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20 becomes the Hessian of / (u), 2$ becomes / («), and 2x vanishes ;

whence ,= _H(u)
9 /(«) '

Again, the differential equation (A) becomes

2_^!L_ dp'

f
which is the general elliptic differential reduced to Weierstrass's
canonical form by Hermite's substitution.

A very complete discussion of this subject will be found in chap. v.
of Greenhill's Elliptic Functions, from the analytic side, and I offer
this geometrical view of the matter only in order to show how it
depends on the contravariants of the conies U and V.

On the Fundamental Theorem of Differential Equations. By
W. H. YOUNG. Received and communicated January
9th, 1902.

The fundamental theorem of the modern theory of differential
equations is Cauchy's existence theorem, dealing with the existence

.and uniqueness of a set of integrals satisfying given initial conditions,
and the holomorphic character of the solution. This theorem has
been stated in very precise language, and proved in various ways, by
Picard and Painleve, but some doubt has been expressed as to
whether their proofs are rigorous. It has been suggested, in fact,
that it has not been conclusively demonstrated that the holomorphic
solution is unique even in the simplest case which can arise.

In the following note* it is proposed to give a brief account of the
theorem in question, and to examine an example which has been put
forward as typical of a large class of cases Avhere the theorem fails;

* The note is substantially what I wTote in January, 1899, but did not publish,
as I expected Painleve or Picard to take thematter up. The fonner has now done
BO, but his treatment is too general to appeal to English readers. Indeed he does
little more than repeat at length his previous definitions.
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Taking the case of a single differential equation of the first order
and first degree, Cauchy's theorem may be thus stated:—

Given a differential equation

g=/<*, y), (i)
and a pair of values a, 6 for which the function f is holomorphic* there
exists one, and only one, integral of the equation which > approaches the
value b tohen x approaches the value a, and this integral is holomorphic.

We add as gloss: When we say that " y approaches the value 6
when x approaches the value a," we mean that, if we consider small
circles of radii e and o- round the points b of the y plane and a of
the x plane, and make x move up towards a along any path which,
from and after a certain fixed point, enters and remains in the circle
of radius a, then y moves alonga certain curve which from and after a
certain fixed point (to be determined) enters and remains in the'circle
of radius e ; and this is to be true however small o- and e are taken,
provided only they are fixed. Such curves may be called " curves of
approach " to the point in question. The student of precise theory
of functions will recognise that this is, in fact, only a gloss and not a
hypothesis, since in treating of the value of a function at a point, or
the behaviour of a function in the neighbourhood of a point, we are
working in the small (im Kleinen), and the geometry we can apply
is only differential geometry. If we did not work in the small, we
should find ourselves constantly hampered by quite unnecessary com-
plications. For instance, starting from a point on a Riemann's
surface, and considering such a commonplace function ;is an Abelian
function with three or more periods having a given value at that
point, the value at a neighbouring point is determinate, because we
nre working " in the small." But, if we allow the moving point to
wander about at will on the Riemann's surface between the initial
and final point, the Abelian function can, by a proper choice of path,
bo made to have a value at the final point as near as wo please to any
given value whatever. Thus the student who refused to work " in
the small" Avould be tempted to say that such a function had an
essential singularity or " point of imleterminatcncss " at every point
of the Riemann's surface! The uselessness of such a mode of ex-
pression is self-evident.

* By " holoinnrpliio at a point c " we mean that the function is developable in a
scries of positive iutejjral powers of (-c—c) in the neighbourhood of that point.
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Notice that there are virtually three independent statements in the
theorem:—

(i.) That a solution exists, satisfying the given conditions, which is
holomorphic at the point OJ = a.

(ii.) That this solution is the only one which is holomorphic at the
point.

(iii.) That there is no non-holomorphic solution satisfying the con-
ditions.

The first two statements are due to Cauchy ; proofs of the third have
been given by Picard and Painleve.

We confine our attention to (iii.), referring to any of the many
treatises on analysis for an account of (i.) and (ii.).

Picard's elegant proof is given in his Traita a"Analyse, and is of
this nature: He assumes the truth of (i.) and (ii.) for partial differ-
ential equations and deduces the truth of (iii.) for our case.

Painleve has given more than one proof. His first proof is given
on pp. 19, 20 of his Stockholm lectures. It is somewhat concisely
stated, and its force may therefore be easily missed. It requires a
knowledge of the domain in which the Cauchy integral is proved to
be holomorphic.

Suppose/(.r, y) holomorphic for

| a s—a |€ r and \y—b\ ^ p, (2)

and let M be the modulus of its upper limit in this region ; then it is
known that Cauchy's integral is holomorphic within a circle centre a
and radius A, where

(2')

It at once follows that this is a Cauchy integral which has the value
y0 when a' = .r,,, ' and y0 being any points within the circles (dotted



1902.] Fundamental Theorem of Differential Equations. 237

in figure) centres a and b and radii ^r and %p, and is holomorphic
within a circle of radius ^X and centre x0. Call these dotted circles
0, and Vv

We can now give the substance of Painlev6's proof.
Let L be a path of approach* to the point x — a.
Is it possible that for every such path, or for any one such path, a

solution y — <p (x) exists satisfying the given couditions, and non-
holomorpbic at the point x = a ?

In vii'tue of the hypothesis with regard to L on p. 235, we can evi-
dently find a point R of L so near a that—'•

(1) Its distance from a is <^X, and a fortiori <\r.
(2) The corresponding point y is within Fv

(3) These statements are true for all points on L between a and
this point H.

Assume:
(4) That among all these points one at least exists for which

<f> (x) is holoinorphic.
(I.e., assume that the portion of L between JBTand a is not singular

for (j>.)

Call this point .T0 and denote the corresponding y point by y0.
Then <j> is the Cauchy integral corresponding to these values ; for i t
is holomorphic at x = x0.

Now, since / (a;, y) is holomorphic for

I a—a*» I < £ r , I V—Z/o I < £P>
it follows that the Cauchy integral corresponding to the pair of
values (a;0, y0) is holomorphic at all points of the circle Avhose radius
is \X and centre a;0. But, by (1), p. 237, this circle includes the point a.
Hence <f> is holomorphic at the point a. Hence it is the Cauchy
integral at the point a, and the hypothesis that it could be non-
holomoi'phic there will not hold.

The only doubt then that can exist is:—

Is there perhaps a function of x which sutisfies the differential equation
and which is non-holomorphic at all points of an arc of a curve of
approach to a including its extremity (or asymptotic point) a, and which
tends toivards h as x moves on the curve towards a ?

If this be the case, then a solution exists which has the value b for

* The path L may have the point a as asymptotic poiut, aud its length may in-
crease indefinitely as x tends to a.
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one, at any rate, of its values at a, and which is not the Caucliy
integral,

Are there any functions of a single complex variable which aro
non-developable at all points of a certain curve lying in the region of
existence of the function, and which none the less have a differential
coefficient at each of these points P

We defer for a subsequent paper the discussion of this question.
It will be seen shortly that it is not necessary to answer it for the
purpose in hand if we make use of Painleve's second method of treat-
ment of the problem.

Let (o;0, y0) be any pair of values in the domain in which f(x, y) is
holomorphic, and let the corresponding Caucliy integral be

V = V (». 2/o> a'o)- (A)
Let (a, y) be any pair of values of (a;, y) satisfying equation (A), and

therefore lying in the region of existence of <p, and in the domain in
which / is holomorphic. Then, by the uniqueness of the Caucliy
holomorphic solution, we get the same Cauchy integral (A) if wu
start with (*•, y) instead of with (aj0, y0), i.e.',

y = <l>(x, y , £)•
is identical with (A). But (A) is satisfied by x — x0, y = y0; therefore

y0 = <p (ft:
u. y. «).

or, since y, a- Avere any pair, yli = <p (a:u, y, x) (A')

is another way of writing (A).

NOAV giAre a;0 a definite numerical value a, and write

u=<p(a,y,x), (B)

Avhere y of course no longer satisfies (A). Then u is a function of x
and y which assumes the value b, Avhcn

a: = a and y = b.

Change the dependent Arariable in our fundamental equation from
y to u. We know that (B) is algebraically equivalent to

y = f (x, u, a). (B')

Hence our fundamental equation (1) becomes

— [f (as, M,
 a)} + y^~ {<l> («i «. «)} = / {t> (®i «• «). x} •
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But, since (A) satisfies (1), we have identically

£ * (», 2/o, *O = / {0 (*, 2/0> «o)«}
Oil/

for all values of x, y0, and a*0 ; and therefore

- - ? (», t», a) = / {̂  (a;, w, a), «}.
0.13

H e n c e ---- .-- </> (a;, tt, a ) = 0 ;
ax Cu

and therefore, since 0 certainly contains u, we have

as the new form of our equation (1).
Moreover, since when a: = a, y = 6 Ave have u = b, it follows that

our initial conditions are

u = b, when x = a, (2')

or, more strictly, that, as x approaches a, « has to'approach b in tho
usual way.

The obvious solution of equation (1') subject to condition (2') is

« = b ;

whence, by (IV), y — <p (x, b, a);

in other words, we are led by virtue of the uniqueness of the holo-
morphic solution back to equation (A).

Hsis the equation (1') another solution ?
In other words—
Can a function 8 be found and an arc Q {having x0 for its limiting

point) such that at all points of a certain domain in which Q lies the
function S has a differential coefficient which is zero, but which along the
arc Q is not developable ?

This is, of course, impossible ; for it is known that no function
exists which has its differential coefficient zero at all points of a
domain, except a constant.

For any point P of the domain can be joined to a .fixed point A of
the domain by means of a continuous line, consisting of a finite
number of straight lines lying entirely within the domain. Since
along each of these straight lines the differential coefficient is zero,
we know, by the Mcngenlehre, that the function is constant, and has
therefore the same value at P as at A.

Thus the theorem (iii.) is completely proved.
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We now proceed to discuss in some detail the typical example to
which we referred in our opening remarks.

Consider the differential equation*

dV - __J/! n\
dz tf+z-y* K }

and let us seek for an integral, other than the trivial one y = 0,
which satisfies the condition of approaching the value 0 as z
approaches the value c. According to Cauchy's theorem no such
integral exists. It has been contended,f however, that a non-
holomorphic integral exists which may be constructed as follows.

Take the complete integral of (1),

z = y+ae-V", (2)

whore a is a constant of integration, and, writing

- — = -L+2xni, (3)
y

where L is any particular chosen logarithm of —, let us give to x a
c

scries of integral values each numerically greater than .the pre-
ceding; ultimately y and z—o may in this way both be made as
small as we please, and therefore it is asserted the non-holomorphiq
integral (2) satisfies the condition required (and this for all values of
the arbitrary constant).

To examine the question completely, let all the quantities involved
be considered as complex. We have three planes : an re-plane, a y-
plane, and a s-plane. The a:-plane is connected with each of the
other planes by an analytical transformation. The transformation of
the x-plane into the y-plane is a simple inversion, given by the equa-
tion (3), the centre of inversion in the y-plane being the origin, and in

* Sec Forsyth, Theory of Differential Equations, Part 2, Vol. n., p. 81, where the
equation in question is discussed. The notation adopted is only slightly different.
We have written z for —^- z, y for &y, a for ^—, c for —~ — c, and, for obvious

reasons, x for k. We havo omitted Forsyth's first differential equation, which is
connected with the other by the substitution

A Blight oversight with respect to tho constant A is amended,
t Forsyth, he. cit.



1902.] Fundamental Theorem of Differential Equations. 241

the x-plane the point ^—:. Using polar coordinates referred to the

centres of inversion r, 6 in the a-plane, and p, <p in the y-plane, the
equation (3) is equivalent to the two equations

(3')

Corresponding then to the interior of a small circle, centre the origin
and radius rj, in the y-plane, we have the exterior of a large circle,

r 1

centre n - and radius -n - , in the a-plane.
Zm 2rrr)

Corresponding to tliat part of any curve of approach to the origin
in the ?/-plane which lies inside the small circle in the ?/-plane, we
have a portion of a curve exterior to the large circle in the x-plane and
going off to infinity.

Again, from equations (2) and (3), we have
i, (4)

where y = - - - - ; . (3)

These equations define a transformation of the rc-plane into the s-plane,
and of the g-plane into the .r-plane.

We have then to consider whether it is possible to find correspond-
ing sets of values of z and y, the one set forming a curve of approach
to the point c in the z-plane, and the other a curve of approach to the
point 0 in the ?/-plane. If so, then, by definition, quantities e and 77
can be found, such that, if Ave draw a circle centre c and radius e in' the
z-plane, and a circle Avith centre 0 and radius -q in the ?/-plane, both
curves, on entering these circles, approach and never recede from the
respective centres.

Assume the possibility of the point at issue, and inquire as to the
region or regions of the x-plane to Avhich the appoint is confined when
the z-point has entered its circle of radius e. By hypothesis tho
y-point must then have entered the corresponding circle radius JJ.

Let us introduce an auxiliary point z given by

z' = ce2*™, (5)

so that z = y + z'. (5')

This shows us that (the y- and z-planes being taken for the moment
VOL. xxxiv.—NO. 779. E
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as coinciding) the straight line z'z is equal and parallel to the radius
vector of y, and hence that z' must lie within a circle centre c and
radius e + rj.

0

Writing then v = xl+ixi,

and considering the length of the radius vector of z\ we have

\c |—c —JJ *S mod of z =s \c\

o r \ c \ — € — r i < \ c \ e'2*** * * | |

This shows that
I. a;., must be a small quantity lying bctiveen the limits —X, and A

•where \x and Xj are determinate small real positive quantities, viz.,

— 2 ^ ! = real logarithm of 1—:—~,

l c l
27rX., = real logarithm of 1 -f

and evidently tend towards zcroiohen cither or both of the small quantiti
e and q tend towards zero.

Considering, on the other hand, the vectorial angle of z\ we si
that (since -' must lie between the tangents from the origin to tl.
circle of radius e + ij) :

I I . 2a;,7T must differ from an integral multiple of 2n- by a quanti
less in absolute magnitude than the small angle—call it 2TT<T—wh<

sine is -.

From I. and II. it follows that the point x must always, wh.
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the z-point has entered the circle of radins e, and the y-point the
corresponding circle of radius rj, lie in one or other of certain small
parallelograms of the a;-plane, the breadth of each parallelogram
being 2<r, and the height (A., + A..3), and each parallelogram containing
one (and of course only one) integral point of the real axis.

Further, as the appoint, and therefore also the y-point, moves
along its curve of approach, both points enter circles of smaller and
smaller radii. In other words, in the above investigation, we may
diminish c and rj. It follows therefore, in accordance with I. and II.,
that the a'-point remains in its parallelogram and moves towards the
integral point belonging to it.

But, as remarked on p. 241 in connexion with equation («3'),
the ic-point must move in such a way as to remain outside the large

circle in the «-plane whose centre is -—., and whose radius is — ,
Z7T4 27TT/

and therefore constantly increases as ?j decreases. The figure shows
that this is inconsistent with the point remaining inside its parallelo-
gram.

FIG. 1.

I t has thus been conclusively shown by a reductio ad absurdum
that, as the z-point moves along a curve of approach to o, the y-point
cannot move along a corresponding curve of approach to its origin.

If we could make the s-point move discontinuously, we could make
the appoint jump from parallelogram to parallelogram. The points
of the parallelograms suitable for this purpose are of course the
integral points of the real axis ; for all the other points come to lie
outside the parallelograms as c and -q diminish. If we make x jump
along these integral points, z and y each jump along the points of an
abziihlbare Menge having the desired goals as points of condensation.

R 2
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But our investigation shows that, if we attempt to draw any curve of
approach through one of these Mengen, the corresponding curve will
pass through the other Mcnge, but between each pair of points it
will recede to a finite distance from the goal and come back again; so
that it is not a " curve of approach."

It is of interest to take a particular curve of approach in the one
plane, and see what happens to the curve corresponding to it in the
other plane, and why it is not a curve of approach. The simplest
cnso is obtained if we consider a curve of approach in the y-plane and
inquire how the z-point must move.

Let us move along the real axis in the .r-plane, and therefore in
the ?/-plane move along the circle (Fig. 2)

wlicrn ii

and Li is the real part of L.
The point z will simultaneously describe the spiral

where ;i; is now a real parameter.

This spiral lies entirely ontside or inside the circle

or
according as -- - is positive or negative.

IJ
Fig. 3 shows the spiral for a: positive. For x negative we have

to reflect the curve in the real axis. The dotted circle is the

-PLANE.

Z-PlANE.

FIG. 2. FIG. 3.

circle to which the whorls of the spiral approximate. The dotted
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semicircle cuts out the positive integral points. The negative integral
points would be cut out by the lower semicircle of the same circle
whose equation is

Non-uniform Convergence, and the Integration of Series.. By
E. W. HoBSoto, Sc.D., F.B!»S. Read and receiver! January
9th, 1902.

If the terms of an infinite series are functions of a real variable
which are all continuous in a given interval taken as the field of the
variable, and the series converges at every point of the interval, it is
•well known that the convergence of the series must be non-uniform
in the neighbourhood of any point at which the sum of the series
is ' discontinuous, but that non-uniformity of convergence in the
neighbourhood of a point does not necessarily imply discontinuity of
the sum at that point. In the case in which the sum of the series is
continuous throughout the. whole interval, the most general possible
distribution of points of non-uniform convergence of the series has
been obtained by Osgood.* lie has shown that the points at which
the measure of non-uniform convergencef exceeds an arbitrarily fixed
positive number form a closed aggregate, non-dense in the given
interval, and that the points at which the convergence is uniform
form an everywhere dense aggregate.

In a very remarkable memoir,J Baire has proved that the sum
of a series such as has been described is at most a point-Avisc
discontinuous function, i.e., in any sub-interval points can be
found at which the function is continuous. The distribution
of points of non-uniform convergence, which is of fundamental
importance in the question of the integration of the series, was,
however, not considered by Baire. In the present paper, it is shown
by a method on the lines of that of Baire, that the most general dis-

* See his paper, "Non-uniform Convergence and the Integration of SericR,"
Amer. Jour, of Math., Vol. xix., 1897.

t This term will be explained in the course of the paper.
I " Sur les fonctions de variables rcelles," Annali di Math., Vol. in., 1899.




