. In the graphical representation two differences which cross
will be represented by two lines lying along diagonals which inter-
sect.
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25. A difference term may be said to be crossed or wuncrossed
according as it does or does not contain any crossed pairs of factor
differences..

26. By the aid of the identity of § 15, we may express the product
L {{s]-[q)} - {[r1-[r1}
in the form

{[)=[r1} - {[a)- (2} +{[1~[p)} - {[r1—[0)};

t.e., we may express the product of a crossed pair as the sum of two
products of uncrossed pairs.

27. Consider now the identity
{[s1—[a1} - {[r)—[#2} - {[y)- (1}
= {[1-[1}. {[a1-(#1} - {(s)—[=]}
+{[s]—C21} - {(r)-[41} - {(5]—[=1}.
Here, if {[sJ—[r1} and {[y)-[<]}

are a crossed pair, we have either

y>s>z>r>q>p,

or §>Y>r>zT>q>p,
or §>y>r>q¢Sz>p,

or 5>y>r>qg>psa;
and therefore either :

{[s1—[q]} and {[y]—[=1}

are & crossed pair, or

{[11—[(p)} and {[y]—[1}

are 8o.

So, if {[g)—[p)} end {[y)—[=]}

are a crossed pair, we have either
ysS§>r>qg>z>p,

or s>y§r>q>‘w>fp,

or §>r>y>q>a>p,

or §>Tr>q>y>p>e;
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and therefore, again, either

{[e]-[q)} end {[y]-[=1}

are & crossed pair, or

{(1-[21} and {[y1-[e]}

are so.
' Furthermore, if both

(L=} wnd ()T},
and {{a)—[p)} end {[y]—[=1},

are crossed pairs, we have

§>y>r>q>a>p,
and therefore both {[s]—[q]} and {[y]—[=]},
and {{r1-[p]} and {[y]-[=1},
are crossed pairs.

Since, then, the pair

{[s1-[q1} anmd {[r]—[r]}

are a crossed pair, and the pair

{s1-[r1} =nd {[q]—[r}}

are not, we see that the number of crossed pairs formed by the three
factor differences of

{1-1a} - {(1~ {21} {[1~[o1}

must be greater than the number of crossed pairs formed by the
three factor differences of

{{s]—[r1} - {{g)—(p1} - {(y]—[=1}

"In precisely the same way we may prove that the number of
crossed pairs formed by the three factor differences of

{(s1- (a1} - {[r1-Lp1} - {(y]—[=1}
must be greater than the number of crossed pairs formed by the
three factor differences of

{(s1-[p1}-{0r1 - [a1} - {[¥)—[1}-
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28. Suppose now that the regular difference term T' of the system
S,, contains as a factor a crossed pair

{{s]=[a1} - {{r)—Lr1},
so that we may put
T= L{[s]-(q1}.{(r]- (2]}
= L{[s1-[1}-{[a-[#)} (=T

+L{[s]-[p1} . {[:]-[q)} (=T)
=T+T,;

then, since L consists of factor differences, such as {[y]—[=]}, it
follows immediately from § 27 that both 7T, and T, must contain a
smaller number of crossed pairs than T.

Taking any crossed pair in T}, we may by the same process put
TN=T+T,
and, similarly, we may put T, = T,+T,
and therefore T=T+T+T+T,

where T, and T, contain a smaller number of crossed pairs than T,
and 7T, and T, a smaller number than T,.

Proceeding to deal with T,, T,, T,, and T, in the same way, and
continuing the process on the derived terms, we shall at each stage
obtain terms containing a smaller number of crossed pairs than are
contained in the terms from which they are derived; and we can
continne the process on the derived terms so long as we obtain terms
which contain any crossed pairs. In this way we shall ultimately be

able to put
T=U,+U+ Ug+ ...,

where the terms on the right-hand side of the identity are all un-
crossed regular difference terms of S,, none of them containing any
crossed pairs.

29. We proceed next to consider a special property possessed by
any uncrossed regular difference term U of S, ; and to show that, by
means of the identities of §15, U can be expressed as the sum of
certain other regular difference terms of S,, designated reducible
terms.
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30. The differences under consideration may be divided nto two
classes, viz. :—we have differences of the form

{[r+l]—[r]},

in which the distance between the roots is unity, and differences in
which the distance is.greater than unity.

In the graphical representation of a regular difference term, made
in accordance with § 22, differences of the former description will be
represented by lines lying along the sides of the polygon. Such
differences may accordingly be called side differences.

Differences of the other sort will similarly be represented by lines
lying along the diagonals of the polygon, and may therefore be called
diagonal differences.

31. The special property of U which we have to consider is this—
there must be one root of the system S, which enters only into factor
differences of U which are side differences, and does not enter into
any which are diagonal. There must, in fact, be two such roots;
but the existence of one is sufficient for our purposes.

In other words, there must be a root [+]} which enters only into

differences
{[r+1]—[+]} and {[r]-[r-1]},
and consequently U contains a factor
{[r+1]-[1}*. {[)-[r—12}""
where the sum of the indices is v, the order of U.
32. The proof of this presents no difficulty. If there are any

diagonal differences which are factors of U, there must be one or
more in which the roots are at & minimum distance apart d, where

d : 2.
Let {{s+d]—[s]}
be one of these. Then each of the roots

[s+1), [s+2]), ... [s+d—1],

enters only into side differences. For, since U is uncrossed, any root
[s+¢], where c<d and >0, cannot enter into differences which cross

{{s+d]—[s1}:

i.e,, [s+¢] can only enter into differences such as

{{s+c]—[el},

VOL. XXV.—No. 497. 2
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where

> 5
or such as $(f1—1s+el}s
wlere f < s+d.

In the formor case the distance between the roots is
s+c—e,

which, since ¢>d and ¢ 3 s, must be <d.

In the latter case, the distance between the roots is
f—s—c,
which, since fZs+d,

must also be <d.

Thus [s+¢] can only enter into differences in which the distance
between the roots is <d.

But the minimum distance between the roots in the case of the
diagonal diffcrences of U is d. Thus [s+¢] cannot enter into any
diagonal differences, but only into side differences.

33. The result arrived at might also have been obtained from a
copsideration of the graphical representation of U, in which there
will be no intersecting diagonals (§ 24); and from a recognition of
the fact that, in a regular polygon in which there are no intersecting

diagonals, there must be at least two summits from which no
diagonals proceed.

34. Since, then, U contains a factor

{{r+11-023 {1 -[r-2123"

we may put
U= C{[r+1]-[r—11}* {{r +1]-[r1}* {{r]—-[r—1]}",
where C has no factors containing [], and no factor

- Alr+1]—-[r—13}. -

35. l\fow, each root of S, enters » times into U; thus there will be
(v—h—k) factor differences in C containing [r+1], and (k—h) con-
‘taining [7—1], and these differences will be distinct from each other.
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Let the product of the former be denoted by 0U,.»-:, and of the latter
by Oi_». Then we may put

U=D.C,_rs Ck_,.{['r'+ l]—['r—l]}’l {[r-}-l]—['r]}" {[r]—[r—l]}"",
where D is the product of factor differences which do not contain
either [7+1], (7], or [r—1]. The number of these will be

w—(—h—k)—(k—h)~h—k—(v—F)
=w—2v+h

= %‘- —2v+h (§4)
= —;- (n—4)+0.

Now, in cases where >3, and it is with such that we are now
dealing (§ 15), this last number must be at least %, i.e., there are as
many factors in D as in

{{r+1)—[r—13}"
36. Let ' {[b]-—[a]}

be any factor of D; then, by the identity of § 15, we have
| {[r+11=[r=11 - {[¥)~ (o1}
= {{[r+1]-[b]} - {[r—11—[a]}
+{[r+1]=[al} . {Lb]-[r—11};
i.e., since [a] and [b] are both different from [r+1] and [r—1], D

being the product of factor differences which contain neither of the
latter roots (§ 35), we can express

{[r+1]1-[r—11} {(0] (a1}
as the sum of two terms which do not contail} ’
{{r+1]-[r-13}
as a factor.
In the same way, by taking & factor differences of D, we can express
each of the h factors of
{{r+11-[—11}"

when multiplied by one of those factors of D, as the sum of two
terms which do not contain

{[r+11-[r-13}
242
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as a factor, and thus we can express
D {[r-{-l]—[r—l]}‘
as the sum of terms which do not contain

{[r+ 1]—[r—1]}

a8 a factor.

37. We may therefore put ,
U= {[r+1]-[71}* {{r1=[r—11}*"* { B+ B, + By +...},
where none of the terms R, R,, R,, ... contain [r] or the factor
{[r+1]=[r—1]}.
38. Any regular difference term
-~ {lr+1]-[r1}* {[r]—-[r—1]}""*R,

where R does not contain

{r+1]—r—11}
2= a factor, and does not contain [r], may be said to be a reducible
regular difference term of the system of roots S,.

39. Each of the roots of 8, other than [»r—1], [7], and [r+1]
enters v times into B ; "the root [7] does not enter at all; the root
[r—1] enters & times, and the root [#+41] enters (v—Fk) times. If,
then, we werein B to put the root [r+ 1] in place of the root [r—1],
[r+1] would enter v times, and B would become a regular difference
term R, of ordér v and degree (n—2), of the system of roots S,.,
obtained by withdrawing the roots [r] and [r—1] from the
system S,.

40. Consequently the difference term R may be obtained by sub-
stituting for k& properly selecied roots [r+1] in R, k roots [r—1],
where [r—1] is not & root which enters into R".

41. Suppose, then, that any i‘egular difference term R’ of order v
of a system S,_; of (n—2) roots can be expressed as the sum
Ri+R+EB+ ...
of a number of pure composite terms of that system. It follows
immediately from-§ 17 that we can put
B =R, +R,+By+...,
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where B is obtained by substituting k roots [»—1] for 'k properly
selected roots [r+1] in R, and R,, R,, R,, ... are obtained by making
corresponding substitutions in R;, Rj, R;, .... It also follows that
R, R, R,, ... break up into factors corresponding to the elemental
factors of the pure composite terms R;, R;, B, ....

42. Taking first the case where n is even, and therefore n—2 is
even, and consequently the elemental factors of any term R, are
linear (§ 4) and v in number, we see that R,, the corresponding
term, breaks up into v factors, into each of which each of the roots
of S,_; other than [r+ 1] enters once and once only. Into k of these
factors [7+1] will not enter, but [r—1] will do so in the case of
each once and once only ; while [»—1] will not enter into the remain-
ing v—Fk, but [r+1] will do so in the case of each once and once
only.

Now, considering the term

{(r+1]=[1}* {[r)—[»-11}""* R,
we see that, corresponding to each of the % factors of R, into which
[r—1] enters, there is a factor

{[r+1]-[1},

and, corresponding to each of the v—k factors of R, into which [r+1]
enters, there is a factor
{[r]—["—l]}’

and in each case the product of the two corresponding factors gives a
term into which each of the = roots of S, enters once and once only,
1.6, gives a linear elemental term of S,.

Thus {(r+1)=[r1}* {(r]—[r—1]}"*R,
is the product of v linear elemental terms of S,.
Hence, provided that R; is a pure composite term of the system

San
{[r+11-[2}* {11~ [r—13}* R,

will be a pure composite term of the system S,; and, consequently,
provided that I¥" can be expressed as the sum of terms such as R,
which are pure composite terms of S,.,, I can be expressed as the
sum of terms such as

{Ir+1)=[}* {[r)—[r—1]}"" &5,

which are pure composite terms of S,,.
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43. We can arrive at the same result in the case where n, and
‘therefore also »—2, is odd. Here the elemental factors of R, are

quadratic, and are — in number, v being necessarily even, (§4).

2
Consequently R, breaks up into % factors, into each of which each
of the roots of S,_, other than [r+1] en.ters twice and twice only.
Into f of these factors (where f is zero or some integer not > — 2 , and
such that k—f, and therefore also v—k—f, is even) the roots [r—1]
and [r+1] both enter once and once only ; into k__;—[ of the remain-
ing factors [r—1] enters twice and twice only, and [r+1] does not
enter at all; and into the rest of the factors, i’%:f—)- in number,

{r+1] enters twice, and twice only, and [r—1] does not enter at all.
Hence, considering the term
{r+1]-[13* {(r1- [”“‘1]}° 'R,

we see that, corresponding to each of the f factors of the first descrip- . .
tion, we may take a factor

{{r+1]=[} . {[r]—[r—11};

corresponding to each of the Qﬁ_;ﬁ factors of the second description,
we may take a factor

{r+1]-[r13%

and, corlespondmg to each of the @——k—ﬁ factors of the third
description, we may take a factor

{{r)-[r-11}"%
and in so doing we shall exactly take all the factors of

{[r+1]—-[T* {{r]-[r—10}"*
In each case the product of the two corresponding factors gives a
term into which each of the n roots of S, enters twice and twice
’ only, z.e., givés a quadratic elemental term of S,.

Thus {411} {[r)~[r-11}* B,
is the product of -—g— quadratic elemental terms of S,, and is there-

fore a pure composite term of S,
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Consequently, as in the preceding section, we see that, provided
that R;is a pure composite term of the system S,._—_,,

{[r+1]—-[23* {[r]=[r-11}"* R,
will be a pure composite term of S,, and therefore, provided that
R’ can be expressed as the sum of terms such as R;, which ave pure
composite terms of S..2, B can be expressed as thé sum of terms
such as

{[r+ l]'—‘[r]}" {[7']—[7—1]}“"‘ R,
which are pure composite terms of S,.
44. Whefher, then, # be even or odd,
{Or+1]-[13* {[r]-[—11}" R,
t.e., any reducible term of §,, can be expressed as the sum of terms

which are pure composite terms of S,, provided that R’ can be ex-
pressed as the sum of terms which are pure composite terms of S,...

45. Hence the general regular difference term T of 8, of order v,
being expressible as the sum of uncrossed terms of S, (§28), which
uncrossed terms are expressible as the sum of reducible terms of S,
(§ 37), can be expressed as the sum of pure composite terms of S,
provided that any regular difference term of S,_; of order v can be
expressed as the sum of pure composite terms of S,_;.

46. In other words, any regular difference term of order v and
degree n can be expressed as a rational integral function of elemental
terms of the system of roots to which it belongs, provided that any
regular difference term of order » and degree n—2 can be so expressed.
But we have seen (§§ 13, 14) that regular difference terms of order v
and of degrees 2 and 3 can be so expressed. Therefore every regular
difference term can be expressed as a rational integral function .of
the elemental terms of the system of roots to which it belongs.

47. We may carry the matter a step further. If we represent the
roots, as hitherto, by the symbols [1], [2], [3], ... [»], the elemental
terms may be divided into crossed and uncrossed terms. Now, every
crossed elemental term may be expressed as the sum of uncrossed
elemental terms (§ 28). Hence every regular difference term can be
expressed as a rational integral function of the uncrossed elemental terms

of the system of roots
11, 23 ... [»]

to which it belongs.
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Thursday, May 10th, 1894,
Prof. GREENHILL, F.R.S., Vice-President, in the Chair.

The following communications were made :—

On the Kinematical Discrimination of the Euclidean and non-
Euclidean Geometries: Mr. A. E. H. Love.

Permutations on a Regular Polygon: Major MacMahon.

The Stability of & Tube: Professor Greenhill (Dr J. Larmor in
the Chair).

Researches in the Calculus of Variations—Part V., The Discrimi-
nation of Maxima and Minima Values of Integrals with
Arbitrary Values of the Limiting Variations; Part VI., The
Theory of Discontinuous or Compounded Solutions: Mr. E. P.
Calverwell.

~ The following present was made for the Album :—cabinet likeness
of Mr. E. P. Culverwell.

The following presents were made to the Library :—

¢¢ Proceedings of the Royal Society,’’ Vol. xv., No. 332.

‘“ Philosophical Transactions of the Royal Society,’’ Vols. 180-184, 1889-1893,
and a list of Fellows of the Society, dated November 30th, 1893. - ‘

‘‘ Beiblitter zu den Annalen der Physik und Chemie,”” Bd. xvim., 8t. 4;
Leipzig, 1894.

‘‘Seventh Annual Report of the Canadian Institute’’ ; Toronto, 1894.

¢ Bulletin of the New York Mathematical Society,’’ Vol. m., No. 7.

¢« Bulletin des Sciences Mathématiques,’”” Tome xvinr.,, Fév. and Mars, 1894 ;
Paris, 1894.

Macfarlane, Alex.—*‘¢ Principles of Elliptic and Hyperbolic Analysis,' 8vo;
Boston. )

¢* Transactions of the Russian Mathematical Society,’’ Tome xv.; Odessa, 1893.

¢‘ Transactions of the Canadian Institute,’’ No, 7, Vol. 1v., Pt. 1., March, 1894 ;
Toronto.

‘«Atti della Reale Aoccademia dei Lincei — Rendiconti,”” Vol. 1., Fasc. 7
1 Sem. ; Roma, 1894.

“Annnh di Matematico,” Serie 2, Tomo xxm., Fasc. 1 and 2 April, 1894;
Milano.

‘¢ Educational Times,”” May, 1894.

‘Annales de la Faculté des Sciences de Toulouse,’”” Tome vmr., Faso. 1;
Paris, 1894.

‘ Jowrnal fiir die reine und tmgewandbe Mathematxk " Bd. cxm., Heft2;
Berlin, 1894.

o Ammls of Mn.themahus * Vol. var., No. 4; Virginia University, May, 1894.
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. ¢ Indian Engineering,’” Vol. xv., Nos. 12-15.

‘¢ Trigonometrical Survey of India,’’ Vol. xv. ; Dehra Dun, 1893.

Wright, J. M. F.—* Commentary on Newton’s ¢Principia,’”’ 2 vols., 8vo;
London, 1828. '

Brougham, Henry Lord, and E. J. Routh.—* Analytical View of Newton's
¢ Principia,’ *’ 8vo ; London, 1866.

‘¢ American Journal of Mathematics,”” Vol. xvz,, No. 2; Baltimore, April, 1894.

Byerly, W. E.—*¢ Fourier’s Series and Spherical Harmonics,'’ 8vo ; Boston, 1893,

Researches in the Oaleulus of Variations—Part V., The Discrimi-
nation of Mazima and Minima Values of Integrals with
Arbitrary Values of the Limiting Variations. By E. P.
"Cuiverweis, M.A., F.T.C.D. Received May 8th, 1894.
Read May 10th, 1894.

1. Discussions of true maxima and minima of integrals with
variable limits, as distinguished from merely stationary solutions,
are rare in the standard text-books. Moigno has none; Jellett,
Todhunter, and Carll have each obtained different and erroneous
results in the one example they all give, that of the maximum solid
of revolution for given superficial area (see Jellett, Cal. of Var.,
pp. 161-165; Todhunter, History of Cal. of Var., p. 408; Carll, Cal.
of Var., pp. 122 and 129). The only other problem with variable
limits I cen find attempted in those text-books is ome selected by
Mr. Todhunter in his History, p. 328, in order to show that the
ordinary method is insufficient when the limits themselves enter into
the quantity to be integrated. Mr. Carll adopts Mr. Todhunter’s
view, insisting even more strongly on the inadequacy of the ordinary
method. But the ordinary method, though clumsy, is in every case
adequate.

The absence of examples is doubtless due to the fact that writers
on the calculus of variations have considered the variability of the
constants as introducing only a problem of the differential calculus,
and have contented themselves by saying that, if the stationary value
of the integral be expressed in terms of the arbitrary constants, the
rule for ascertaining whether the solution is & maximum or & mini-





