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1. In a companion paper * presented to the Society, I have discussed
the circumstances under which one of the factors of the integrand of a
definite integral may be replaced by a series, which is then multiplied
term-by-term by the other factor of the integrand, and the new series so>
obtained integrated term-by-term. It was there pointed out that the
series substituted for the factor in question need not have that factor for
sum, and it need not, indeed, even converge. The more novel of the
theorems obtained related, in fact, precisely to this case. Now, the series,
of Fourier can only be shown to converge, even in general, in a very
restricted class of cases. On the other hand, what may conveniently be
called the integrated Fourier series, obtained from the original series by
replacing each term by its simplest indefinite integral, necessarily con-
verges uniformly to the integral of the function associated with the
original series. In accordance therefore with one of the theorems of the
paper cited, we are at liberty to substitute for any function, which is
summable in Lebesgue's manner, constituting one of the factors of the
integrand of an integral, its corresponding Fourier series, whether this last
converges or not, provided only that the remaining factor of the integrand
is a function of bounded variation. This result is, however, the only one
that follows immediately from the theorems of the paper cited. There
are, none the less, a number of interesting and important cases, distinct
from this one, in which the mode of procedure in question may be
adopted. It is the main object of the present paper to set these forth in
order. As far as I know, this has not been attempted in any existing text-
book or memoir. In Hobson's Treatise the subject is not directly touched
on, and earlier writers were necessarily ignorant of the considerations
from which these results follow.

• W. H. Young, " On the Theory of the Application of Expansions to Definite Integrals '*
(1910), p. 403 infra.

• SHU. 2. VOL. 9. NO. 1095. 2 G
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Occasion is also taken to obtain a couple of simple results concerning
what I have elsewhere called the semi-integrability above and below of a
Fourier series, both per se and when multiplied by another function.

In general, it is of considerable importance in the theory to know
whether an oscillating series is semi-integrable above and below. It
enables us, for example, to assert with confidence that the upper and lower
functions of the integrated series are integrals, a circumstance of which I
have taken advantage in a previous paper * on " Trigonometrical Series "
presented to this Society. In the case of Fourier series, however, we know
that the integrated series, as already mentioned, converges uniformly, and,
we may add, converges uniformly to an integral. Consequently the fact
that a Fourier series is semi-integrable above and below is not in itself of
the same importance. Similar remarks apply to the theorems concerning
semi-integrability above and below when a Fourier series is multiplied by
a function of the usual type, viz., a function of bounded variation. I have
therefore not thought it necessary to linger on the present occasion over
the properties in question. The other results stated in the paper are of
use to the physicist and applied mathematician in so far as they may
from time to time have occasion to make use of Fourier Series. They are
as follows:—

The process of evaluating an integral referred to above is always
allowable if—

(i) both factors are such that their squares are summable;

(ii) either of the factors is of bounded variation, while the other factor
is summable;

(iii) the factor which is replaced by its Fourier series is summable, the
other factor is bounded, and the series got by integrating the final series
term-by-term between the desired limits converges;

(iv) the factor which is replaced by its Fourier series has a Harnack-
Lebesgue integral, the other factor has bounded variation, and the series
got by integrating the final series term-by-term converges.

Moreover, in the last two cases, if the series got by integrating the
final series term-by-term does not converge, when summed in the ordinary
way, it necessarily does so when summed in the Cesaro way, and the sum
so obtained is the value of the integral.

* W. H. Young, " On the Conditions that a Trigonometrical Series should have the
Fourier Form " (1910), supra, p. 421.
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The first of the above results is due to Fatou,* though stated by him
in a slightly different manner. Of the results in (ii), one follows from the
paper first cited; it is, however, much simpler to obtain both simul-
taneously by means of the theory of Fourier series, as is here done.
These results are so important, and so easily obtained, that it is difficult
to believe that they have not yet been stated; but I have not been able to
find any such statement or any reference to such statement. With regard
to (iii), it is practically certain that Lebesgue has definitely formulated it
in his own mind, as only a single step is required to obtain it from his
recently published work.t Of (iv), however, I have not seen any trace.

It should be added that I have extended these results to the case when
one or both of the limits of integration are infinite, so far as this is possible
without the introduction of additional irrelevant conditions.

One remark may be made in conclusion. In the early days of the
history of Fourier series term-by-term integration was carried out without
any arriere pensee, both in the case of Fourier series and when the series
considered was that obtained by multiplying the Fourier series term-by-
term by another function. A later school then arose and objected, with
justice, to the uncritical nature of the investigations of their predecessors
and the consequently inconclusive character of the results obtained. This
earlier school of critics demanded that the series should be shewn to be
uniformly convergent before being integrated term-by-term. Hence arose
the almost interminable discussions with regard to the uniformity or the
non-uniformity of the convergence of Fourier series. Finally, in the light
of the most recent researches, it is seen that the considerations as to the
uniformity of the convergence play a comparatively unimportant part in
the theory of the integration of series, and that, in the case of Fourier
series, the presence or absence of such uniformity has little or no bearing
on the subject at all. Indeed, as is evident from the theorems stated
above, even the question of the convergence of the series is frequently of
secondary interest.

2. Fatou has shewn that if the a's and 6's are the Fourier constants of
f(x), and A'8 and JB's those of g(x), then, provided only that the squares of
/ and g are summable,

1 P1"— f(x
7T J-TT

(1)

* P. Fatou, " Series trigonometriques et Series de Taylor" (.1905), Ada Math., Bd. 30,
p. 335.

| hoc. cit., infra, p. 456.
2 a 2
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Hence we immediately have the following theorem:—

THEOREM 1.—If f(x) and g(x) are such that their squares are sum-
mable, the integral of their product between any finite limits may be
evaluated by term-by-term integration of the series obtained by multiply-
ing the Fourier series of either term-by-term by the other, that is

Lt sn (x) g (x) dx= f(x)g {x) dx,
n = 0 ° Jc Jc

where sn{x) is the sum of the first n terms of the Fourier series of f(x),
provided, in the case when the length of the interval of integration exceeds
2-7T, the function to be replaced by its Fourier series is periodic*

First let (c, z) be any interval inside the interval (—x, x), and let us
replace g(x) by the function which agrees with it inside this interval and
is zero outside it. The new function is, of course, like the old, one whose
square is summable, but its Fourier constants now take a new form, in
which the limits of integration are c to z. Thus, the above equation (1)
becomes

\f(x)g(x)dx = £a0 g(x)dx-\-'Z lan\ g(x)cosnxdx+bn\ g(x)sinnxdx).
JC Jc \ Jr Jc I

(2)

This proves the required result for any limits of integration between
— ir and ir.

Next suppose f(x) periodic, and g(x) not to be so. Then the equation (1)
plainly holds for the limits {TT, 3ir), provided the A'B and B's be supposed
obtained by integrating between x and BTT. X similar remark applies for
the integral (3TT, 5TT), and so on. Hence, adding all such equations, we see
that equation (1) holds when the limits of integration on the left-hand
side are any positive or negative odd multiples of ir, provided only the
limits of integration in the A'B and 2?'s are correspondingly adjusted.
Hence equation (2) also holds as it stands, whatever the limits of integration
c and z may be, so long as they are finite.

3. Before proving the next theorem, we must first show that the
Fourier series of a function of bounded variation has the property of what

* Throughout the present paper the word " periodic" is, for shortness,used to denote that
the function to which the term is applied has the period 2ir.
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/ have called bounded convergence *—in other words, that, where the con-
vergence is not uniform, the non-uniformity has never infinite measure—
that is, the peak and chasm functions a/e finite, and therefore bounded.

Let fix) be the function of bounded variation whose Fourier series is
under consideration. Then the sum of the first ( 2 M + 1 ) terms of its
Fourier series is

1 f4ir

—
IT Jo

sin?n-2
—
smz

where m is the odd integer (2n+l). It is clearly then sufficient to show
that this expression, regarded as a function of the ensemble {x, m) has,
when taken numerically, a finite upper bound. Further, we need only
prove the statement for one of the two integrals into which the given
integral naturally splits up—say, that in which f{x-\-'2z) occurs. Finally,
we shall lose no generality if we suppose f(x-\-Zz) to be a positive mono-
tone function of z, since the function of bounded variation f(x-\-2z) may
be expressed in the form P{x-\-2z) —N{x-\-2z), where P(u) and N{u) are
both positive monotone increasing functions, being the positive and nega-
tive variations oif(u).

But if f(x-\-2,z) is a positive monotone increasing function ot 2z, the
same is true of

zf(x+2z)lsmz

hence, by the Second Theorem of the Mean,

f4ir zf(x-\-2z) sin mz , -w , . , m PsinwLsr,
I J . dz =—f(x-\--K—0) I dz,
Jo sin z z 2 J Jo z

where k is some quantity between 0 and %TT.
But the integral on the right-hand side lies numerically between 0 and

ir, and the factor multiplying it is a bounded function of x. Hence the
required result follows.

4. We are now able to prove the following theorem :—

THEOREM 2.—If one of the two functions f(x) and g(x) has bounded
variation, ivhile the other is summ<ible, the integral of their product
between any finite limits may be evaluated by term-by-term integration of

* The limiting function ia \ { f (x + 0) + / (z—0)}, and differs therefore from / (x) only at a
countable set of points. Hence, the limiting funct may, whenever it occurs under the sign
of integration, be taken to be f(x).
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the series obtained by multiplying the Fourier series of either tervi-by-term
by tlie other function, provided only that, if the length of the intei'val of
integration exceeds 2ir, the function whose Fourier series is employed. if
periodic.

To prove this we suppose the Fourier series of that of the two
functions to be chosen which is a function of bounded variation. It then
follows, by a known theorem * taken in conjunction with the result of
§ 3, that term-by-term integration between any finite limits of integration
is allowable.

Denoting the function of bounded variation by f(x), we then have,,
integrating between the limits — it and 7r, the equation (1) of § 2. But
this equation is clearly symmetrical with respect to f(x), g(x) and their
respective Fourier constants, and holds, therefore, equally well whether it is
f(x) or g(x), which is the function of bounded variation. Hence also the
further reasoning of that article applies here equally whether it be f(x) or
g (x), which is the function of bounded variation. Thus, both parts of our
theorem are true.

5. In the last article we have not, however, used all the information
at our disposal, and we can, accordingly, go somewhat farther than was
possible in the first theorem. In the first place, the theorem quoted in
my companion paper applies equally whether the limits of integration are
finite or infinite, provided only, of course, that the function which is sum-
uiable in that theorem is summable in the whole infinite interval, or,
more accurately, that its absolute value has a Lebesgue integral in the
whole of that interval.

With this understanding, the equation (2) of § 2 holds when either c
or z is infinite, provided g(x) is the function which is summable in the
infinite interval in question, while f{x) is the function of bounded varia-
tion, the boundedness of the variation referring to any and every finite
interval.

In the second place, it is worth noting that the convergence of the
integrated series is in accordance with the same theorem uniform. We

* For a proof of this theorem, which states that if sn (x) converges boundedly to its limit

f(x) as u increases, and g (x) possesses a Lebesgue integral, \ s,,(x) g(x)dx converges to

I f(x)g (x) dx, see my companion paper on " The Application of Expansions to Definite In-

tegrals," § 4.
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had' no information enabling us to make this statement with regard to the
corresponding series in Theorem 1.

Next suppose that g(x) is a function of bounded variation in the whole
infinite interval and that throughout that interval it is summable ; then
g{x) certainly has zero as unique limit when x increases indefinitely, for
otherwise it could not possess an integral over the infinite interval. The
function f(x) is any summable periodic function, and we shall assume, in
the first instance, that

(* f(x)dx = 0.
J-n

This assumption makes \ f(x)dx periodic, and ensures that the Fourier
Jc

series of f(x) is deficient of its first term, so that the integrated series
having only periodic terms, its n-bh partial summation, say Sn(x), is
periodic. Hence, since when z lies between —-w and TT, the integrated
Fourier series in question converges boundedly to i f{x)dx, the same will

Jc

be true wherever z lies in the infinite interval of integration.
We are now able to apply Theorem 6 of the companion paper, the

second of the sufficient conditions for integration over an infinite interval
having been shewn to be satisfied. This proves that for such a function
f(x) the integral of f(x)g{x) over the infinite interval may be evaluated by
term-by-term integration in the manner desired.

If the condition imposed in the first instance on f(x) is not satisfied, it
is satisfied by h(x), where

Hence, since the n-th. partial summation of the Fourier series of h(x) is
Sn(x)—'iao» w e have, by what has just been proved,

Lt [sn. (x) — £a0] g (x) dx = [f(x)—£a0] g (x) dx,
V—x Jc Jc

whence, since g (x) has, by hypothesis, an integral over the infinite interval,

(
CO /.CO

sn (x) g (x) dx = f(x)g (x) dx,
which proves that Theorem 2 holds for an infinite interval of integration.

6. In the next two theorems the function whose Fourier series is to be
used is no longer a function of bounded variation. We therefore naturally
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use Cesaro's mode of summation, instead of summing directly. The
Cesaro partial summation is the mean of the first n partial summations,
that is,

'n(x) = $ao+ (% cos x+6j sin x) ( l ) -f-...

\ n i

1 )

the latter expression being FejeYs integral, and it converges to/(#) always
except at a set of content zero, so that, for our purposes, we may work
with f(x) as the limiting function. Moreover, when/(«) is bounded, it is
easily seen that the convergence is bounded, for, if f(x) is numerically less
than K, FejeVs integral is less than K times what it becomes when we
put f(x) = 1, in which case the Fourier series reduces to its first term,
which is unity, so that the Fej6r integral has also the value unity.

7. Corresponding exactly to Theorem 2, we have, therefore, using the
Cesaro method of summation, the following theorem:—

THEOREM 3.—If one of the two functions f(x) and g(x) is bounded,
while the other is sum-triable, the integral of their product between any
finite limits may be evaluated by tertn-by-term integration of the series
obtained by multiplying the Fourier series of either term-by-term by the
other function, provided this integrated product series converges, and
assuming, if the interval of integration exceed 2x in length, that the
function whose Fourier series is employed is periodic.

To prove this * let us take the Fourier series of that one of the two
functions which is bounded, say f(x). Then, as mentioned in the pre-
ceding article, the Cesaro partial summation

isina:) (l — —)+...

_i C08(n.— l)x+bn-i sin(w— l)x] ( l J

converges boundedly to a function, which, for our purposes, may be taken
to bef(x).

• The argument is that used by Lebesgue, Les Integrates Singuli&res, pp. 107 seq., so far
as it is here applicable.
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Hence, by the theorem used in proving Theorem 2,
1 fir -t fir

— I f{x) g (x)dx = Lt — I Sn(x) g (x) dx
TTJ-n u = c 0 T J-ir

= Lt
H — co

the quantities Ai and Bi being the Fourier constants of g(x), as the
quantities ai and bi are the Fourier constants of f(x). The expression on
the extreme right of the equality (1) whose limit is to be taken, is the
Cesaro partial summation of the series

%a0A0+ 2 (anAn+bnBn),

so that, if this latter series converges, its sum will be the limit in question,
and will accordingly be equal to

x) dx.

In other words, the equation (1) of § 2 holds in this case.
We have now only to repeat the argument of § 2, with the slight

modification that we work in the first instance with the Cesaro partial
summations instead of summing directly. Thus, the required theorem
follows when the limits of integration lie in the first instance between
— x and 7r, and then, provided fix) is periodic for any finite interval of
integration.

The symmetry of equation (1) of § 2 shews that, having been shewn to
hold when f(x) is bounded and g(x) is summable, it holds equally when
the r61es of these two functions are exchanged ; the subsequent argu-
ment of § 2 then still holds, so that the theorem, having been shewn to be
true in the former case, is equally true when g(x) is bounded and fix)
is summable. Thus, the theorem has been completely proved for every
finite interval of integration.

COR.—Even if the integrated product series does not converge directly,
it will necessarily converge when summed in the Cesaro manner, and the
Sum so obtained is the value of the integral required.

8. It is evident that we may extend the theorem of the preceding
article to the case in which the interval of integration is infinite when/(a)
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is the bounded function and g(x) is the summable function. Then, as
Theorem 2 of the companion paper holds equally whether the interval of
integration is finite or infinite, the process carried out in the preceding
article is still valid. Hence the extension is allowable.

9. We now come to the last of our theorems, which is concerned with
the expression for the integral of the product of two functions. This is as
follows:—

THEOREM 4.—If one of the functions f(x) and g (x) is of bounded varia-
tion, while the other possesses a Harnack-Lebesgue integral, and if the
series obtained by multiplying the Fourier series of either term-by-term by
the other function converges when integrated between the clwsen finite
limits, then the integral of the product of the tioo functions between these
limits is equal to the sum of the integrated series, provided only that, if
the length of the interval of integration exceeds 2ir, the function
whose Fourier series is employed is periodic.

It is clearly sufficient to prove the theorem when f{x) is a function of
bounded variation and g(x) possesses a Harnack-Lebesgue integral. We
then have, by the theory of FejeYs integral,

c-o,] = u £ \jlt) (gjgE

Put t = x-\-u, and we get

1[ / (*+o,+/(*-<»] = Lt J

= Lt -— \J(u-\-x)-\-f{x—u)I I—r^—) du

= Lt F(x,n) = Lt {F1{x,n)-F^{x,n)\,
M = OO U=0O

where Fl (x, n) and F.2{x, n) are monotone functions of x. Also the left-hand
side is equal to/(x), except at a set of content zero. Hence, by a theorem
in the Harnack integration of series/ whatever function g(x) may be,

* See § 3 of the companion paper, p. 466 infra.



1910.] ON THE INTEGRATION OF FOURIER SERIES. 450-

provided only it possess a Harnack-Lebesgue integral, we have, since the
sequence is certainly bounded,

f f{x)g(x)dx = Lt \ g(x)F(x,n)dx.
J-7T ft = C ° J - W

Eetracing our steps, with the modifications required by the presence
of the factor g {x), we accordingly have

f(x)g(x)dx= Lt -J-P dxg{x)[ f(t) (am \n}*~X?Y dt.
u=oo 2w-7rJ_, ]-„ \sin£(c—a;) /

From this point the argument is precisely the same as in the proof of the
preceding theorem.

We have, of course, the same corollary as in the preceding article.

COR.—Even if the series obtained in the manner described does not
converge in the ordinary manner, it will necessarily converge when
summed in the Cesaro manner, and the sum so obtained is the value of
the integral required.

10. We have now to extend the theorem of the preceding article to the
case of an infinite interval of integration.

When f(x) is the function of bounded variation, the result of the pre-
ceding article remains true, since the argument used at the end of § 3 of
the companion paper for an infinite interval of integration is again valid.
Hence the theorem holds for an infinite interval of integration when /(as)
is a function of bounded variation.

Next let g(x) be of bounded variation throughout the infinite interval, and
let f(x) possess a Harnack-Lebesgue integral in the same interval. When
the limits c and z of integration lie in the closed interval (—TT, IT), we
know* that the integrated Fourier series of f(x) is the Fourier series of
f*
I f(x) dx, so that the Cesaro partial summation sn(x) of that series con-
verges boundedly (in fact uniformly) t to I f{x)dx. Hence, as in § 2 of

the present paper, if ,.„.
fix) dx = 0,

J—IT

these facts remain true wherever the points c and z may lie in the infinite

* "On the Conditions that a Trigonometrical Series should have the Fourier Form,"
§3, p. 425, supra.

+ H. Lebesgue, Sur Us Integrates singulares, p. 89.

E R R A T U M .

Vol. 9, p. 459.—The argument taken from p. 467 of the companion paper does not apply.
When the intervals concerned are finite, but then only, the behaviour of a periodio function
of bounded variation can be inferred from that of a monotone function.
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integral of integration. In this case, provided g(x) has zero for unique
limit when x moves off to infinity, we may apply Theorem 6 of the com-
panion paper, the second of the sets of sufficient conditions there given
being satisfied. This proves the theorem for an infinite interval of in-
tegration in this case.

1 f
If, however, la^ = — 1 f(x) dx is different from zero, the above

LIT J _ W

shews that the theorem is true when f(x) is replaced by f(x)—%a0. That is,

Lt f [sa(x)-laQ~\g(x)dx = \ [/(s)-WI<7(*)<&,
11=00 J-; Jc

from which, provided g (x) possesses an integral* over the infinite interval,
the required result follows, viz.,

Lt I sn(x)g(x)dx = I f(x)g(x)dx.
n- Jc Je

Here slt(x) is the partial summation, or the Cesaro partial summation,
according as the Fourier series of f{x), after term-by-term multiplication
by g(x) and integration, converges directly, or only when summed in the
Cesaro manner.

11. In the previous part of the paper we have been concerned more
with the function to which a given Fourier series belongs than with the
Fourier series itself. If we fix our attention on the latter, in the case in
which it does not converge in general or at all, it will have an upper
function and a lower function, which may or may not be bounded, or even
summable. If, however, we include for the moment among the summable
functions those functions which give, when the Lebesgue process of dealing
with unbounded integrands is applied, infinite values with definite signs,
we can enunciate the following theorem:—

THEOREM 5.—The upper and lower functions of every Fourier series are
always summable, and the Fourier series itself is always semi-integrable,
both above and below in the extended sensed

In fact, the application of Poisson's method of dealing with Fourier
series leads, with the use of Abel's Theorem, to the result that, wherever
the function to which the Fourier series belongs is the differential co-
efficient of its integral, it lies between the upper and lower functions of the

* This will be an ordinary improper integral, since a function of bounded variation is, in
every finite interval, integrable in the Eiemann manner.
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Fourier series. This is therefore true, except at a set of content zero.
But the function to which the Fourier series belongs has necessarily a
Lebesgue integral, for otherwise the Fourier series would not exist.
Hence the upper and lower functions have Lebesgue integrals, in the
sense explained above, and the Integral of the function to which the series
belongs is intermediate to these two integrals in value. Hence, bearing
in mind that the integrated Fourier series converges to the integral of the
function to which the series belongs, the result enunciated follows.

COR.—If the upper and lower functions of a trigonometrical series be
both bounded, the series is necessarily semi-integrable both above and
below.

This follows by the theorem* that such a series is necessarily a Fourier
series; the result may also be extended to the case when the points at
which the upper and lower functions of the series are unbounded are
countable.

12. The result of the preceding article has been obtained by means of
the known fact that a Fourier series, when integrated, converges to the
integral of the function to which the Fourier series belongs. Similarly,
by using Theorem 2 of the present paper, we can prove the following:—

THEOREM 6.—The series obtained by multiplying the Fourier series of
a function f{x) term-by-term by a function g(x) of bounded variation has
its upper and lower functions always summable, and is always semi-
integrable both above and below in the extended sense.

First suppose g(x) to be positive, and let l(x) and u(x) denote the lower
and upper functions of the Fourier series. Then, by the argument of the
preceding article, we have, except at most at a set of content zero,

l(x) </(a)< u{x);

and therefore, multiplying by g(x) and using Theorem 2, we have

f I(x) g(x) dx < Lt f sn(x) g(x) dx < f u (x)g(x)dx,

which proves the theorem in this case, and proves also that the integrals
I l(x)g(x)dx and \u(x)g{x)dx exist, if we include respectively — oo and
+ ao as possible values of these integrals, for the limit in the middle
necessarily exists and is finite, being equal to the integral of the product
of a summable function by a function of bounded variation.

• " On the Conditions that a Trigonometrical Series should have the Fourier Form," § 6,
p. 427, supra.
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Next suppose g(x) not to be positive, and let gx(x) be equal to g(x)
when g(x) is positive, and be zero elsewhere, while g2 = — g{x) when g(x)
is negative and is zero elsewhere. Then gx(x) and g^ix) are functions of
bounded variation, so that the inequalities (1) hold both for gx{x) and for
gz{x). These give at once,

I [l(x)gx{x) — u(x) g2(x)]dx = Lt I sn(x) g{x)dx
J n=oo J

x(x) — /(*) g2{x)~\dx,

the first and last members of the inequality necessarily existing, at least
to the extended sense above mentioned.

Now I{x)g1(x)—u{x)g2(x) = l{x)g(x) when g{x) is positive,

and = u(x)g{x) when g{x) is negative.

It is therefore the lower function of the succession g{x)sn(x). Similarly
u(x)gl(x) — l(x) g.2(x) is the upper function. Hence the theorem follows, as
enunciated.

COR.—We Jiave, of course, a corollary precisely similar to that of the
preceding article.


