
Institute of Biomedical Engineering and Informatics

MNE-X Plug-in: TriggerControl

Manual

Institut of Biomedical Engineering

Ilmenau University of Technology

Tim Kunze
Christoph Dinh

Contents

Contents

1 Introduction 1

2 The Trigger Box - Case and Peripheral Components 4

3 The Data Transfer Protocol 8

4 The Microcontroller Unit 12

5 The Plug-in TriggerControl 14
5.1 The Terminal Function . 14
5.2 The Run-Method . 22

List of Figures 25

List of Tables 26

iii

1 Introduction

1 Introduction

This manual serves as a detailed description of the MNE-X Plug-in TriggerControl
and the affiliated trigger box. This manual contains both an explanation of the
general workflow as well as specific explanations of the functionality of each part.
Both, the Plug-in TriggerControl and the trigger box are the result of a student
project at Ilmenau University of Technology. New to most of the development
steps, the developers put effort in the general serviceability and feasibility, aware
that each part of the set up has the potential to be optimized in the future. The
presented set up consists of the Plug-in TriggerControl, included in the real-time
signal processing program MNE-X, and a custom-built trigger box. TriggerControl
was programmed in C++ with the help of the Qt library. MNE-X is part of the
MNE CPP environment, which can be freely downloaded here:

https : //github.com/mne − tools/mne − cpp

The novel set up consists of the MNE-X Plug-in TriggerControl and a custom-
built trigger box. The case of the trigger box holds a microcontroller unit and an
affiliated circuit board which holds the peripheral components and connectors for
the sockets.

Trigger boxes are used in multiple disciplines to trigger all kind of generic pro-
cesses. One important task in a medical environment is the repeated, time critical
and simultaneous triggering of both a generic stimulation (e.g. acoustic, visual or
somatosensory) and a marker for the data acquisition system during the M/EEG
measurement of evoked responses. In a conventional stimulation set up the trigger
box receives the stimulation pattern from a computer and triggers the stimulation
via various peripheral devices (see Figure 1). A data acquisition system enhances
and stores the functional measurement in a file which is then available for offline
signal processing.

1

1 Introduction

Measurment Set Up

data acquisition

system
peripheral device

trigger box
stimulation

system

data acquisition

system
peripheral device

trigger box

MNE-X

TriggerControl

Figure 1: Possible set up in which trigger boxes are used. Left:Cconventional set up
for measuring evoked potentials. A stimulation system sends a command
to the trigger box which triggers the stimulation via various peripheral
devices and simultaneously emits a trigger signal to the data acquisition
system. Right: An alternative set up uses the signal processing system
MNE-X to sent each trigger event individually to the trigger box. The
trigger box is able to sense the current state of the measurement and to
steadily communicate with MNE-X. MNE-X is able to evaluate the mea-
surement in real-time which provides additional information for a specific
and individual stimulation.

In order to account for the time critical simultaneous triggering of the stimulation
and the trigger marker, a special stimulation computer with low latency between
the internal command and the actual emission of the trigger is used. However, these
real-time capable systems are very expensive. Alternatively, the entire stimulation
pattern can be sent to the trigger box which saves the pattern internally and trig-
gers the stimulation and the trigger signal without any further user influence. This
conventional set up has some major disadvantages: Firstly, the investigator has no
opportunity to manipulate the stimulation mode (e.g. type and time point of trig-
ger) once the stimulation is started. Also, the stimulation pattern itself is fixed
and independent from the state of the measured subject. The combination of the
real-time capable signal processing system MNE-X and the custom-built trigger box
promise to overcome these problems. In the novel set up, each trigger event is sent
individually to the trigger box. This allows the investigator to determine an indi-
vidual type and time point of each stimulation signal. Furthermore, the simulation
pattern (e.g. the order of presentation) can be adopted according to the measured

2

1 Introduction

state of the subject. These unique characteristics open a wide field of possible ap-
plications: The enabled closed loop between stimulation and measurement allows
the set up to be used in brain computer interfaces and improved biofeedback com-
positions. Furthermore, situation dependent individual stimulation patterns with a
variety of different stimulations are imaginable.

The remainder of this manual is structured as follows: in Chapter 2, the surface of
the case and the wiring of the circuit board are presented. The functionality and
the existing sockets for input and output are described in more details. Chapter 3
presents the used data transfer protocol. The structure of the protocol is explained
with the help of examples and approaches for coding and decoding of information
according to the data transfer protocol. The microcontroller unit and its affiliated
parts are emphasized in Chapter 4. Chapter 5 deals with the graphical user interface
and functionality of the plug-in TriggerControl. The terminal function and the
automatic sending of commands within the Run-Method are explained with respect
to the underlying classes, properties and methods in the program.

3

2 The Trigger Box - Case and Peripheral Components

2 The Trigger Box - Case and Peripheral Components

For reasons of mobility, practicability and easy accessibility the microcontroller and
the circuit board are stored within a rigid aluminum case. A schematic of the
operator interface is depicted in Figure 2. The console comprises a LCD display,
four buttons and a total of 26 BNC sockets. The very left button launches the
microcontroller; the residual buttons have no function yet. According to Figure 2
the six sockets of the top row are designated for digital and analog input. The
16 sockets beneath supply the digital output signals and the four sockets in the
bottom row supply the analog output signal. 16 LEDs inform the user about the
current state of the 16 digital output channels. If a socket is in an active mode,
the according LED is switched on. The sockets are wired to the according slots on
the circuit board. The circuit board in turn is connected via two 2x13 pole ribbon
cables to the pins of the microcontroller.

1
Digital Input Analog Input

4 1

Digital Output
1 8

9 16

1
Analog Output

4

Figure 2: Console of the trigger box: a LCD display, four buttons and a total of 26
BNC sockets for analog/digital in- and output are at the user’s disposal.
16 LEDs label the state of the 16 digital output channels.

4

2 The Trigger Box - Case and Peripheral Components

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

D D

C C

B B

A A

Title

Number RevisionSize

A3

Date: 25.03.2014 Sheet of
File: \\..\Trigger-Control.SchDoc Drawn By:

P5

P10

P12

P14

P16

P18

P20

P22

P24P23

P17

P19

P7

P9

P11

P13

P15

P21

P6

P8

P29

P31

P33

P37

P39

P42

P44

P46

P48

P50 P53

P49

P47

P45

P43

P41

P38

P36

P32

P30

P54

P56

+3,3V(2)

P55

P57

GND(2)

+3,3V(1)

P25

P27

GND(1)

P26

P28

GND GND

GND GND

P9 P1
0

VCC 12V

GND

VCC 7.5V

VCC 12V
GND

VCC 5V

GND

P1
4

P1
5

P1
7

P1
8

P1
9

P2
1

P2
2

P2
0

BNC8

BNC7

BNC6

BNC5

BNC4

BNC3

BNC2

BNC1

GND

P3
0

P2
9

P2
8

P2
7

P2
6

P2
4

P2
3

P2
5

BNC9

BNC10

BNC11

BNC12

BNC13

BNC14

BNC15

BNC16

BNC3

BNC4

VCC 5V

BNC7

BNC8

VCC 5V

BNC9

BNC10 VCC 5V
330

R18

330

BNC5

BNC6

VCC 5V

BNC1

BNC2

VCC 5V

BNC12

VCC 5V

BNC15

BNC16

VCC 5V

BNC13

BNC14

VCC 5V

BNC11

*
330nF

C1
VJ0805

*
100nF

C2
VJ0805

VCC 12V
GND

*
330nF

C3
VJ0805

*
100nF

C4
VJ0805

GNDGND

VCC 12V

VCC 12V

M
11

M
12

M
13

M
14

M
21

M
22

M
23

M
24

P36

P31

M11

M12

P32

P33

M13

M14

P53

P38

GNDGND

VCC 12V

VCC 12V

P41

P47

M21

M22

P48

P49

M23

M24

P50

P43

P5
T1
transistor

VCC 7.5V

GND

P6
T2
transistor

GND

+3
,3

V
(1

)

+3
,3

V
(1

)

GND GND

P7
T3
transistor

GND

P8
T4
transistor

GND

+3
,3

V
(1

)

+3
,3

V
(1

)

GND

Pin1 1

Pin2 2

Pin3 3

Pin4 4

Pin5 5

Pin6 6

Pin7 7

Pin8 8

Pin9 9

Pin10 10

Pin11 11

Pin12 12

Pin13 13Pin1414

Pin1515

Pin1616

Pin1717

Pin1818

Pin1919

Pin2020

Pin2121

Pin2222

Pin2323

Pin2424

Pin2525

Pin2626

J1

2x13er Stiftleiste

Pin1 1

Pin2 2

Pin3 3

Pin4 4

Pin5 5

Pin6 6

Pin7 7

Pin8 8

Pin9 9

Pin10 10

Pin11 11

Pin12 12

Pin13 13Pin1414

Pin1515

Pin1616

Pin1717

Pin1818

Pin1919

Pin2020

Pin2121

Pin2222

Pin2323

Pin2424

Pin2525

Pin2626

J4

2x13er Stiftleiste

330

R20

330

330

R22

330

330

R27

330

330

R38

330

330

R40

330

330

R42

330

330

R44

330

330

R17

330

330

R19

330

330

R21

330

330

R26

330

330

R37

330

330

R39

330

330

R41

330

330

R43

330

2k2
R33

8k66

R29

8k66

R30

8k66

R31

8k66

R32

2k2
R34

2k2
R35

2k2
R36

47k
R28 47k

R23
47k
R24

47k
R25

Pi
n1

1

Pi
n2

2

Pi
n3

3

Pi
n4

4

J13 InAn (4er Stiftleiste)

Pi
n1

1

Pi
n2

2

Pi
n3

3

Pi
n4

4

Pi
n5

5

Pi
n6

6

Pi
n7

7

Pi
n8

8

J12 OutAn 1-4 (8er Stiftleiste)

11

22

33

44

55

66

77

88

99

1010 11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20
U4

(OutAn1/2)L293DD

11

22

33

44

55

66

77

88

99

1010 11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20
U5

(OutAn3/4)L293DD

1k
R1

1k
R2

1k
R3

1k
R4

1k
R5

1k
R6

1k
R7

1k
R8

1k
R9

1k
R10

1k
R11

1k
R12

1k
R13

1k
R14

1k
R15

1k
R16

11

22

33

44

55

66

77

88

99 10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18

U2

BNC 9-16 (ULN2803A)

11

22

33

44

55

66

77

88

99 10 10
11 11
12 12
13 13
14 14
15 15
16 16
17 17
18 18

U1

BNC 1-8 (ULN2803A)

Pi
n1

1

Pi
n2

2

J2 VCC 7.5V (2er Stiftleiste)

Pi
n1

1

Pi
n2

2

J3 VCC 12V (2er Stiftleiste) 1
1

2
2

3
3

U3L78S05

1
1

2
2

3
3

U6L78S75

Pi
n1

1

Pi
n2

2

Pi
n3

3

Pi
n4

4

Pi
n5

5

Pi
n6

6

Pi
n7

7

Pi
n8

8

J5 InDig (8er Stiftleiste)

11 2 2

33 4 4

55 6 6

77 8 8

J6

BNC 1/2 (2x4erStiftleiste)

11 2 2

33 4 4

55 6 6

77 8 8

J8

BNC 3/4 (2x4erStiftleiste)

11 2 2

33 4 4

55 6 6

77 8 8

J10

BNC 5/6 (2x4erStiftleiste)

11 2 2

33 4 4

55 6 6

77 8 8

J14

BNC 7/8 (2x4erStiftleiste)

11 2 2

33 4 4

55 6 6

77 8 8

J15

BNC 15/16 (2x4erStiftleiste)

11 2 2

33 4 4

55 6 6

77 8 8

J11

BNC 13/14 (2x4erStiftleiste)

11 2 2

33 4 4

55 6 6

77 8 8

J9

BNC 11/12 (2x4erStiftleiste)

11 2 2

33 4 4

55 6 6

77 8 8

J7

BNC 9/10 (2x4erStiftleiste)

PIC101 PIC102

COC1

PIC201 PIC202

COC2

PIC301 PIC302

COC3

PIC401 PIC402

COC4

PIJ101

PIJ102

PIJ103

PIJ104

PIJ105

PIJ106

PIJ107

PIJ108

PIJ109

PIJ1010

PIJ1011

PIJ1012

PIJ1013PIJ1014

PIJ1015

PIJ1016

PIJ1017

PIJ1018

PIJ1019

PIJ1020

PIJ1021

PIJ1022

PIJ1023

PIJ1024

PIJ1025

PIJ1026

COJ1

PIJ201 PIJ202

COJ2

PIJ301 PIJ302

COJ3

PIJ401

PIJ402

PIJ403

PIJ404

PIJ405

PIJ406

PIJ407

PIJ408

PIJ409

PIJ4010

PIJ4011

PIJ4012

PIJ4013PIJ4014

PIJ4015

PIJ4016

PIJ4017

PIJ4018

PIJ4019

PIJ4020

PIJ4021

PIJ4022

PIJ4023

PIJ4024

PIJ4025

PIJ4026

COJ4

PIJ501 PIJ502 PIJ503 PIJ504 PIJ505 PIJ506 PIJ507 PIJ508

COJ5

PIJ601 PIJ602

PIJ603 PIJ604

PIJ605 PIJ606

PIJ607 PIJ608

COJ6

PIJ701 PIJ702

PIJ703 PIJ704

PIJ705 PIJ706

PIJ707 PIJ708

COJ7

PIJ801 PIJ802

PIJ803 PIJ804

PIJ805 PIJ806

PIJ807 PIJ808

COJ8

PIJ901 PIJ902

PIJ903 PIJ904

PIJ905 PIJ906

PIJ907 PIJ908

COJ9

PIJ1001 PIJ1002

PIJ1003 PIJ1004

PIJ1005 PIJ1006

PIJ1007 PIJ1008

COJ10

PIJ1101 PIJ1102

PIJ1103 PIJ1104

PIJ1105 PIJ1106

PIJ1107 PIJ1108

COJ11

PIJ1201 PIJ1202 PIJ1203 PIJ1204 PIJ1205 PIJ1206 PIJ1207 PIJ1208

COJ12

PIJ1301 PIJ1302 PIJ1303 PIJ1304

COJ13

PIJ1401 PIJ1402

PIJ1403 PIJ1404

PIJ1405 PIJ1406

PIJ1407 PIJ1408

COJ14

PIJ1501 PIJ1502

PIJ1503 PIJ1504

PIJ1505 PIJ1506

PIJ1507 PIJ1508

COJ15

PIR101

PIR102
COR1

PIR201

PIR202
COR2

PIR301

PIR302
COR3

PIR401

PIR402
COR4

PIR501

PIR502
COR5

PIR601

PIR602
COR6

PIR701

PIR702
COR7

PIR801

PIR802
COR8

PIR901

PIR902
COR9

PIR1001

PIR1002
COR10

PIR1101

PIR1102
COR11

PIR1201

PIR1202
COR12

PIR1301

PIR1302
COR13

PIR1401

PIR1402
COR14

PIR1501

PIR1502
COR15

PIR1601

PIR1602
COR16

PIR1701 PIR1702
COR17

PIR1801 PIR1802
COR18

PIR1901 PIR1902
COR19

PIR2001 PIR2002
COR20

PIR2101 PIR2102
COR21

PIR2201 PIR2202
COR22

PIR2301

PIR2302
COR23

PIR2401

PIR2402
COR24

PIR2501

PIR2502
COR25

PIR2601 PIR2602
COR26

PIR2701 PIR2702
COR27

PIR2801

PIR2802
COR28

PIR2901 PIR2902
COR29

PIR3001 PIR3002
COR30

PIR3101 PIR3102
COR31

PIR3201 PIR3202
COR32

PIR3301

PIR3302
COR33

PIR3401

PIR3402
COR34

PIR3501

PIR3502
COR35

PIR3601

PIR3602
COR36

PIR3701 PIR3702
COR37

PIR3801 PIR3802
COR38

PIR3901 PIR3902
COR39

PIR4001 PIR4002
COR40

PIR4101 PIR4102

COR41
PIR4201 PIR4202

COR42

PIR4301 PIR4302
COR43

PIR4401 PIR4402
COR44

PIT101
PIT102

PIT103

COT1 PIT201
PIT202

PIT203

COT2 PIT301
PIT302

PIT303

COT3 PIT401
PIT402

PIT403

COT4

PIU101

PIU102

PIU103

PIU104

PIU105

PIU106

PIU107

PIU108

PIU109 PIU1010

PIU1011

PIU1012

PIU1013

PIU1014

PIU1015

PIU1016

PIU1017

PIU1018

COU1

PIU201

PIU202

PIU203

PIU204

PIU205

PIU206

PIU207

PIU208

PIU209 PIU2010

PIU2011

PIU2012

PIU2013

PIU2014

PIU2015

PIU2016

PIU2017

PIU2018

COU2

PIU301 PIU302 PIU303

COU3

PIU401

PIU402

PIU403

PIU404

PIU405

PIU406

PIU407

PIU408

PIU409

PIU4010 PIU4011

PIU4012

PIU4013

PIU4014

PIU4015

PIU4016

PIU4017

PIU4018

PIU4019

PIU4020

COU4

PIU501

PIU502

PIU503

PIU504

PIU505

PIU506

PIU507

PIU508

PIU509

PIU5010 PIU5011

PIU5012

PIU5013

PIU5014

PIU5015

PIU5016

PIU5017

PIU5018

PIU5019

PIU5020

COU5

PIU601 PIU602 PIU603

COU6

PIC102 PIC201

PIC302 PIC401

PIJ202

PIJ302

PIJ502 PIJ504 PIJ506 PIJ508

PIJ1302 PIJ1304

PIR101 PIR201 PIR301 PIR401 PIR501 PIR601 PIR701 PIR801 PIR901 PIR1001 PIR1101 PIR1201 PIR1301 PIR1401 PIR1501 PIR1601

PIR3301 PIR3401 PIR3501 PIR3601

PIT103 PIT203 PIT303 PIT403

PIU109 PIU209

PIU302

PIU404

PIU405

PIU406

PIU407 PIU4014

PIU4015

PIU4016

PIU4017 PIU504

PIU505

PIU506

PIU507 PIU5014

PIU5015

PIU5016

PIU5017

PIU602PIJ405

PIU5019

POP49

PIJ1205

PIU5018

POM23
PIJ1206

PIU5013

POM24

PIJ4023

PIU5012

POP50

PIJ408

PIU5011

POP43

PIJ4022

PIU509

POP48

PIJ406

PIU502

POP47

PIJ409

PIU501

POP41

PIJ4016

PIU4019
POP33

PIJ404

PIU4012

POP53

PIJ4010

PIU4011

POP38

PIJ4012

PIU409

POP32PIJ4015

PIU402

POP31

PIJ4011

PIU401

POP36

PIJ701

PIR1801

PIU2018

POBNC9

PIJ705

PIR2001

PIU2017

POBNC10

PIJ901

PIR2201

PIU2016

POBNC11

PIJ905

PIR2701

PIU2015

POBNC12

PIJ1101

PIR3801

PIU2014

POBNC13

PIJ1105

PIR4001

PIU2013

POBNC14

PIJ1501

PIR4201

PIU2012

POBNC15

PIJ1505

PIR4401

PIU2011

POBNC16

PIU2010

PIJ601

PIR1701

PIU1018

POBNC2

PIJ605

PIR1901

PIU1017

POBNC1

PIJ801

PIR2101

PIU1016

POBNC4

PIJ805

PIR2601

PIU1015

POBNC3

PIJ1001

PIR3701

PIU1014

POBNC6

PIJ1005

PIR3901

PIU1013

POBNC5

PIJ1401

PIR4101

PIU1012

POBNC8

PIJ1405

PIR4301

PIU1011

POBNC7

PIU1010

PIR3202
PIR3602

PIT402PIR3102
PIR3502

PIT302PIR3002
PIR3402

PIT202PIR2902
PIR3302

PIT102

PIJ1014

PIR2801
PIT101

POP5

PIJ1026

PIR2302 PIR2402 PIR2502
PIR2802

PO0303V(1)

PIJ1012

PIR2501

PIT401

POP8PIJ1015

PIR2401

PIT301

POP7

PIJ1013

PIR2301

PIT201

POP6

PIJ1023

PIR1602

PIU201

POP23 PIJ104

PIR1502

PIU202

POP24

PIJ1024 PIR1402

PIU203

POP25 PIJ103 PIR1302

PIU204

POP26

PIJ1025

PIR1202

PIU205

POP27 PIJ102

PIR1102

PIU206

POP28

PIJ4014

PIR1002

PIU207

POP29 PIJ4013

PIR902

PIU208

POP30

PIJ105

PIR802

PIU101

POP22PIJ1022

PIR702

PIU102

POP21

PIJ106

PIR602

PIU103

POP20PIJ1021

PIR502

PIU104

POP19

PIJ107

PIR402

PIU105

POP18PIJ1020

PIR302

PIU106
POP17

PIJ1019

PIR202

PIU107

POP15

PIJ109

PIR102

PIU108

POP14

PIJ1507PIR4402

PIJ1503PIR4202

PIJ1407PIR4302

PIJ1403PIR4102

PIJ1011

PIJ1303

POP10PIJ1016

PIJ1301

POP9

PIJ1208

PIU503POM21

PIJ1207

PIU508POM22

PIJ1204

PIU403POM11

PIJ1203

PIU408POM12

PIJ1202

PIU4013POM14

PIJ1201

PIU4018POM13

PIJ1107PIR4002

PIJ1103PIR3802

PIJ1007PIR3902

PIJ1003PIR3702

PIJ907PIR2702

PIJ903PIR2202

PIJ807PIR2602

PIJ803PIR2102

PIJ707PIR2002

PIJ703PIR1802

PIJ607PIR1902

PIJ603PIR1702 PIJ507

PIR3201

PIJ505

PIR3101

PIJ503

PIR3001

PIJ501

PIR2901

PIJ4026PO0303V(2)

PIJ4025POP56

PIJ4024POP54

PIJ4021POP46

PIJ4020POP44

PIJ4019POP42

PIJ4018POP39

PIJ4017POP37

PIJ407POP45

PIJ403POP55

PIJ402POP57

PIJ401POGND(2)

PIJ1018POP13

PIJ1017POP11 PIJ1010POP12

PIJ108POP16

PIJ101POGND(1)

PIC202

PIJ602

PIJ604

PIJ606

PIJ608

PIJ702

PIJ704

PIJ706

PIJ708

PIJ802

PIJ804

PIJ806

PIJ808

PIJ902

PIJ904

PIJ906

PIJ908

PIJ1002

PIJ1004

PIJ1006

PIJ1008

PIJ1102

PIJ1104

PIJ1106

PIJ1108

PIJ1402

PIJ1404

PIJ1406

PIJ1408

PIJ1502

PIJ1504

PIJ1506

PIJ1508

PIU303

PIC402

PIJ201

PIU603

PIC101

PIC301

PIJ301
PIU301

PIU4010

PIU4020

PIU5010

PIU5020

PIU601

PO0303V(1)

PO0303V(2)

POBNC1

POBNC2

POBNC3

POBNC4

POBNC5

POBNC6

POBNC7

POBNC8

POBNC9

POBNC10

POBNC11

POBNC12

POBNC13

POBNC14

POBNC15

POBNC16

POGND(1)

POGND(2)

POM11POM12POM13 POM14 POM21POM22

POM23

POM24

POP5 POP6 POP7 POP8

POP9 POP10

POP11 POP12

POP13

POP14 POP15

POP16

POP17 POP18 POP19 POP20 POP21 POP22 POP23POP24POP25POP26POP27POP28POP29POP30

POP31

POP32

POP33

POP36

POP37

POP38

POP39

POP41

POP42

POP43

POP44 POP45

POP46

POP47

POP48

POP49

POP50POP53
POP54 POP55

POP56 POP57

Figure 3: Circuit diagram: Overview of the components on the circuit board.

The socket for the power supply of the trigger box is located at the back of the
case and expects a 12 V voltage supply. This supply powers the microcontroller as
well as the digital and analog outputs. Therefore, a power supply which delivers
at least 1 A is recommended. The circuit diagram (see Figure 3) sums up the
structure of the circuit board. On the board, the 12 V voltage is transformed via the
voltage regulator L78S75 (STMicroelectronics, Geneva, Swiss) to a 7.5 V voltage (to
run the microcontroller) and via the voltage regulator L78S05 (STMicroelectronics,
Geneva, Swiss)to a 5.0 V voltage in order to power the output channels. For both
components, the output current and the power dissipation are internally limited to
2 A.

The digital output channels are controlled by the according pins of the microcon-
troller (see Figure 3 and the pin assignment in Table 1). The integrated circuit
(IC) ULN2803A (Texas Instruments, Dallas, USA) is a Darlington transistor ar-
ray and was used to ensure a stable power supply of the digital output channels
and to avoid power dissipation over the microcontroller. If the ULN2803A receives
an active control signal from the microcontroller at one of its eight base pins, the
ULN2803A closes a circuit between the according collector pin and ground. This

5

2 The Trigger Box - Case and Peripheral Components

switches the according digital output socket and LED to an active state in which
the socket delivers 5 V. Each collector pin supplies a maximum of 500 mA. For the
16 digital output channels, two ULN2803A were used.

In order to control the analog output channels, the IC L293DD (STMicroelectron-
ics, Geneva, Swiss) was used. The L293DD accepts a maximum supply voltage of
36 V and a non repetitive 1.2 A peak output current per channel. Since a pulse
width modulated signal is received, a maximum current of 600 mA per channel is
recommended. A single L293DD can drive two channels and needs a pulse width
modulated control signal and two enable signals to determine the polarity per chan-
nel. Both signal types are supplied by the microcontroller. Due to an unsolved
problem with a double seizure of pin #38 the output channel #2 is currently not
ready for use. As soon as the user activates one analog output channel, the according
socket will supply a pulse width modulated 12 V signal.

The state of each digital input channel is captured by a transistor of type BC338
(Diotec, Heitersheim, Germany). A 3.3 V voltage is connected to the collector pin
and pulls the according pin of the microcontroller up to an active state. The emitter
pin of the transistor is connected to ground and the base is wired to the anode of
the digital input socket. If a voltage larger than 2.4 V is connected to the digital
input socket, the base closes the emitter-collector path and pulls the microcontroller
pin down to ground. This switching operation is detected by the microcontroller.
An emitter-base-voltage (voltage at the digital input socket) of 5 V should not be
exceeded.

The analog input signals are measured by an analog digital conversion (ADC) within
the microcontroller. The according pins of the microcontroller are directly wired to
the socket. The user must be aware that a voltage larger than 3.6 V at one single
pin of the microcontroller can destroy the microcontroller. The measurement range
of the ADC is limited between 0 and 1 V in steps of 1 mV. Therefore an external
voltage divider is necessary to transform the voltage.

6

2 The Trigger Box - Case and Peripheral Components

Table 1: Pin assignment for the microcontroller pins and the attached channels.
Denotations: OutDig 1 - digital output channel #1, OutAn,P wm 1 - analog
output channel #1 for pulse width modulation, OutAn,Enable 11 - analog
output enable, InDig 1 - digital input channel #1, InADC 1 - analog input
channel for analog digital conversion #1, USART 0-RX/TX - USART port
for reading and writing.

Pin Denotation Pin Denotation Pin Denotation
P1 P21 OutDig 7 P41 OutAn,P wm 3
P2 P22 OutDig 8 P42
P3 P23 OutDig 9 P43 OutAn,P wm 4
P4 P24 OutDig 10 P44
P5 InDig 1 P25 OutDig 11 P45
P6 InDig 2 P26 OutDig 12 P46
P7 InDig 3 P27 OutDig 13 P47 OutAn,Enable 21
P8 InDig 4 P28 OutDig 14 P48 OutAn,Enable 22
P9 InADC 1 P29 OutDig 15 P49 OutAn,Enable 23
P10 InADC 2 P30 OutDig 16 P50 OutAn,Enable 24
P11 P31 OutAn,Enable 11 P51
P12 P32 OutAn,Enable 12 P52
P13 P33 P53
P14 OutDig 1 P34 P54
P15 OutDig 2 P35 P55
P16 P36 OutAn,P wm 1 P56
P17 OutDig 3 P37 P57
P18 OutDig 4 P38 USART 0-RX
P19 OutDig 5 P39 USART 0-TX
P20 OutDig 6 P40

7

3 The Data Transfer Protocol

3 The Data Transfer Protocol

The data transfer protocol enables the communication between the microcontroller
and the MNE-X plug-in. The protocol ensures a structured and standardized thus
stable and save way of transferring information. For the communication between
MNE-X and the microcontroller, 3 different types of information are to be transmit-
ted:

1. the state of digital channels

2. an integer value between 0 and 65535 and the according analog channel and

3. a retrieval request of the input channels.

The actual communication is based on the exchange of data packages. Each package
comprises a byte array consisting of 4 bytes. Each byte consists of 8 bits which are
denoted as illustrated in Figure 4. Each byte is unique and can be identified by its
last two bits, the check bits. The check bits encode the order of the bytes in the
array and ensure the completeness and consistency of the byte array. The first two
bits of the first byte encode the type of transferred information: digital, analog or
retrieval. The residual 22 bits (data bits) contain the actual information.

B10 B11 B12 B13 B14 B15 B16 B17

B20 B21 B22 B23 B24 B25 B26 B27

B30 B31 B32 B33 B34 B35 B36 B37

B40 B41 B42 B43 B44 B45 B46 B47

Figure 4: General Structure of the Byte Array: the check bits
(B16/B17,B26/B27,B36/B37,B46/B7) encode the order of the bytes
and ensure completeness and consistency. The type of transferred
information is encoded by the bits B10/B11. The residual bits are data
bits and contain the actual information.

An example of a byte array for exchanging digital information is illustrated in Figure
5. The first two bits of the first byte (B10/B11) are designated 00 in order to denote
a digital data transfer. Each of the 22 data bits encodes one digital channel in a

8

3 The Data Transfer Protocol

binary manner: 1 encodes an active channel, 0 encodes an inactive channel. The
channel number is denoted in ascending order, starting at B45 for the first channel,
B44 for the second channels and so forth (the 10th channel is encoded by B32).
Therefore, the example in Figure 5 depicts the command, that channels 1, 2, 8, 9,
17, 18 and 22 are active and channels 3 through 7, 10 through 16 and 19 through
21 are inactive. For the communication between the triggerbox and the plug-in
TriggerControl only 16 of the possible 22 channel positions were used.

0 0 1 0 0 0 0 0

1 1 0 0 0 0 0 1

0 0 0 1 1 0 1 0

0 0 0 0 1 1 1 1

Figure 5: Example for a digital data transfer: Each data bit encodes the binary
state of a channel. The number of the according channel is decoded in the
position within the data array, starting with channel number 1 at bit B45
in ascending order. Here, channels 1, 2, 8, 9, 17, 18 and 22 are active and
3 through 7, 10 through 16 and 19 through 21 are inactive. Bits B10 and
B11 denote that analog information is transferred.

An example of a byte array for exchanging analog information is illustrated in Figure
6. The first two bits of the first byte (B10 and B11) are designated 01 in order to
denote an analog data transfer. B12 – B15 encode a single analog channel number
according to the system presented in Table 2. For the communication between the
trigger box and the plug-in TriggerControl only 4 of the possible 16 analog channel
numbers were used. The bits B40 - B45, B30 - B35 and B22 - B25 encode the
transmitted integer value for the analog channel. To encode a number between 0
and 65535, all 16 bits are used. Here, B45 represents 20 = 1; B46 represents 21 = 2
and so forth (B35 represents 26 = 64). Bits B20 and B21 are currently unused and
remain free for future applications. Therefore, the example in Figure 6 depicts the
command, that the analog output channel #9 assigns a value of 14283 (binary: 0011
0111 1100 1011).

9

3 The Data Transfer Protocol

0 1 0 1 1 0 0 0

X X 0 0 1 1 0 1

0 1 1 1 1 1 1 0

0 0 1 0 1 1 1 1

Figure 6: Example for an analog data transfer: bits B12 – B15 encode the analog
channel number according to the system presented in Table 2. Bits B40
- B45, B30 - B35 and B22 - B25 encode an integer value between 0 and
65535 for the according channel in a binary manner. Bits B10 and B11
declare that analog information is transferred. Bits B20 and B21 are kept
free for future applications.

An example of a byte array to request a retrieval of either digital or analog channels
of the trigger box is illustrated in Figure 7. The first two bits of the first byte (B10
and B11) are designated 11 in order to denote a retrieval request. The following bits
B12 and B13 encode whether the digital (00) or analog (01) channels are requested.
If the digital input channels are retrieved, the states of all channels are transmitted.
The states are encoded just like normal digital information (see Figure 5). For
analog information the desired channel is encoded in bits B22 - B25, according to
the system presented in Table 2. All residual bits remain free for future applications.
Therefore, the example in Figure 7 depicts the user’s wish to retrieve the value of the
second analog input channel. Only 2 of the theoretically possible 16 codable channels
are used to retrieve analog input channels. The encoding of the data array can be
performed with individual bit masks and bitwise "or" operations. The decoding can
be performed with individual bit masks and bitwise "and" operations.

10

3 The Data Transfer Protocol

1 1 0 1 X x 0 0

X X 0 0 0 1 0 1

X x X X X X 1 0

X X X X X X 1 1

Figure 7: Example for a retrieval request: Bits B10 and B11 denote that a retrieval
of the input channels is requested. Bits B12 and B13 encode that an
analog channel is to be retrieved. The desired analog channel number is
encoded in bits B22 – B25 according to the system presented in Table 2,
here channel 2. All unused bits are kept free for future applications.

Table 2: Encoding structure of analog channels: Each analog channel is represented
by a 4 digit binary number.

Channel # Code Channel # Code Channel # Code Channel # Code
1 0000 5 1000 9 0110 13 1011
2 0001 6 0011 10 1010 14 1101
3 0010 7 0101 11 1100 15 1110
4 0100 8 1001 12 0111 16 1111

11

4 The Microcontroller Unit

4 The Microcontroller Unit

The microcontroller unit comprises an USB socket, a LCD display and a main board
which holds the actual microcontroller, an Atmel AT32UC3C1512C (Atmel, San
José, USA). All parts can be acquired through the enterprise Conrad (Hirschau,
Germany). Via the USB port, the microcontroller unit receives encoded control
commands from the MNE-X plug-in TriggerControl. The unit decodes and processes
the commands and controls the peripheral components on the connected circuit
board via the according pins of the microcontroller. In case of a retrieval command,
the unit determines the state of the desired digital input channel or the value on one
of the analog input channels, encodes this information and transfers it to the plug-in
TriggerControl. An informative overview of the source code of the microcontroller
can be found in Figure 8.

Structure Chart of the Microcontrollers Program Code

Initialize UART, program variables, PWM, LCD and Pin I/O

Poll serial port and evaluate check bits

digital out analog out retrieve

 decode and control

channels
 decode channel and

value

 display output at LCD

 control channel per

PWM

analog digital

 identify channel

 measure value per

ADC

 encode & send

 retrieve state

 encode & send

Figure 8: Structure chart of the microcontrollers program code: after the initializa-
tion process, the program steadily polls information from the connected
serial port and interprets the data according to the identified data type.

In a first step, all input/output pins, especially the UART port and the pins for the
pulse width modulation of the microcontroller are initialized. The program variables
are declared and initialized with pertinent values. After the initialization, an infinite

12

4 The Microcontroller Unit

loop polls information from the serial port and evaluates the check bits of each byte.
If four consecutive and correct bytes are detected, the actual processing will begin.
The program interprets the signal type according to the first two bits of the first
byte. In case of a digital output command, the program decodes the byte array
and controls the digital output channels. In case of an analog output command,
the program decodes the channel and the transmitted value, displays the channel
and the output at the LCD and controls the analog output channel by a pulse
width modulated signal. In case of a retrieval command, the program determines,
whether the digital or analog input channels are requested. In case of an analog
input retrieval, the desired channel is identified and the according voltage on the
pin is measured (analog digital conversion), encoded and sent. In case of a digital
input retrieval, the states of all four digital input channels are determined, encoded
and sent to the plug-in TriggerControl.

13

5 The Plug-in TriggerControl

5 The Plug-in TriggerControl

5.1 The Terminal Function

The plug-in TriggerControl is part of the MNE-X software and constitutes the inter-
face between MNE-X and the trigger box. Generally, the plug-in aims at processing
and interpreting data streams and controls the peripheral components of the trigger
box. There exist two possibilities to do that: a terminal function in which the user
is able to control and retrieve input/output channels and a so-called Run-Method
which automatically evaluates a measured signal and controls the pertinent channels.
The common basis of both functionalities is the C++ class Serialport. This class
accounts for the properties of a physical serial port and offers methods to control
it. Furthermore, the class includes properties to characterize the communication
between plug-in and trigger box. An overview of the properties and methods of
the class Serialport is visualized in Figure 9. A detailed description of the purpose
of each property and method can be found online on the MNE-X documentation
site.

14

5 The Plug-in TriggerControl

TriggerControl

 initSettings() void

 initPort() void

 open() bool

 close() bool

 encodeana() void

 encodedig() void

 encoderetr() void

 decodedig(byteArray) void

 decodeana(byteArray) void

 sendData(byteArray) void

 readData()

 m_currentSettings Settings

 m_digchannel Qvector<int>

 m_motor int

 m_analval int

 m_InActiveDig QVector<int>

 m_InAnChannelVal QVector<int>

 m_retrievetyp int

 m_retrievechan int

 m_data QByteArray

 m_wiredChannel int



 m_qSerialPort QSerialPort

Figure 9: Properties and methods of the class Serialport: The class Serialport is the
core class of the plug-in TriggerControl and provides methods to open and
close a physical serial port as well as methodes for the communication.
The properties characterize the communication and store important data
about the state of the connected input/output channels.

During the initialization process of the plug-in, the class Serialport is constructed.
An overview of the ongoing steps during the construction is depicted in Figure 10.
The settings which govern the physical communication with the serial port (i.e. baud
rate, number of data and stop bits, parity and data flow control) are configured. In
a next step, the plug-in searches among all available ports of the computer for
the serial port which is connected to the microcontroller. If the correct port was
found, its name is written into the according settings array. In order to finish the
construction of the class Serialport, variables which store the state of the affiliated
digital and analog channels are initialized.

15

5 The Plug-in TriggerControl

Constructor Serialport

 initSettings()

 m_currentSettings

- .baudRate 115200

- .dataBits 8

- .parity no

- .stopbits 1

- .flowControl no

 initPort()

 check available ports at PC

 compare existing ports description with µcontroler

 m_currentSettings.name = portname

 initialize variables:

 m_digchannel resize (22) and reset

 m_InAnChannelVal resize (2) and reset

 m_InActiveDig resize (4) and reset

 m_motor = 1

 m_analval = 0

 m_wiredChannel = 0

Figure 10: Chart of the construction for the class Serialport: As described above,
several settings concerning the communication between plug-in and mi-
crocontroller must be configured. After the correct serial port was found,
the variables which store information about the state of the digital and
analog channels are initialized.

The graphical user interface (GUI) of the plug-in in its unconnected state is visu-
alized in Figure 11. An instance of the plug-in can be evoked by clicking on the
pertinent button on the MNE-X surface. This opens the GUI of the terminal func-
tion which comprises three different sections: the section Properties takes care of
the properties of the plug-in, the section Input controls digital and analog input
channels and the section Output controls the digital and analog output channels.
Within the properties section, the user can check and configure the settings of the
communication (i.e. serial port, baud rate, number of data and stop bits, data
flow control and parity) and connect/disconnect to the configured serial port. The
output/input sections are further described below.

16

5 The Plug-in TriggerControl

21
3

Figure 11: Unconnected Graphical User Interface: An instance of this interface can
be evoked by clicking on the pertinent button within the plug-in list (red
number 1). The window containing the surface of the terminal func-
tion comprises three sections: Properties, Input and Output. Within the
Properties section, the user can modify the communication settings (red
number 2) or connect the plug-in to the microcontroller of the trigger box
(red number 3). This will unlock the buttons for sending information to
the trigger box.

Before the trigger box can be used at all, the plug-in TriggerControl needs to be
connected to the USB port of the microcontroller inside the trigger box. Manu-
ally, this can be done via the Connect button (see Figure 11). A scheme of the
connection process is depicted in Figure 12. The method open() opens the serial
port to which the microcontroller is connected for reading and writing according to
the configurations saved in the array m_currentSettings. If no errors occur during
the connection process several buttons of the GUI are enabled or disabled. This
allows the user to send analog and digital information to the trigger box. In order
to quit the communication between plug-in and trigger box the serial port must be
closed. This can be done via the disconnect button (see Figure 11). A scheme of the
disconnection process is depicted in Figure 12. After the close() method has closed
the serial port several buttons of the GUI are enabled and disabled.

17

5 The Plug-in TriggerControl

Connect Channel for Run-Method

 interrogate channel from

dropdown list

 set m_wiredChannel

Disconnect

 close()

 close serial port

 enable and disable buttons

Connect

 open()

 try to open serial port for

read/write with configs

from m_currentSettings

 enable and disable buttons

Figure 12: Connect and disconnect a serial port: Left top: When the user clicks on
the Connect button, the plug-in tries to open the configured serial port.
Left bottom: After working with the interface, the serial port must be
disconnected via the Disconnect button. This will close the communica-
tion. Right top: In the Output section a channel can be directly wired
to the Run-Method. The correspondent channel will be stored in the
variable m_wiredChannel.

Once connected to the trigger box, the terminal function allows the user to control
digital and analog output channels and to retrieve information from the digital and
analog input channels (see Figure 13). On the left side of the output section of the
GUI, the user can set or unset each digital output channel individually by help of
the pertinent radio buttons. As soon as the Send button is clicked, the according
channels of the trigger box change their state. On the upper right part of the output
section of the GUI, the user can control four analog output channels. An integer
value between 0 and 65535 can be chosen with the dial and the desired analog output
channel can be chosen via the radio buttons. As soon as the Send button is clicked,
the according channel at the trigger box delivers a pulse width modulated signal
according to the integer value. Here, a value of zero equals no analog output and a
value of 65535 equals a continuous voltage level. A detailed description of the steps

18

5 The Plug-in TriggerControl

and methods to control analog and digital output is depicted in Figure 14. The part
Connect Channel of the output section of the GUI allows the user to choose a digital
output channel from a drop down list which supposed to serve as the output of the
Run-Method. The configured channel is then saved in the variable m_wiredchannel

(see Figure 12), which is used in the run method.

1

2

3

4 5 6

Figure 13: Connected graphical user interface: after connecting to the serial port,
the user can now send digital and analog output commands (red numbers
1 and 2) or request the retrieval of digital or analog input channels (red
number 4 and 5). It is also possible to configure a digital output channel
which is used as output for the Run-Method. After the work is done, the
user should disconnect the plug-in from the serial port with the help of
the Disconnect button (red number 6).

19

5 The Plug-in TriggerControl

Analog Output

 interrogate radio buttons &

dial and set m_motor &

m_analval

 encodeana()

 clear m_data

 set check bits

 set B10/B11 to 01 for

analog

 encode channel in

m_data with m_motor

 encode value in m_data

with m_analval

 sendData(m_data)

 m_qSerialPort.write()

Digital Output

 interrogate radio buttons and

set/unset m_digchannel

 encodedig()

 clear m_data

 set check bits

 set B10/B11 to 00 for

digital

 encode channels in

m_data with

m_digchannel

 sendData(m_data)

 m_qSerialPort.write()

Figure 14: Sequence of analog and digital output commands: Left: As soon as the
user clicks the Send button for analog output, the radio buttons and
the dial are interrogated and the according values are written into the
variables m_motor (channel) and m_analval. The method encodeanal()
encodes the data, i.e. the type and control bits are set and the data bits
are filled according to the variables m_motor and m_analval. Finally,
the byte array is given to the serial port. Right: For a digital output the
according radio buttons are interrogated and the array m_digchannel is
filled with the correspondent bit code. The method encodedig() then sets
type and control bits and writes the data bits according to the data in
m_digchannel. Finally, the byte array is given to the serial port.

Within the input section, the user can request a retrieval of analog or digital input
information by clicking on the according buttons. The plug-in will then send a
request in form of a special retrieval byte array to the microcontroller (see Figure 15).
The microcontroller interprets the byte array, measures the state (digital) or voltage
(analog) of the input channels, encodes a correspondent respond byte array and sends
it back to the plug-in. There, it is decoded and the gathered information are at the
user’s disposal (see Figure 16). Currently, this type of information is displayed in
an extra window. Before retrieving analog input information, the desired channel
must be chosen from the drop down list.

20

5 The Plug-in TriggerControl

Retrieve Analog

 set m_retrievetyp to 0

 encoderetr()

 evaluate m_retrievetyp

 clear m_data

 set check bits

 set B10/B11 to 11 for

retrieve

 set B12/B13 to 01 for

analog

 set B24/B25 to 00 for

channel 1 ot to 01 for

channel 2 from

m_retrievechan

 sendData(m_data)

 m_qSerialPort.write()

Retrieve Digital

 set m_retrievetyp to 1

 encoderetr()

 evaluate m_retrievetyp

 clear m_data

 set check bits

 set B10/B11 to 11 for

retrieve

 set B12/B13 to 00 for

digital

 sendData(m_data)

 m_qSerialPort.write()

Figure 15: Sending a retrieval request: Left: To retrieve the analog input channels,
the user chooses the desired channel from the drop down list and clicks
Retrieve Analog Input. This will cause the plug-in to write a 0 to the
variable m_retrievetyp and the according channel to m_retrievechan.
The method encoderetr() then evaluates m_retrievetyp, writes type and
control bits and fills the data bits with the desired mode (analog) and
channel number. The retrieval byte array is then written to the se-
rial port. Right: As soon as the user clicks Retrieve Digital Input, the
variable m_retrievetyp is set to 1. The method encoderetr() evaluates
m_retrievetyp, writes type and control bits and fills the data bits. The
retrieval byte array is then written to the serial port.

21

5 The Plug-in TriggerControl

Analog Input

 readdata()

 m_qSerialPort.readAll()

 verify checkbits

 evaluate data type

 decodeana(incomingArray)

 evaluate 1. byte for

analog channel

 evaluate 2./3./4. byte for

transfered value

 write value to correct

position in

m_InAnChannelVal

Digital Input

 readdata()

 m_qSerialPort.readAll()

 verify checkbits

 evaluate data type

 decodedig(incomingArray)

 evaluate 3. byte for

digital channels

 write m_InActiveDig

Figure 16: Receiving input information: Left: Once analog input information is
available at the serial port, the method readdata() will check the re-
ceived byte array for its check bits and evaluate the data type. If the
byte array is complete and correct, the method decodeana() will interpret
the byte array and extract the channel number and the voltage value.
This information is stored on the correspondent position within the ar-
ray m_InAnChannelV al. Right: For digital information, the method
decodedig() follows readdata() and extracts the states of all four digital
input channels and stores them in the array m_InActiveDig.

5.2 The Run-Method

The Run-Method constitutes an extremely powerful automated way of processing
signals in real-time. It allows the user to interpret incoming data which was just
measured and to generate correspondent classification signals according to an in-
dividual data analysis algorithm. The method is able to control generic processes
through the affiliated trigger box without the requirement of any user interaction.
However, if the user desires to interfere in the ongoing data interpretation he is
generally free to do that at any point.

The functionality of the Run-Method is under constant development and represents
currently one part of the plug-in with the highest potential for future applications.
The structure of the code is organized in separated modules which allows each
developer an easy access to single parts of the analysis-pipeline. Once the Run-

22

5 The Plug-in TriggerControl

Method is started with the help of the small green Run-button on the left top corner
of the MNE-X software (see Figure 13), the plug-in connects automatically to the
serial port of the affiliated trigger box. Within the program code, data input streams
can be defined which are processed by the user’s data analysis algorithm. This
algorithm is supposed to generate multiple types of classification signals according
to which generic processes can be controlled. The trigger box serves as the output
device which executes the commands it receives from the Run-Method.

The functionality of the Run-Method is based on the parent class of the class Seri-
alport, the class TriggerControl. As soon as an instance of the plug-in is evoked (see
Figure 11), MNE-X creates a new Serialport object with the properties mentioned
above. When the user than hits the Run-button, the plug-in configures some initial-
izations: it sets up input streams (e.g. input coming from the TMSI plug-in) and
output streams, which are then displayed on the screen. Afterwards, the method
start() will configure important settings, before the actual real-time data analysis
starts. One could think of loading required data, configuring the output channels (if
not happened before via the Connect Channel-function, see Figure 12) of the trigger
box or initializing time consuming algorithms which are necessary for the following
analysis. Subsequently the actual method run() will launch the user’s individual
algorithm which is supposed to be constructed within an infinite loop. A possible
scenario could be the following. A measured EEG-signal is brought into the routine
by an input stream. The algorithm processes and detects specific patterns in the
signal. As soon as a desired state of the signal is identified (e.g. the occurrence of an
alpha rhythm), the algorithm emits a control signal (see Figure 17) and commands
the trigger box to launch a process (e.g. a stimulation). Therefore, the launched
process is individual for the current state of the measured subject and independent
of any rigid trigger patterns. As soon as the user wants to finish the analysis, the
Stop-button (which replaced the Run-button when the analysis was started) will
call the method stop(). This will cause the plug-in to terminate all ongoing analysis
processes. The user might add some further post analysis steps within this method
(e.g. saving meta data).

23

5 The Plug-in TriggerControl

Sending a Command to the Trigger Box

coding example:

in analysis algorithm:

emit sendByte(1, m_pSerialPort->m_wiredChannel);

in sendByteTo - method:

 TriggerControl::sendByteTo(int value, int channel)

{

 if (value == 1)

 { m_pSerialPort->m_digchannel.replace(channel,0);

 m_pSerialPort->encodedig();

 m_pSerialPort->sendData(m_pSerialPort->m_data);

 }

}

Figure 17: Sending a command to the trigger box: in order to send a command to
the trigger box within the Run-Method, the signal sendByte() must be
emitted. The first argument can be used as a decision variable for an if-
clause, the second argument labels the targeted channel. The signal will
cause the sendByteTo()-method to be started in which the named argu-
ments are used. In the example the channel saved in m_wiredChannel

is set to 0 (inactive). The according byte array is encoded and sent to
the trigger box.

24

List of Figures

List of Figures

1 Workflow of the Set Up . 2
2 Console Trigger box . 4
3 Circuit Diagram . 5
4 General Structure of the Byte Array 8
5 Example for a Digital Data Transfer 9
6 Example for an Analog Data Transfer 10
7 Example for a Retrieval Request . 11
8 Structure Chart of the Microcontrollers Program Code 12
9 Properties and Methods of the class Serialport 15
10 Chart of the Construction for the Class Serialport 16
11 Unconnected Graphical User Interface 17
12 Connect and Disconnect a Serial Port 18
13 Connected Graphical User Interface 19
14 Sequence of Analog and Digital Output Commands 20
15 Sending a Retrieval Request . 21
16 Receiving Input Information . 22
17 Sending a Command to the Trigger Box 24

25

List of Tables

List of Tables

1 Pin Assignment . 7
2 Encoding Structure of Analog Channels 11

26

	Introduction
	The Trigger Box - Case and Peripheral Components
	The Data Transfer Protocol
	The Microcontroller Unit
	The Plug-in TriggerControl
	The Terminal Function
	The Run-Method

	List of Figures
	List of Tables

