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The Theory of Oauchy’s Principal Values.  (Third Paper:
Differentiation and Integration of Principal Vulues.) By
G. H. Haroy. Received February 15th, 1902. Read
March 13th, 1902. Revised November, 1902,

1. In my second paper® I stated the general conditions under which
4
P f @y M

is & continnous function of a: In this paper I shall deal with two of
the most important special cases of this general problem, which lead
to theorems corresponding to the ordinary rules for differentiation
and integration under the integral sign. That (1) is convergent for
all values of a in question will be presupposed in all that follows.

Differentiation under the Sign of the Principal Value.

2 The first question which will engage us is that of finding
sufficient conditions for the truth of the equation

;—GPJ': Fza)de=P r af_(a’;_“) da, )

which is a generalization of Leibniz’s theorem. This:equation
asserts that, if

Mfe )= - {f @ ath)=f @ 0},

lim Pj. A,f (v, a)de = J lniH»J Avf (=, ) da,

hal

that is to say that .
PJ Af (=, @) de @

is a continuous function of 2 for » = 0. Hence sufficient conditions
for (1) are (II., § 25) (i.) that f (z, @) is continuous except on certain
curves, and (ii.) that (2) is uniformly convergent in an interval
(—H, H).

This general criterion is, however, not very easy to a,pply

* In this paper the first and second papers (Proceedings, Vol. xxxiv., pp, 16, 53)
will be referred to as I., II.
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82 Mr. G. H. Hardy on the [March 13,

3. I shall assume at present that A is finite, and that we can
find a positive value of H such that f(z, a) and its derivates

af —f are continuous functions of both variables in the rectangle

0z’ Oa
(a, 4, a,—H, ao+H)v
_except on a finite number of curves &= X, (a). We may without
loss of generality suppose that there is only one such curve. It is
also convenient to take a+ A >2X for a = a;; we can then.choose H
so small that this condition is satisfied throughout (a,— H, e, + H).
Finally, we suppose either that

lim {f (X~¢, a)—f (X+¢,a)} =0
€n0
uniformly for all values of a in question; or that %Z is identically
a

zero, ¢.e., X independent of a. As X is independent of ¢ both
alternatives are included in the single condition that

llm - {f(X —¢, c)—f(X-i-e, a)} =0
uniformly for all values of a in question. Then

P[:fdéc = P[u-“fdm+Pr fda,

2X-a

and PJ‘L\ "fdn —hmj {f (X+y, a)+(X~y, a)}dy

a
X—a

=j ¢ (y, @) dy,

0
if ¢ (y. 0) =f (X+y, a) +f(X~y, a).
Now ¢ is continuous and has continuous first derivates except for
y=0. And

jx-.,g%dy___ r {[at(t a) , dX af(t a)

P B Oa da. taX ey
+[a (t, @) +5% 8t(t,aJhx v}d"’

=(J'x_ +[)x n) {_f_(:c_a__*_dXQL(“v“)}

Fofe

+ 8 (f @X—a)—f (X4 9+ (X=9)—f (@}

«
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The right-hand side tends uniformly to the limit
2X-a
PJ P g+ X (£ (2X—a)—f (a)}.
a aa ’ da

when e tends to zero. Hence
X-a
[ B
Y a

is uniformly convergent ; and therefore

X=a
‘;{-L wdy—j g¢dy+ o ¢ (X—a),

by the ordinary theorem of differentiation under the integral sign.
Therefore

A X-a
—'I-P'{ fdz= —(—ZJ’ ¢dy+ij4 fdz
da o °

2Xwa

= r étda:+2é-)—rf(2X——a)

‘o -
+Lx_aaa¢zm —22% 1 (2X—a)

j" 3.

a

TreoreM 1.—If f (2, a), i af are continuous in

Ox’ Oa
(a, A, ay—H, ay+ H),

except along a finite number of curves z = X (a), which do not meet
z=a, or = A, or one another, and have at every point a definite
direction never parallel fo z,; if, moreover,

lim "3 {f (Xi—e, a)—f (Xit+e, a)} =0

€m0

uniformly for all values of a tn (ay—H, ay+ H), and

f g

15 uniformly convergent in (ay—H, ay+ H) ; then
d 5[4 of
dﬂPLfda: = J' a“d:b.
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We have supposed A finite. But no new difficulty arises from
supposing the upper limit infinite, if there are only & finite number
of curves across which the integrals are not unconditionally con-
vergent. For then we can choose A so that

Xi(w)<A, aqp—HZLafa+H;

l ® d 4 d(°
d ad = — co- .
n da P _L ,f dz da P L + da _L
4
The first term is P[ Qf da,
a Ua

by Theorem 1; and the second is

if this integral is nniformly convergent; so that

d P( flo=P[ L .
(’ﬂ v ’ n a(’l
Case 1 (X; independent of a).
4. The simplest way to satisfy the conditions of the theorem is to
suppose that* f@ a) =9Q,(z—X)0 (2, a),

© heing a function which has continuous derivates ag , gg , and X
independent of a. a ox
5. (i) I I@=P{"L (1+1)£. (O<t<p, 0<a)
De AR = LI g z ) vt », a),
al » dx 1 p—t a
el _pfr. e = Lolog (2t =),
da .L (2 +a;(r—¢) a+tlog( ¢ p+u)

Integrating from o = 0 to a = ¢ and putting ¢ = p, we find
Prlog(l+£) 20 = ylog (241) log (£-1).
0 z t t

223
(ii.) It is easy to prove by differentintion that
d 2 de
P| lo (1+.‘5).L=_It&u-1_€‘._
,‘-‘, g 22 | a?—a? a a
(iii.) If 0 <e<]1,
s = Vow x ® ga-1 2
I v 08 4 ﬁp ¥ de =_(_-1’._) .
 l1—z da }, 1—z sin aw

Tn the latter case the symbol of the principal value is unuecessary in the derived
integral. 1In general, however, when X is independent of a, hoth integrals are
only principal values
X S T S 8in ar
(iv.) P.[ _— = log( —~—-)
wJo

l—2z  loga sin 8w

+ The functions 0, y, are defined in T. (§§ 8, 9).
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Cuse 2 (X, dependent on a).

6. The more interesting case of the theovem is, however, that in
which X; depends upon a.

THEOREM 2.—If f (2, @), QZ Qi are continuous except wpon the curves

0z’ Oa

% = X; (a), and f (@, a) can, near any of these curves, be expressed in the
form Y, fo—X, (a)} o (=, a),
00 00

where , %5 a product of logarithmic factors only, und ©, 3 A wre
contenuous without exceplion, then © (e

l;-l(—'ff(w, a) dx =1“Jﬂ g{;d.b

For ¥, (z—X) = 1Ii' |8 (2= X) |%;
in this product some or all of the signs of the absolute value may
possibly be omitted. And
IHI; {f(X—e)—f(X+o} = lcll.'l'(!,. ¥, () {0 (X—e)—0 (X +e)] =0
uniformly for ull values of a.
Moreover

gf,—- ¥, (@—X) % ©

it _9 . I 3 - 8,~1 “ 3
5.t 2 Xzsl [ @=X) %" 11 |

The first term is unconditionally integrable. The rest consists of a
finite number of terms of the form

Q,(z—X) 0 (2, a).

Hence (1L, § 15) J F 4o
a aa

is uniformly convergent, and so the conditions of Theorem 1 are

satisfied. - In this case it is always an ordinary integral whose

derivate is expressed as a principal value.

7. (i.) It is easily verified that

J‘A l{z—a)dz = QJA log (t—a)’dz = (A —a)l(A-a)=(a—a) l(a—a)—(A—n)

O<a<d);*

and —"_I I(a.-a)dx=l(a—a)—l(/1—a)=—1I

dx

da r~a

. By h: I douot«, lug || (I, §8).
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(ii.) It is easy to prove that, if » is integral and 0 <a< =,

k)
rl (cos z—co8 a) co8 4 42 = — — 008 %a,
0 n

or = 0, according as n > or'=—=log 2. Hence

.r cosnxdr _ 1rs.in na oo,
pt08Z—co8a  8ina
Similarly, from
.r ¢(cos 2 —co8 a) ¢ (Co8 x —co8 8) dz = = (log 2)* + i (a®+ B%) — x%a + }u®
0

0<B<a<m),

we deduce P j teosz—cosa) ; _ wla=m) w2
o COB2—co8 8 sina sina

according as B < or > n. The integral is discontinuous for 8 = « (IL., §36), and
its vulue for 8 = a is the mean of its values for 8 = a+0.*

(ifi.) We find [4f. § 5 (i.)] that
s (222 (2] o0

log{ltal—a}  _
(z=a)®

unless @a = 0 or 1. This example is instructive, as (according to the values of a
and q) it may be an example of the use of Leibniz’s theorem, or of either or both of

_% {aalog (aa)? + (1 —aa) log (1—aa)*},

(iv) P L

Theorems 1, 2.
(v.) The following formulee afford further illustrations; in all «, 8, ¥ are positive

j: log (I—ZT:)slog( - 5—2)2Jw = 2n%a(a<B), 27°B(a>A8):

PJ:log(l—-f;-) log (1-2) -2,

1+.a)}' wﬂfz(.ﬂf_1)+w(1+—})},

p
2, *aty
a a—B8 « (1+¢)’ a ¢-—1’

2-’1(1*5_), fz““s, 22,

aceording a8 a<B <7y, a<y<B, B<a<vy, B<y<a, y<a<B, or y<B<aj;
® PR 2\2 22
L lo,,( = log (1 = log{1 e dx
x )+ylugw—+2alug (1+£)+2310g(1+-'i)}
i y—a a ]

=47r2{a10g( 1
5
(a<BZ9).

* In IL., § 36, the discontinuity is ussigned only half its true value,
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8. THEOREM 3.—If f(2,a) =0, (z—a)O (z,a),

O being a function whose derivates of the first two orders are continuous
in (a, 4, ay— H, ay+ H), where a<ay,—H <ag+H<A, then

A
I(a) = Pj f (z, a) dz
will have a continuous derivate equul to

P'j;l 0, (z—a) {g_e + %9} de+ f (a, @) —f (4, «).

It is assumed that f and its derivates are continuons except for = a. A product
of logarithmic factors such a8 occurs in Q, (%) may become infinite for values of «
other than 0, suchus 1, ¢, .... We suppose that such a contingency is avoided by
a suitable choice of the range (@, .4) and the exponents s;. ’

Suppose 2a—a < 4 ; then, by the transformation used in § 3,
a—-0 A
I(a) = f ¢ (¥ ) dy+J' £ da,
[} 2a-a
where o (4, @) = f (a+y, @) +f (a—y a).

Now, for values of y other than zero,

P U] L[]

0o [89 ae] }

—-Q(./){[aa*-a toaty On +5{—'

GG
= 20, ] —126<1).
0. 28 R I G LED
This is only logarithmically mhmte for y =0, and
a-a 9
[ e
0 dJa

is uniformly convergent. Hence

d fa-a ag .
J wdy‘J,, 8bd +{f (2a—a, a) +f(a, a) .

da
o
Also —’I—J fda = -«j f ety a)dy
i 2a-a .0. a=d

aa
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Therefore

Ju J - af ajl-“y [.-“ af af:l “_de'*'f(“s“)_f(“i ).

Finally, r[ai+gﬂ‘ydy+j [gi g’:]‘“_”dy

=8

anc, as the left hand tends uniformly to its limit for ¢ = 0, the right
hand tunds uniformly to its Hmit

G

This principal value is therefore uniformly convergent and continuous,
and the theorem follows. If wehad taken fin the more general form
Q, {z—X (a)} © (, a),

the derivate would have been

dX 00
P('o,e-x) {2+ do+ B {1 (0, 0)=F (4, 0)}.
“ aa a{b
4
9. (i) If I(a) = PI . logA & (4 <a<d),
a -a
a1
da a-a A—a
which is evidently correct.-
(ii.) From PI'__—"J;__=0 (0<a<m)
0C08 Z—CO8 a
we deduce by successive differentiation
P sinz—sina .______ sinz—sina)? , _ 4cosa
ro (cos z2—cos a)’ sin?a r (cos z—cos a)" sin’a’
(iii.) From .Pj ¥ _0 (a>0)
0 tT—a®
x de 1 9 22 2n-]
we deduce Pj = 1(1+"‘+“‘+"'+ )
0 (x - a)(x + G)" * . 2"“"‘ 2 3 n

(iv.) If 1= PJ.Q Hnpz g, (2, a>0),

ex T—a
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we find %-&p’l =0, I= mcospa,
® z sin px “ cos pz T o,
and so Pjo ;3_—:;— dz = Lm cos ap, PL z’fa’dz = —ﬂsm ap.

Infinite Limits ; the gemeral case.

10. None of the preceding theorems cover the case in which the
number of singular curves is infinite.*

Tueorem 4—If f (2, a), g—f, gj—‘ are continuous throughout any finite
z Oa
part of (a, ©, ay—H, a,+H),
except wpon a finite number of curves & = X; (a), which satisfy the swme
condrtions as in 1, and
tim i (£ (K¢, a)—f (X.te, @)} =0
€=0

uniformly for all values of a in (ay—H, ay+H), and
P J ) éi da

a Oa
13 untformly convergent, then will

‘% Pf:fdm = Pj: g{d.z.

For let oy, 0y ..., 0, ... be any series of descending positive
quantities whose limit is 0. We can choose a value of @, such that

* For the purposes of these theorems I shall alter slightly the meuaning of the
expressions uniformly convergent, regularly convergent, defined in my last paper for
principal values whose upper limit is » .

In the definition of uniform convergence (II., §19) condition (ii:) iy to reud
* however small be the positive quantity ¢, and however great be H, we can find »
value of 4 > H, such that ...”

In the definition of regular convergence (IL., §21) condition (iii.) is to read
‘“ however small be the positive quantity o, and however great be H, we can find
(1) a value of 4 > H, (2)....

The definitions, in their original form, suffice for the deductions drawn from
them in my former paper. But we have not been and shall not be concerned with
any principal values which sutisfy the original and not the modificd form of them,
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Pj l<trl

for all values of a in (ay—H, a;+H); a value of a, such that

is uniformly convergent, and

'ag .
PJ is uniformly convergent, < 0y; and so on.” We can
@

suppose ¢;<a;<..., lima, =w. Then none of the curves z= X,
can meet any of the lines # = a,, a,, ...; and the conditions of I. are
satisfied in each of the regions

((L,., (LS aO_H$ a0+II)’

and dp j"m ‘ fde =P ruﬂ gj dw.

da
' ¢, Oua

Moreover the series $ep '{ " e
o da J,

"

(¢, = a) is uniformly convergent. Therefore

& p = 0% I
ljfda_da%P

da

"”fda, 2 ——Pf '“lfdd:

"! Il

= iPJ‘"Ml g£ dw = j Sf da.
° «a, « « Ua

n

11. (i.) Thuy, if I(a) = PJ sin az tan » 'l)'

a_ Pr cosut.nna;-’“-":-}-;r.
0 €2

And, a8 I (a) is continuous for g = 0,

I (u) = {ra.

Similarly ij ‘ﬁﬁz_:a_"’_‘ls_& tanzdz = i (= BY).
0

Similarly wo can estublish the following results :—(ii.) If ¢ >0,

Pr log(1+i) Az = 2¢ tan-! tanh la,
0 2%/ cosx

Nl 2 de
r log(l—v—-) — =0, 7%, 2n%
I a2 corx
according as 2n—L)r<a<@r+d)m a=(n+dw or Qn+Y)rcac (e
In the latter case we prove fitst that the integral is constant where continuous,
and cvalunte its diseontinuitics by 11., § 36.
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(iii.) If Oc(m+}ncBcac(m+y)m,
a2 \2
(05w ar 1 e
0 p2—22 CO8 z 28 cosﬂ o gi— ('H'i) ,,}
(iv.) P 1 dz L

= .
o coBz—cosa a3+2?  2a(cosh a—cosa)

12. Turorem 5.—If the conditions of 4 are satisfied, except that
P ‘ af dz
is only reqularly convergent,

ot [[rae=r] o

For let o), oy, ... be a series of descending positive quantities whose
limit is 0. We can choose a value of a,, a set of positive quantities
21,4, each less than some fixed quantity p,, and a division of («,—H,
a,+ H) into two sets of partial intervals 6, ;, n,, such that

Pﬁ'gédw

is uniformly convergent in 6, ; and

P j O gy

a aa
o “B
Pj < oyin 6, ;, a,nlej‘ll |< oin 7,
. Ja e

If then we define af(a) as being = a, in 8, and a;—p,; in n,:,

in n,.; and, moreover,

(1Y
PI is uniformly convergent, and
a ;
a,’
7|
a
for all values of a in (ay—H, a,+ H). - We next choose a,, ps, iy 05,45 12,4
similarly corresponding to ¢,, and define a; () in the same way; and

so on. And we can suppose that the least value of a,,, (a) is greater
than the greatest of a, (a), and that lim a;, (¢) = o uniformly for all

< o

values of a. Then, if a; = a,

fem o[ o Laumgr(
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and the second series is uniformly convergent. So the theorem
follows as before.*

D 1000 9
13. If, e.g., I(@) = J 1_‘2@.‘;6‘;8.“5%.@ (a>0),
0
al __op nm___‘i‘__”dx=_,r~
da . jo z !
I(a) = —am.

Again, it is easy to prove that

ol .
I cos az log cos? az % = wcosh a log (1 + ¢=%) —me-4log 2,
0 &

» dz .
Pj cos az log cos’am:1 = ma CU8 @&— 8in @ log 2,

0 —a?
if 0 <a<2a, and in the second formula 2a< . Differentiating,

Pr cos az tan az zdx, = "—fosha,
0 l+2 41

I’J cos az tan ax ]x‘%—g =—}mwcosa.
o -
» Coa\?
If I (a) =J log(l—-:—z) log cos? az dz,
o

ar © a® \1?
7 =_2PL log ( 1—;5) tan az dz,

2] _SaPr“xtanax
0

@223

dz = dan (0<(¢, O<ac< E’L)

(3
Hence ) z—f = 2¢°r, I = 2a%n.
14, A good deal of the substance of §§ 2-13 appeared in a paper *“ On Differentia-

tion und Integration under the Integral Sign’’ (Quarterly Jowrnal of Mathematics,
No. 125, 1900, p. 66).

* There is a difficulty here which should be expressly mentioned. If-

' ’
({7 ¢,
n+l n+1 ,
j , = U, Pf' =y,
d

@, Lty

(-gi'! = ', for a = ay, and indeed throughout an interval (ay— H,, ag+ H,), which
- .

may, however, decrease indefinitely as # increases. Since @, is not continuous

throughout (ag— H, ag+ H), neither n, nor «,, is as a rule continuous throughout
that interval for all values of # ; und for certain values of a, which may approach

. . . du, . .
indefinitely near to ay as n increases, —d—'! ceases to be determinate at all. The series

a
2w, muy none the less be diffeventiated for a = a,. T umit the formal proof of this
statement, us it is detailed and perhaps tedious.
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Integration under the sign of the Principal Value.

15. If f (=, y) is a continuous function of both variables in the
rectangle (a, 4, b, B),

(o[ paw=]

5 .
du L f (=, y) dy.

But this equation is true under much more general conditions, which
have been studied by many writers, among whom I may particularly
mention M. Ch. de la Vallée-Poussin. It is sufficient, for instance,
(when the limits are finite), that f(z, ) be finite throughout any
part of (a, 4, b, B) which does not contain any point situated on a
set of curves satisfying certain conditions, and

j‘f(m, y) da, j " (@ y) dy

be uniformly convergent.

I shall not, however, enter into any discussion of these general
conditions in this paper. The question which concerns us now is:
Under what circumstances vs (1) true when some or all of the integrals
contained in it are only principal valnes 7  And I have already pointed
out that it is not worth while to attempt to state theorems connected
with the principal value with all the generality we can give them.
What is worth doing is to distinguish and examine the various simple
cases which occur when we are dealing with functions which present
themselves naturally in analysis. )

We shall suppose then that f (e, y) behaves in a normal manner
throughout (a, 4, b, B), except in the immediate neighbourhood of a
finite number of simple curves, along which it becomes infinite in
such a way that its integral with respect to = or y is not uncon-
ditionally convergent across them.

16. The simplest case is that in which these curves are straight
lines parallel to the axes.

Let us suppose, in the first place, that f (x, y) is continuous except
for # =a. Then, however small be the positive quantity e,

(j:"+j:+e) de j:'fdy = f dy (J':—e*-j:ﬂ)fd"

Further, let ns suppose that

rl" fae
¥
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is uniformly convergent. Then, however small be s, we can choose ¢
so that

ate
|Pj fd:l:l(a'

a-e

throughout (b, B). Thus the limit of the right hand is

s o1
J dij fdz;
b a

and so the left hand also tends to a limit which is, by definition,

A B
PJ da:j fdy.
a b

TrEOREM 6.—If f(x, y) is a continuous function of both variables
throughout any part of (a, 4, b, B) which does not include any point of

the line x = a, and .
Pj fiu
a

18 uniformly convergent, then
4 B B A
PI dw[ fdy:j dyPI fdz.
a ] b a
17. fa=56=0, 4 =B=¢, and

flzyy) =
we find on integration that

e e=a)aCtats
Pl (1 e dz =
rog + —a+z+a+B) Iz log log Y

1

Tawigrh <A 0<ae<a,

18 Let us sappose mow that B is infinite, and that, for any
finite value of B’ > b,

P[:mjf’fdy = j:dij:fdw; |

then, if r fdy is convergent, except for z = a, and
]

lim PrdzJ Fdy =0,
Bax a B .

this equation passes over in the limit into

fiaf ra= [ ar] g0
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Suppose, for instance, that

~v@y
4 z—a

¢ being a function whose derivate o is continuous throughont
T

(a, 4, b, © ), and that ‘
[[van [
b [ aﬂ?
are uniformly convergent in (a, 4); then
¥ (z) = r ¥ dy
»

is continnous, and has a continuous derivate represented by

JL e

A @
Also Pj‘ dx [ fdy
a B

is determinate, and equal to .

a—e 4 «© ate [©

(7L e )

a ate’ W a—e¢ VW

for any small positive value of e. The last term
=2e¥ (a+6) (—12621);

and this is numerically < K, where K is a quantity independent of
e and of B'. Wecan therefore make it less than any assigned positive

quantity 4o by choice of a value of ¢ independent of B’. We can
then choose B’ so that.

© . g€

L,"’dﬂ < 35@=a

for all values of z in (a, a—e¢) fand (a+e, A), and all values of
B, > B’; and therefore

(j:_’+[:+() md_“’a E Ydy I <o

‘4 ]
Hence |PI dmj' fdy‘<¢r;
. a B,

'A '
so that liij dz j fdy=0.
Peoo B

a
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This is equally true if for L1 e substitute the more geuneral
factor Q, (z—a). y—a

19. The extension of §§16, 18 to the case in which A = does
not present any fresh difficulty which is particularly interesting to
us now. For we have only to combine the equations

(4 B B A
p| dw[ fdy:] dyP[ fda
Ja b b Ja

® B 0
and I d:LJ. fdy:jﬂdyj fdz;
A b b 4

and the difficulties whicl may meet us when we try to prove this
last are not those with which this paper is concerned.

20. We, can prove, for instance, without much difficulty, that the theorem holds
ifa=-b=0, A=B=eo,and

_ ___coszy a
fe ) = Gy @0

. T
‘We deduce sinaydy _ _2a J y P r 8 2Y 4y
0

o 1443 o 1+y2 23—al?
0 '
=_25PJ‘ _rly:] coazydy
)y a?~al )y L4y

=1 {c—-zi (¢?)—e= b (e=)},

a result proved otherwise by Schlimilch and Kronecker.

21. It is to be obrerved that we need not insist on the condition
laid down in § 18, that '
r @f dy
s Ox

should be uniformly convergent, if we can assure ourselves that
v = ya
>
has a continuous derivate always numerically less than some quantity
independent of 2 and B’,
This case occurs, e.g., if
fla,n) = =B (<p<),

« o=l
when we deduce Pj gl——f{! =meotyr (0<wv<l)
o 1—
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22. Let us sappose next that the limits are finite, and f continuous
except along @ = a and y = B, where u<a<4, b<B< B; and that

4 .o (B
PJ. f dz, P'{ fdy
a b

are uniformly convergent, except for y =8 and = = a respectively.

Then
A -0 B -4 B <A
PJ ds (r +J- )f dy = (r + '. ) (lyP'[ fda,
“ b Beo b Ry Y] a

however small be 6. This equation will pass over in the limit into
A

a P [" derfdy=Pr dij £,
Ja b b

4 +0
provided only P J dz P r fde
e JB-y

be determinate, and tend to zero for 6 = 0. And it is clear that this
will be the case if the same is true of

ate B+ ] ]
PJ Pf = Pi ng[ fla+§ B+n) dn.
a—e€ p-0 —e -8
Now let us suppose that
Fla,g)=—Y@y)
(@—a)(y—8)
where ¢ is a function which has continuous first derivates throughout
(a, 4, b, B). To save unnecessary discussion we shall assume that
¥ (@, y) is capable of expansion in a Taylor's series in the neighbour-
hood of (a, 8). Then
lﬁ (a+§’ ﬁ+'7) = llb (av B) +§‘,’1 (‘fa 7]) +7N’2 (51 7’)’

where ¢, 'n/z, are functions which also behave regularly near (a, /3).
We consider the integrals arising from these three terms separately.

(i.) Since P r ’?’? =0,
Jodn
the first term contributes nothing.
(ii.) The second contributes.

r dEP r 4 (E;‘—"—) dn = 26 r %ég' 1) d§ (—e é y' Se)*
J - J—e ? - N

which is determinate and tends to zero for § =0.

* 1, §12.
VOL, XXXV.—N0. 796. H
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(i1i.) The third contributes
l' dé
pl &

e E [ lp! (f’ )dﬂ

This is also determinate and tends to zero for §=0; for

[

is'n function of ¢ which possesses a continuous derivate

_L Oy 2 dy,
and P !’ d?f [ Yoy = 2 U %—‘?dnlw,
where | —e ¢ Ze

Hence in this case
A B B 4
P!’ de.[ fdy:Pj dyP[ fda:

And it is easy to see that the same conclusmn holds in the more
general case in which

f(z ) =Q,(a—a) Q,(y—B) ¢ (=, ¥)-

23. So long as thereis but a finite number of singular lines parallel
to either axis, the extension of (1) of §22 to the case in which 4 or
B or both are infinite does not present any fresh difficulty, as the
rectangle (@, @, b, ®©) can be divided up into a finite number of
partial rectangles each of which satisfies the conditions of one or
other of the preceding sections.

24, If -~ e o™
and

we obtain, after some reduction,

_logudu _
D Trra—B) = a+B {x?+ (log a)*—(log B)*} .

25. It sometimes happens that the formula

(ofra= [

is only true if we introduce the sign of the principal value be'fore
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one of the outer integral signs. We may have .

O ([+LIL=L0 )

A4 B4 . A (R .
and g ,j [ convergent, while j J 18 not so. If, however,
b . [

b

B [G+e
lim [ j =0,
b Ja—e

equation (1) will pass over in the limit into

br dmrf(l = j",z r :
y=| dy| fda.
« 3 b “©

This case is not of the samne type as those which we have heen
discussing.

26. Suppose b=0, B=w,
and Fiz, y) =e v+ gin (2 _y sin 2) ¢ (),
¢ (z) being a function of z which passesses a continuous derivate. Then, so long
a8 z is not an odd multiple of =,

R

Hence, if A is not an odd integer,
(- A ~
P['yeanieq@ de = [" ovay [ overssinte—ysing) o(e) s
a . [} a

provided the condition of the preceding section is satisfied.
-1 Y 8in nz

nt !

Now . e~VeosE yin (z—yinz) = :zb(—)
4 ] .
and so Pr ftan iz ¢ (v) dz = r e~V dyJ' ¢ (x) § (=)t ﬂ'_',.“":'l e
“ .

=J e- vrlyz( y-t y J. sinnz ¢ (z) dr
0

=
‘(_)n—l;%j e‘lly"dyj sin 1z ¢ (%) de
0

oM8 o M8

( - ‘J‘ sin nz ¢ (z) dz,

provided this series be convergent. As this result has already been obtained by
another method in IL (§28), I shall not delay over the proof that the inversion of
the order of integration is as a matter of fact legmmat.e

27. So far I have supposed that the singular lines are all straight
lines parallel to an axis. I shall now consider the case in which
they are continuous curves never parallel to either axis. The

H 2



100 Mr. G. H. Hardy on the [March 13,

simplest such curve is the line

z=y,
and 1 shall begin by supposing that this is the only singular curve.
It will not be difficult to generalize the results.

28. Suppose, then, that f(a, y) is a function whose derivates
o
%’ dy

ure continuous thronghout any part of the sqnare

(o, 4, a, 4)

which does not inclnde any point of the line @ = y; and that, near
& =1, [ (%, y) may be expressed in the form

&, (e-y) 0 (v, ),

. . . de 06 : -
0 heing a fanction whose derivates = are continunous withont

,
exception. O a]/

4
Then P( fdy is uniformly convergent in & = (a, 4), except for

"1 .
x=a,Ad; and .P‘ fdzin y = (g, 4), except for y=ua, 4. And
the function v

é (e, 9) = Pj”fdy

is o continnous function of both variables except along the line 2 =1y,
and as y approaches & becomes infinite (if at all) in such a way that

lim ¢ (z, 2—n) =0
=0

for any positive valne of p. And
[l ¢ (-i y) dz
is nniformly convergent in («, A).
Similarly, if ¥,y =P rf du,
r ¥ (a, yj dy is uniformly convergent in (a, 4). We exclude x =y

from the field of integration by the two lines a—y =+e Applying
the ordinary theorem, that the order of integration is indifferent, to
that part of the remainder of the field which lies between

u=ate, y=A—¢
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we find (Fig.-1)
d-e  ,[(y-e€ V] ) "¢ CA-e A 'g;c
(1) j dy (j +j _);m:J dwj fdy+j da;j fdy.

g

AA)
(AA-¢€)

(ha+e€)
Fie. 1.

Mow, if - a+ey < A—g,

Y+ € CU+E

P j fau=[2] | =0y i,

y-¢ avu roy+Be Jy-e

where —1<6<1.
y+e
We can therefore choose ¢ so that PJJ is numerically less than
. y=e .

any assigned positive quantity ‘“(—Ag—u,_) for all values of e=Xe¢,

Then the left-hand side of (1) differs from
[4-€ fl
j dy P j fdx
by less thun 4a. But we can also suppose ¢, so small that
J.u rE P J'.!., J',I I J'J
“ “ J .- l'.. a
are also numerically less than s. Then the left-hand side of (1)
differs from A a4
‘. dy PJ fdr

o
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by less thun ¢. And the right-hand side of (1) is

j.—l-:sdm (an.c+ ]~_-1-z) fdy+A,

avle

where A= rmdwr-tfdy +JA dwvrefdy.

a re€ A-2€ ase

And an argument similar to that used above shows that ¢, can be
chosen so small that this differs from

A A
J‘ de{ Iy

by less than o. - Hence

[orfrumfarfs

28. Now, let y = X (), X (u) being a function which has con-

tinuous derivates X X the first of which does not vanish

du’ du®’

between y = a, 4. And suppose
X(b)=a, X(B)=4A.

Then Fz,u)=f{z, X ()}
may be expressed in the form

F+ 30, fa—X W)} & u),
where F is a function which is continuous throughout

(a, 4, b, B),

except on z = X (u), and possesses an unconditionally and uniformly
convergent integral across it; and @, is a function whose derivates
0d, Ob, . . .

E =¥ are continnous without exception.

iz Ou

Also P J fde = Pj" F(a, u) da,

. \ .
and, by L, § 21, P}'fd;,:P[ F(m,u)‘;’i_‘ldu;
‘ a; . b {1

) B . A . A W
and so J du I’J Gdx = j dz‘Pj G du,
h a . 1]

h "
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where G = F (2, u) dx
du

1s a function of the form
G+ ‘ﬁl Q,, {m—Xku)} ¥,

We may suppose, moreover, that G is uny expression of this kind;
for any such expression, when expressed in terms of y, becomes a
sum of terms to each of which the argument of the preceding pages
may be applied. And the conditions satisfied by X (x) amount to
this, that @ = X (v) is & curve of continuous curvature which is
never parallel to @ or u, und passes. through two corners of the
rectangle («, 4, b, B).

29. Tacorem 7. — If f (=, y) 45 a function whose derivates

%’:, Qi are continuous throughout
(a, 4, b, B),
except on a finite number of curves of continuous curvature
= X;(y), y= Yi(e),

which do not intersect and are nowhere parcllel to the aves, und if
f (=, ¥), in the imnediute neighbourhovd of uny vme of these curves, cun
be expressed in the form

Fla, ) +30, {o—Xi(4)} 0. (@, 9),
or in the form g (@ y) +$ Q, {y—Y.(®)} 6, (2 9).

where f (2, y) is u function which becomes at most logarithmically infinite

alony == X;(y), end O, a function whose derivates 8_9 a—e- are con-

Oc’ Yy

tinuous without exception, then will

Bl R B A
J. dm(l’j f(ly) =" dy(Pj fda:). ‘
a b - b a

For (see Fig. 2) we can divide the rectangle (a, 4, b, B) into a
finite number of rectangles, to each of which we may apply either
the equation proved in the last puragraph or the ordinary theorem
as to the interchange of two integrations.
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30. If a=b==1, A=DB=1, a B> 1,

. 1
wnd L) = e o ey

we deduce, after some reduction,*

g (122) 80 4 (10g2
J_,l()g(l+t¢)a+n !

Fia. 2.

31. A considerable variety of different cases may occur when we
suppose < or /3 infinite, but the singular curves still tinite in. number.
If, for instance, @ =y is the only singular curve, no new difficulty
arises when oune of 4, B is infinite; but when they are both infinite
further discussion is necessary.

32. Let =0, d=w, b=0, B=H>1,
and f(z, 1 ____gjy)

(=, 9) U

¢ (y) being a function whose derivate is continuous. The singular curve is the
hyperbola 22—y?+1 = 0 (Fig. 3), and satisfies the conditions of 7, except at (0, 1),
where it becomes parallel to 2. Hence, if ¢> 0,

0 H ¢ (y)dy H * dz

ap( oWy dpj.__——.

L _[0 =yt 1 L Pl)dy e 22—yt 1

But it is not difficult to prove that -

hm [ o (y)dy I’r f-*+1
Hence J dzPrﬂU'— J ¢(y)dy_PJ dz__ _ . (P o) dy
) I

yi+1 T—y3+1 o/ (1=0%
from which ‘we cun derive various integrals. :

\

* This v(.unplc ig worked out in detail in the pnpcr in tho Quarterly Jomnal
already reforred to, p. 131.
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Fiu. 3.

33. When 4 and B are both infinite there is another condition to
be attended to. Let us suppose that there is one singular curve
(such as z—y = 0 or 2—y*+1 = 0) which extends to infinity in the
positive quadrant in a definite direction not parallel to z or 4. Then
for any finite values of 4 and B

1 n n .t
(=gl
o b b o

)

and we may suppose one of the upper limits, say 4, replaced by o,
as in the example of § 32. We need not stop to discuss the condi-
tions under which this is legitimate ; for, if the singular ¢urve meets
y = Bin (4’, B), we have only fo combine the two equations

.0, W tn c, troctn ‘n
Loel=lie e L)AL
a [ b Ja Ay ? o Jua,
4, > 4% see Fig. 4). Let us suppose, therefore, that
& B. B [®
Py =| P}.
jrt jh jh Jn
Then, if J r j
a@ B

is determinate, and tends to the limit 0 for B = w, this equation
ultimately passes over into

j PJ'. -_—j Pj.
a b h a
34. Let G=—w, b=0,
and Flon =20 (55,
y

€S-

where ¢ (y) is a function whose derivate i continuous. Then, if the condition of
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tho previous scction (or that which results by interchanging » and y) is satisfied,

n j c""dx’}*j ﬂﬂi’i:ﬂj " ¢ (y) dy.
-o 0o T—Y ]

1t can be shown (I omit the proof) that this equation certainly holds if
j ¢ (y) dy is absolutely convergent. If, e.g.,
°

o (y) =

1+y?

(=)
8
[

>

&

FiG. 4.

o o
gives j (qup—f—l‘%g—f ds ='£{c’”("0”’—e"’lie"}.

But (1) also may be true if r ¢ (y) dy is not absolutely convergent. If, ey.,
0 .

¢(w=y—};; (a>0),

it gives j: log ( :—) (:;ipt:dx == .2"; { (—g—-—Si})a) cos pa— Cipasin pa } .

35. Moreover (1) ix only u purticular case of the more general formula

@ | ear( 2oy uif s a,

b £—08(y) s
which holds when 6 (y) satisfies certain conditions.
1 b .
If, e.y., b==n, o= i'i'—!/ay 0 (y) =“.'I—’!‘/‘ (a, 8> 0),

(2) beeumes, aftor a little reduction,
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36. There are two more questions which we must discuss in order
" to complete this series of investigations. In the first place, when two
singular curves intersect within the field of integration, the formula

.t B B AU
) j P j = j PJ
a b b a
generally ceases to be true. If, for instance,

(z,y) = ¥ (z, y)

T& D =5G n @ w’

where § is a function with continuous derivates, and A =0, p =0
are two curves which satisfy the conditions of 7, except that they in-
tersect simply at the one point (a, 8), the difference between the two

sides of (1) will be
27 (a, B)

oA p)
a (a, ﬁ)

We shall have to discuss this case, and some other similar cases in
which the corresponding * correction ” or “residue ” can be found.

In the second place, we must atterapt to- extend the theorems of
the latter part of this paper to the case in which not only are the
limits 1nhmte but the singular curves intinite in number.

Types of Perpetuants. By J. H. Grace.
Received and read June 12th, 1902.

1. I propose to apply the symbolical method of Aronhold directly
to the discovery of the irreducible system of covariants of an in-
definite number of binary forms of infinite order.

Suppose the forms are  ai, b, ¢, ...,

when 7 is indefinitely large ; then the problem is to evolve a system
of forms of the type
(ab)* (be)* (cd)” ... ayb]

in terms of which all others can be expressed.
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