Number: 293 (prime). Base: a=2. Periods: M=293 (prime), base a=2. Order λ_293=292 ⇒ 2λ=584.
With two periodic variables, \(x = n \bmod M\) and \(y = t \bmod 2\lambda\), the state space is \(\mathbb{Z}_M \times \mathbb{Z}_{2\lambda}\) — a discrete torus. Over a full mixed period \(L = \mathrm{lcm}(M,2\lambda)\), the map \(s\mapsto (s\bmod M, s\bmod 2\lambda)\) visits all pairs (up to \(\gcd(M,2\lambda)\)) as guaranteed by CRT.
We embed this grid in 3D using \((\theta,\phi)=(2\pi x/M, 2\pi y/(2\lambda))\). The coloured surface is \(E_{\mathrm{uni}}(x,y)\); green/orange/red points mark unilateral/bilateral/GCD‑bilateral resonances.