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1. The present paper forms part of some investigations concerning
the roots of a number of transcendental equations of particular forms,
which I have undertaken in the hope of throwing some light on the
exceedingly difficult and important general question of the relations
subsisting between the roots of the equations comprised in the form
F(x) = <f>(x), where F(x) is a given integral function, and <p{x) a constant
polynomial, or integral function whose increase (croissaiice) is less than
that of F(x). I need hardly say that our present knowledge about this
question is almost entirely limited to the moduli of the roots ; what we
know about the arguments is practically nil: and I think that the results
which I have obtained may be of some interest, in spite of their very special
character, as indicating to some extent the various kinds of cases which
may occur.

I have considered particularly the equations

(1) sinz = P(x),

(2) e-** = P(x),

(3) eP*Bwbx = P(x),

(a and b being real and positive).

(4) IIP (,x) = II (1+x\•«") = P Or)
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—IIP{x) being one of the functions considered by Mr. E. W. Barnes in his
memoir " On Integral Functions,"* and p > 1—and

In all of these P(x) is an arbitrary polynomial. The question to
which I have given especial attention is whether there is in each case
any form of the polynomial for which the nature of the zeroes is
abnormal. The asymptotic solutions of (1) and (2) were given in two
papers in the Messenger A In the case of (1) there is no abnormal case ;
in the case of (2) the only abnormal case is that of P(x) = 0, the familiar
Picard case of exception in which there are no roots at all. In the case
of (3), which I have investigated 'in a recent paper in the Quarterly
Journal,*, there is again one abnormal case, that of P(x) = 0, but it is
abnormal in quite a different way, which essentially involves the arguments
of the roots : and the same is true of (4) if 1 < p < 2; but, if 2 < p,
there is no abnormal case. I hope on some future occasion to make a
further communication concerning these equations, with especial reference
to the case of p = 2. At present I shall confine myself to the equation
(5). I may, however, remark that in every case the following proposition
is true:—if a»(c) is the n-th root of F(x) = c, and one particular value
of c is excluded from consideration, then the roots can be arranged in a
finite number of groups, such that within each group

h m —7-77; — 1.
rt=«> aa{c )

It is, of course, supposed that in each group the roots are arranged
according to ascending order of moduli. For the constants c, c', c" we
may substitute polynomials. That any such theorem is true in general
I do not for one moment suppose, even if we confine ourselves to the
moduli of the roots § ; but it is certainly true for large classes of the
most important functions. I may add that it may be shown that
the exceptional case in equations (3) and (4) is exceptional in the same
way with whole classes of functions.

2. I come now to the equation (5). The function II (x) = _, is
1 (x-p 1.)

* Phil. Trans. (A), Vol. cxcix., p. 411.
t Vol. xxxi., p. 161, and Vol. xxxn., p. 36.
X Vol. xxxv., p. 261.
§ That it is true in this sense is suggested by Borel, Fonctions entiires, p. 100.
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an integral function whose apparent and real orders* are each unity.
Now M. Borel has proved the two following theorems, the second being
a generalization of Picard's theorem :—

(i.) If the apparent order of F{x) is finite and not integral, the
real order is equal to i t :

(ii.) If the apparent order is an integer p, then among the
functions <j>{;x)F{x)—\p-{x), where <p, \jr are integral functions whose
apparent order <p, there is one at most whose real order <p.

From the second theorem it follows that the real order of all the
functions IL(x)—c is the same, with possibly one exception. Is there
such an exception? The answer seems to me very interesting. It is
that there is not, and yet that the case c = 0 is abnormal not merely
as regards the distribution of the zeroes in the plane, but also as regards
the increase of their moduli. In fact, the increase of the zeroes for
c =£ 0 is like that of n/log n, whereas that of the zeroes for c = 0 is, of
course, like that of n. This shows the possibility of cases of exception
of a nature too subtle to be indicated by any alteration of the real order
of the function.!

The result is also interesting in connection with the apparent paradox
originally noted by M. Borel, that the increases of the functions

(6) II(tf), sin^7ra;

are different, being those (roughly) of

(7) erlogr, er

while the increases of the moduli of their zeroes are the same. One is
tempted to say that, if we substitute for II (x)

(8) IL(x)-c,

* See Legonn snr les Fonctions entieres. The real order p of a function is the index of con-

vergence of the reciprocals of the moduli of its zeroes ; the apparent order is the least number p
such that, however small be e, the maximum of | F(x) | on a circle of radiufi r is less than exp (ifi +f)
for all values of r greater than a certain value. It follows from the first theorem that the
Picard case can only occur if p is an integer ; but cases in which the behaviour of the zeroes is
abnormal for a particular value of c certainly can, as is shown by the example of the function
np(x).

t Two very important memoirs on integral functions have appeured in the last few years—
P. Boutroux, " Sur quelques proprietes des fonctions entieres (Ada Mathematica, Vol. XXVIII.) ;
E. Lindelof, " Memoire sur la theorie des fonctions entieres de genre fini " (Acta Soc. Fennica,
Vol. xxxi.). Each of these writers has introduced greater precision into the known theorems
concerning functions of non-integral order and has proved interesting results concerning
functions of integral order. I refer further in the text to some of M. Boutroux's results.
I am indebted to M. Boutroux for a number of suggestions concerning the results proved
and referred to in this paper.
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the apparent paradox disappears, as we have then for the increases
of the moduli of the zeroes

(9) n/\ogn, n,

which correspond naturally enough to (7). But this, as M. Boutroux
pointed out to me, is not quite a sufficient account of the matter.
M. Boutroux has in fact shown that in the case of a function of integral
real order there are tioo typical laws of increase of its modulus. These
typical laws may be said roughly to correspond to the cases in which
all the roots are real and (a) all positive, (b) equal and opposite in pairs.
The two laws for the function corresponding to the law n for the zeroes
would be er, erl08r, and corresponding to the law n/\ogn would be
erlog)', er^°eryt. This sufficiently elucidates the behaviour of the functions
(6); but seems at first sight to raise a precisely similar difficulty with
reference to the function (8), since its increase is the same whether c = 0
or not, while the increase of its zeroes differs in the two cases. This
difficulty, however, disappears when we note (what will be obvious later
on) that what we may call the two principal sets of zeroes of (8), i.e.
those whose increase is least, are arranged on the " equal and opposite "
type (b), approximately of course. M. Boutroux when writing his
memoir was of course not aware of the nature of the zeroes of (8). I
proceed now to the proof of the assertions which I have made about
them.

2. It has been shown by Mellin* that, if — 7r+e < am.x < -K—e,

exp { -
(A)

\ f/c + too ^ xt

where I(x, K) = —A - £(t) dt

k being a positive integer, £(t) the Riemann £ function, and \ogn having
its principal value ; and that | I(x, K) \ < C | x \K where C depends only
on K and on e. From this and the formula

H(x)H{—x—l) = — Tr^sinTra;
we easily deduce that

an asymptotic expression for U(x) valid throughout a region of the plane

• Ada Societatis Fennicee, Vol. xxix.
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which includes the part hitherto excluded; and it is easy to see that
the two expressions are equivalent in the domain common to their
regions of validity. Moreover, these expressions hold uniformly for all
values of the amplitude of x; i.e. the ratio of II (x) to one or other (or
to either) of them differs from unity by a quantity numerically less than
C | x |", G being independent of the amplitude of x.

Now, if x = rei9
t

| exp | — (x+^) loga;+a;[ | = exp | — (rlogr—r) cos Q-\-rB sin 6—%log r}.

This tends to oo with r if i 7 r < 0 < T — e or — 7r4-e< 0 < — ^TT,
tO 0 if — |TT < 0 < £TT. If 7T — €<d<TT OY — IT < B < — IT + €, \V6
see by the help of the other asymptotic expression that | II (x) | becomes
on the whole exceedingly large, except in the immediate neighbourhood
of its zeroes.* Thus we see that the large roots of II (a;) = c must be
sought either in the direction of the negative real axis, or in the direction
of either part of the imaginary axis ; and that the roots (if any) in the
latter directions will lie to the right of the imaginary axis.t

The first series of roots does not particularly interest us here. It is
not difficult to show that, if we draw the curves | II (x) \ = \ c |, those
of them which lie in the direction of the negative real axis at a great
distance from the origin are small closed curves surrounding the points
—n; and hence that the roots of TL(x) = c tend asymptotically to the
points — n, one and only one being associated with each point, and
passing continuously into it for c = 0. I proceed to consider the other
sets of zeroes. Suppose that

IL(x) = c = yeiM, x =

being positive and n large. If we make k = 1 in (A), we find that

-&+-U -ic+ioo _ ~,t

lJK-.i<a SHI 7TC t

If we vary K SO that the line (*c—too, K+ICD) lies to the right of
the point — 1 , as by taking K = —£, we obtain

* As do simpler functions, such as c* sin % when x is large and positive.
t I t is essential to the truth of these statements that we should know that | n (x) \ tends

uniformly to oo with \x\ throughout the region i r—e<0<— ir + e. It is perfectly possible
for the modulus of a function to tend to oo with | x \ in every direction, and yet for it to have
an infinity of roots near oo ; but in such a case it must tend to oo non-uniformly. See a recent
note in the Comptes Rendus by Prof. Mittag-Leffler.
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log IT(x) = — logV^Tr) — ($-{•$) log X-\-X-\- — . -: —£{t)dt,
ATTt J -J-ioo SU1 7TC t

since the residue at t =• — 1 is

Now, if 0(x) =

and so* \<p(x)\< C \ x \ ~ \ d<f>
dx

< G I x

and, if rf>(z) = %+i«, the moduli of ^ i = ^- and •«-=: — « are each
Of Ot] drj df

numerically less than a constant multiple of | x | ~K

Now exp {— Cz-fi) loga;+a;+0(^)( =0^(2^) ,

and therefore

— (x+$)\ogx+x+<f>(x) = logy\/(27r)—i(2p7r—yu)

where j? is an integer. That is

(1) -

(2) -tf+J) tan-^-^log^+^+u+o =-2p7r+M,

tan"1-4- being a positive angle < %ir and, since *i is large compared with

£ nearly = £TT.
Let us consider the curves (1), (2). Since rj is large, and large

compared with £, it is clear that p is large and positive and that a first
approximation to the form of the curves (2) in the part of the plane
under consideration is given by r\ log r\ = 2p7r. It is easy to see t that
a region can be defined by inequalities of the form

* See Mellin, loc. eit. This follows from the fact that lim e • •" ' ((t) = 0 for any e > 0.

t These assertions are easily verified, and there is nothing of interest in the formal proof
of them.
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(S being small and B large) within which to each value of £ corresponds
one and only one value of r\ for each of the curves (2), that the values
of r\ increase with p, and that drj/d^ is small and negative along each of
the curves. Moreover, the curve (1) consists of a single branch whose
equation may be put in the form £ = ^7n/(l+e)/log>7 where e is
very small; and along this curve dtj/dg is large and positive. From
these facts it follows that the curve (1) cuts each of the curves (2) in
one and only one point in the region in question. Each of these points
is a root of II (x) = c, and it is clear that at such a point

r, = 2jp7r(l + e)/l0g2>, £=/7r( l+e)/( log Jp)2 .

Therefore the equation II (#) = c (c =£ 0) has an infinity of roots lying
in the direction of the imaginary axis, and given by the formula

where in each bracket e is a quantity whose limit for p = oo is 0. Also

so that the increase of these roots is that of p/logp.
It is obvious that there is a corresponding set of roots in the

negative direction of the imaginary axis. The equation II (z) = c has
therefore three sets of roots whose increases are p, pfiogp, p/\ogp ;
and so the increase of its roots is on the whole pfiogp.

3. An investigation only very slightly more complicated shows that
the increase of the roots of the equation

II (x) = cuax
n+an-ix

n-1+... + a0

is also p/logp. In fact, we obtain exactly the same first approximation
to them as in the simpler case. I have not been successful in an attempt
to approximate to the roots with sufficient accuracy to distinguish between
the nature of the roots for different values of n. In the case of the
other equations referred to at the beginning of this paper a more
accurate approximation is possible.


