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SOME THEOREMS CONNECTED WITH ABEL'S THEOREM ON
THE CONTINUITY OF POWER SERIES

By G. H. HARDY.

[Received March 31et, 1906.—Read April 26th, 1906.—Received in revised form May 6th, 1906.]

1. It will probably make the object of this paper more easily
intelligible if, at the risk of repeating a certain number of well known
facts, I preface it with a brief historical resume.

In his famous memoir on the Binomial Series Abel proved that, if a
series 2a,t is convergent, the series 2anx

n is convergent for all positive
values of x less than unity, and represents a function f{x) lohich is con-
tinuous for all such values of x, unity included.*

An alternative proof of Abel's theorem was given later by Dirichlet.t
Stated in the language of the modern theory of functions, Abel's

theorem runs : " If a power series in x converges to the sum s at a point P
on its circle of convergence, and f(x) is the function represented by the
series within the circle, then fix) tends to the limit s when x tends to P
along a radius vector from the origin."

This theorem has proved the starting point for a considerable number
of later researches. Stolz was the first to prove that the result still
holds if x tends to P along any path which lies entirely within the circle
of convergence. + At a later date Pringsheim returned to the subject in
a very instructive memoir, § in which he shows that Abel's proof suffices
to prove not only the continuity oif(x), but also the uniform convergence
of the series ?,anx

n throughout the interval (0, 1). Of this the continuity
of f(x) for x = 1 is a corollary ; but Abel had really proved more than
mere continuity, and Pringsheim justly remarks that Dirichlet's proof is
inferior to Abel's in that it obscures this fundamental point.

This is not the only direction in which Abel's theorem has been
generalised. The property of the special function xn, upon which Abel's

* Crclle, Bd. i. ; (Euvres, T. i., p. 223.
t Liouville, Ser. 2, T. vn. ; Werke, Bd. u . , p. 305.
+ Zeitschr.f. Math., Bd. xx., p . 370, and Bd. xxix., p . 127. This statement is somewhat

loose ; see $ 4.
§ Munchener Sitzungsberichte, 1897, p . 343.
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proof was based, was simply that expressed by the inequality

and it was at once suggested that similar theorems must hold for more
general classes of series of the type San/,,(;c). And, in fact, Dirichlet
and Dedekind* arrived at the following results, which for the sake of
brevity I state on the hypothesis that the functions /H {x) are real functions
of x denned for the interval 0 ^ x ^ 1.

(a) If / • (x) > /,l+1 (x) > 0 (0 < x < 1),

and Han is convergent, then 2,anfn(x) is convergent and, if every fn is
continuous, the sum of the series is a continuous function of x.

(b) If Eal( oscillates between finite limits of indeterrnination,

/ n W > / l l + i W , and lim/B = 0,

then 2ar t/u(x) is convergent; and, if every /„ is continuous, the sum of
the series is a continuous function of x.

Dirichlet and Dedekind were concerned mainly with applications of
these theorems to Dirichlet's series, and pass somewhat lightly over the
general properties of series which are involved in them. Their exposition
is also obscured to some extent by the fact that they do not utilize the
notion of uniform convergence. I have therefore discussed the question
further in § 2, and have stated a few theorems which summarize the
conclusions which can be drawn from the discussion. I cannot claim any
particular originality for these theorems, but, so far as I know, they have
not, in the form in which I state them, been included in any published
work. They would naturally suggest themselves to any one who under-
took a careful analysis of the various theorems stated in this section, and
Prof. Bromwich informs me that he has himself included Theorem I. a in
a tract on the theory of series which will ultimately form one of the
Cambridge Tracts in Mathematics and MatJiematical Physics.

I have also included in §§ 3, 4 some applications of these theorems
which do not appear to have been noticed hitherto, and in § 5 I have
discussed a passage in Kroneeker's Vorlesangen iiber Integrate which is
concerned with the subject, but appears to contain serious errors.

There is yet another form of generalisation of Abel's theorem which
has occupied the. attention of mathematicians. It may happen that the
series Haax

n is divergent at a point on the circle of convergence, but is
capable of " summation " by one or other of the methods furnished by

* Vorlesungen iiber Zahlentheorie, $$ 100 and 143-4.
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the theory of divergent series, Cesaro's method of mean values, or Borel's
method of exponential summation, or one of the various generalisations
of either method. And it results from the combined researches of a
number of writers that, if 2a n has the sum s when summed according to
any of these methods, then f(x) tends to the limit s when x tends to the
point in question on the circle of convergence by any path subject to
certain restrictions. In the latter part of the paper I have occupied my-
self with series summable by Cesaro's method. The theorem for such
series which corresponds to Abel's original theorem was first proved by
Frobenius,* and states that, if

sn = ao+a1-\-...+ant

and lim »+ ' i+ -+*> = s,
n+1

then lim/ (x) = s.
x=l

I have attempted to prove a general theorem which shall stand to this
theorem in the same relation as Theorem I. to Abel's theorem. This
theorem (Theorem II.) is the principal result of the paper : it will be
found in § 6.

Finally, I have illustrated some of the most obvious applications of
this general theorem, and I have indicated some further questions which
are naturally suggested, but which I cannot profess to have completely
solved.

I may remark that I was led to this investigation by considering
various problems concerning the limits approached by the q-series of
elliptic functions, when q tends to a point on the unit circle, and a
number of my illustrations are furnished by ^-series. But I have not in
this paper attempted to treat any such particular class of problems
systematically.

2. THEOREM I. a.—If fo(x), fx(x), /20c), ... is a series of real finite
positive functions\ such that

(1) /.(

* Crelte, Bd. LXXXIX., p. 262.

t A finite function (fonction bornee) is a function whose absolute value is, throughout the
interval of variation of the independent variable, leas than a constant K. I t would obviously be
enough to assert that | f0 | < K.
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and Xanis any convergent series, then the series Xanfn{x) is uniformly
convergent throughout the interval (0, 1).

For
n M—1

(1) 2 avfv= 2 (an+am+i+...+av)(fv—fv+i) + (am+am+l+...+an)fn.

Choose m0 so that, for v^m^ m0,

I am-\-am+i-\-...-\-av I < e.

Then 2 avfv eikf,

where M is the maximum of / 0 (re) in the range (0, 1). The theorem is
therefore proved.

COROLLARY.—If the functions fn(x) are continuous, the series ~2anfn(x)
represents a function of x continuous throughout the interval 0 ^ x ^ 1.

THEOREM I. a 1.—If the restriction that fn is real and positive is re-
moved, and the condition (1) is replaced by the condition that

da) i \fv(x)-fv+Ax)\<K,

where K is a constant, then the series 2an/TO is still uniformly convergent*

We first observe that the existence of such a constant K involves that
of a constant L, such that \fn(x) \ < L, for all values of x and n. For

\Mx) | < |/0Cs) | + 2 \Mx)-fv+Ax)\ < M+K.

iavfv <e\nil\fv-fv+i\+\fn\\<e(M+2K),Hence

and the result follows as before.

COROLLARY.—If the functions fn are continuous, the sum of the series is
continuous.

An obvious generalisation is—

THEOREM I. a 2. — The conclusions of the preceding theorems and
corollaries still hold if the terms of the series 2a n are functions of x,
provided the series is uniformly convergent, and {in the corollaries) the
functions an are continuous.

* We may suppose either that/,, is a complex function of a real variable, or a function of a
complex variable ; in the latter case the interval (0, 1) must be replaced by a region.
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These theorems all arise from the Theorem (a) of Dirichlet-Dedekind.
It is with this rather than with Theorem (6) that I am concerned in this
paper; but the latter also raises interesting questions.

THEOREM I. b.—If the functions fn (x) satisfy, in addition to the con-
ditions of I., the condition lim/n(a;) = 0, and if San oscillates between

finite limits of indetermination* then the series 2anfn is uniformly con-
vergent.

In the first place there is a number K such that

I am4-am+i4-...-\-av\<K

for all values of m and v. In the second place fn (x) is a function of x
which never increases as n increases, and whose limit zero is a continuous
function of x. The convergence oifn(x) to its limit is therefore uniform,^
and we can choose m0 so that, for m ^ m0, and for all values of x,

|/-(*)|<e.

The theorem now follows immediately from (1).

COROLLARY.—If the functions fn are continuous, the sum of the series
2 anfn {x) is a continuous function of x.

THEOREM I. b 1.—If the restriction that the functions fn (x) are real and
positive is removed, and the conditions to which they are subject are
•replaced by the condition that the series 2 \fn(x)—fn+](x)\ is convergent,
the series 2 a n / n is convergent.

THEOREM I. b 2.—If in addition the functions fn are continuous and
either of the equivalent conditions (i.) that the series 2|/TO—fn+i \is uniformly
convergent, or (ii.) that its sum represents a continuous function of x, is
satisfied, the series 2 a n / u will be uniformly convergent and continuous.

THEOREM I. b 3.—The preceding conclusions are not affected if the o,i's
are functions of x, provided a constant K exists such that

\aQ+ax+...+an \ <K
for all values of n and x, and (if the continuity of the series is asserted)
the functions an are continuous.

These theorems follow at once by trifling modifications of the preceding
arguments. It will be seen that the series of theorems I. b, b 1, b 2, b 8
runs almost, though not exactly, parallel to the series I. a, al, a 2.

* I.e., | ao + ai + ... +a,, \ < K.
t Dini, Grtmdlagen, pp. 148, 149. The corollary is substantially Dedekind's theorem: his

proof is less simple, owing to the fact that he does not employ the notion of uniform convergence.
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8. Of the preceding theorems those of which the applications are
most interesting are I. a and its extension L a i .

Since /„ > / n + i , fn tends to a limit for n = a> for all values of x; but
in general it will not tend uniformly to this limit, and the limit will not
be a continuous function of x. In the most important applications such
a non-uniformity or discontinuity occurs at one or other end of the
interval (0, 1), and the interest of the theorem lies in its application to
establish the continuity of the series 2aft/n at this end. Thus

(i.) If fn(x) =xn,

lim/n = 0 (0 < x < 1), lim/n = 1 (x = 1),

and we obtain Pringsheim's form of Abel's theorem.

lim/,, - 0 (0 < * < 1), lim/;, = 1 {x = 0),

and we deduce that the Dirichlet's series

Hi +£l + 3.+
lx 2X 3X

is uniformly convergent throughout (0, 1), and so continuous for x = 0, which is one of the
Dirichlet-Dedekind theorems.

(iii.) If (denoting the independent variable now by q) we take

fn(q) n,
1+3"

so that /;,-/,.+, = 9 H { i - q )

and Urn /„ = 0 {q < 1), = — {q = 1),

and we deduce that, if 1 an is convergent,

Urn 2 p3?
q.\ 1 +

numerous applications of this result [and the similar results for 2 atlq"/(l + qtn), ...] may be mado
in the theory of elliptic functions. For instance, from

we deduce lim log A = 2 log 2 - 4 (£ —J- +1—...) = 0,

as may be verified independently.

(iv.) Let us next consider the series

l—q" " * '

* Jacobi, Fundamenta Nova, p. 103.
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We deduce that
? - l

p4
1—0"

provided only the latter series is convergent. This result h as been proved (by a special method
depending upon integrals) by Franel.* Similar results may, of course, be proved for such series

For instance, from

we deduce

- l o g * ' - 8 2 -

- l o g A ' ^ 2~nulfl)'

and from -— -/{pu-es) = cosec — + 42 g2"*1 , sin J (2n + 1) — ) £
ir 2a> 1 _ J 2 « » I ( 2 » J

sin | ( 2 n + l ) ^ |

we deduce

according' to the value of u. In the last equation -we must suppose that u> is constant and that
o)' varies in such a way that q tends to 1 along the real axis.

In an interesting note recently published in the Messenger of Mathematics,^ Prof. Bromwich
establishes the asymptotic equality

f,e)_»(-)»-1
 r.log2

f 8inh«e 8
for 6 = 0. This result follows immediately from what precedes if we write q for e*. I shall
refer later on to Prof. Bromwich's further results.

4. I shall now consider some examples of the use of Theorem

(i.) Suppose that fn(x) = xn, and that the
region of variation of re is a triangle formed by
joining 0 and 1 to any point inside the unit
circle.

It is easily verified that a constant K (de-
pending only on the triangle) can be found such
that for all points within or on the boundary of
the triangle 11—re I

1 - x\< '

Lai.

Hence, if | x \ = r,

2 I fM - = 2 T*| 1 - -r) < K,

* Math. Annalen, Bd. u i .
t Fundameiita Nova, I.e.
X Halphen, Fonctions Elliptiques, t. i., p. 431.
\ " Some Contributions to the Theory of Two Electrified Spheres," Messenger, Vol. xxxv., p. 1.
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and the conditions of the theorem are satisfied. We thus obtain
Pringsheim's generalisation of Abel's theorem.*

(ii.) The theorem maybe applied to ^-series such as those previously considered when q
moves (let us say) along a radius vector to a ratimial point on the unit circle, i.e., a point ewik",
where a and b are integers. Take, e.g., the series for logk considered above, f and suppose that
i] = »•«"**•", where b is even and a odd, and that r tends to unity along the radius vector (0, 1).
Then none of the terms of the series become infinite in the limit; also

where F*{p) = f (i^7)(if
This last series satisfies the criteria of I . a 1 for uniform convergence throughout the interval (0, 1)
of values of p. For, if am = ( — )'"/(ma+ s), 2a,,, is convergent. Also, if

f , . p"'
J W

where A = e>'lba. Now

| l + ^ p H l + ' " | =^/{l + p'i<'»*'l«) + 2p>»*s>> C08(sirb/a)}.

If cos (svb/a) > 0, this is greater than unity ; if cos (snb/j.) < 0, it has a minimum when
pm*>i" = — cos {sirb/a), this minimum being | sin (swb/ti) \ . And in any case

from which it follows at once that the conditions of I. a 1 are sutisfied.

Hence the original series for log A" converges uniformly when q = renib'a, 0 ^ »• ^ I. For
*• = 1 it assumes the form

2 l 0 g 2 + ^ + 2 2 ^ ( l + i t a n ^ ) = «* + 2i 5 - « a n ^ ,
'la \ n \ a I a x u a

and this is therefore the value to which log k tends as r approaches unity. The series on the
right may be summed in finite terms.t

5. In a passage in his Vorlesungen Tiber Integrate, which has doubt-
less puzzled many readers besides myself, Kronecker apparently essays to
prove a theorem designed to be a generalisation of Abel's theorem some-
what on the lines of Theorem I. a, except that there is no mention of
uniform convergence. The whole passage is obscure ; but the suggested

* Miinchener Hitzungsberichte, he.

t § 3, iii.

j See H. J. S. Smith, " On some Discontinuous Series considered by Riemaiin" [Messenger,
Vol. xi., pp. 1-11 ; Collected Math. Papers, Vol. n., p. 312) ; Dedekind's Note in I.tiemann's
Werke, pp. 427-447 ; G. H. Hardy, "Note on the Limiting Values of the Elliptic Modular
Functions," Quarterly Journal, Vol. xxxiv., pp. 76-86.
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theorem seems to be as follows:—* " If

(i.) 2an is a convergent series,

(ii.) the functions fn(x) are positive and continuous throughout
(a, A),

(iii.) /n(x)>/n+i(a;),

(iv.) lim/m(a0 = lim/»(«), for all values of m and n,
x=A x=A

then Xanfn(x) will be convergent and continuous for x = A."

My criticisms on the passage are in brief (i.) that the conditions are
redundant, the fourth of them being quite unnecessary and having nothing
to do with the essence of the matter; and (ii.) that the proof is altogether
unsound. The unsoundness of the proof appears to have arisen from a
mistaken idea of the importance of condition (iv.). Kronecker argues as
follows. Starting from Abel's partial summation lemma, the origin of all
these theorems, viz.,

n n

co/o+S(c^—c^_i)/K_i = 2 cv(fv-i—fv)+cnfn,

and putting cv = — {av-\-av+\-\-...),

he deduces
oo n n oo ao

—f0 2 av-\-2 a,_i/,._i = — 2 (/,,_i—/„) 2 aK—fn 2 aK
0 1 1 I- rt

CO

= — (/o—fn)M-n—fn ^ ft*.

where Mn lies between the least and greatest of the values of

2 a, («/ = 1, 2, ..., w).

00

Making n tend to infinity, and observing that 2 av_i fv-\ is convergent, we
obtain

00 00

—f0 2 a ,+ 2 a¥-xf,^ = — {fo—\imfn)M,
30

where M lies between the least and greatest of all the values of 2 aK.

He then makes x tend to A, and (unless his meaning has been entirely
obscured by misprints), argues that, because

£2/0 = £2/»

* I have altered Kronecker's notation so as to agree with my owa (Kronecker, I.e., pp. 88, 89).
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for alL values of n, therefore

lim (/0—Hm /n) = 0 ;
x=A n=oo

C O ' • ' 00

and therefore lim 2 av_i /v_i = lim f0 X 2 ay.

But it is obvious that all that he is justified in asserting is that

lim/0 = lim (lim/n),
x—A n=oo x=A

and not lim fa = lim (lim /n),
x=AJ0 x=A »=» J

the two repeated limits only being equal in exceptional circumstances.
And, in fact, in the very simplest case, when fn{x) = xn and A = 1,

lim lim xn = 1, lim lim x11 = 0 ;
n = x x=l rr=l n = w

so that his argument does not even suffice to prove Abel's theorem itself.
And a careful examination of the passage will, I think, lead any reader to
the conclusion that the flaw in it is fundamental and not to be repaired by
any alterations merely of detail.

6. I shall now consider the case in which the series San is divergent

but surnmable by Cesaro's method of mean values. I use the following
notation and terminology. We shall say that S<zn is szimmable if

where sn = aQ-\-ax-\-...-\-an,

tends to a finite limit for n = oo; and, if the terms an are functions of a
variable x, and the convergence of this mean value to its limit is uniform
throughout a certain interval or region, we shall say that 2an is uniformly
summable. It is evident that the sum of a uniformly summable series of
continuous terms is a continuous function of x.

THEOREM 2.—If the functions fn are finite, real, and positive, and
fn—fn+i andfn—2/n+iH-/n+2, their first and second differences, are positive
for 0 <; x ̂  1 and for all values of n, and if the series 2aw is sum-
mable, then the series Hanfn is uniformly summable throughout (0, 1).

. COROLLARY.—If the functions fn are continuous, the sum of the series
n is a continuous function of x.

The proof of this theorem presents somewhat greater difficulties than
those of the simpler theorems of § 2. We shall find it a necessary pre-
liminary to establish a series of lemmas.
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LEMMA 1.—If sn tends uniformly to a limit s, the series l>an is uni-
formly summable and has the sum s.

If we omit " uniformly," this is a well known theorem* asserting the
consistency of the new definition with the old. The insertion of " uni-
formly " in no way affects the proof.

LEMMA 2 . - 7 / lim go+*i+•••+*» = o,
n+1

we can determine a series of positive quantities e^ e2, ..., whose limit is
zero, such that . , ,

o + Sp + l+ • • • + Sp.P+r+1
for all values of r.

For we may write SoH-Si^-•••+«» = (n+1) in,

where lim r\n = 0. And then

Ip + r'

from which the lemma follows ; for we can choose p so that, for v^p — 1,
| rjv | < e, however small be e, and then

<2e
P+r+1

for all values of r. In particular, as is well known,

\imsPl{p+l) = 0 .

LEMMA 3.—If fn is finite, real, and positive and /,. ^ / n + i for all
values of n and x, and

lim VK+. - .+gn _ o ;
n+1

then lim sofo+sji+---+snfn _ Q

n+\
uniformly for all values of x.

For
S0 fO+ • • • +Snfn = ^ (SO+ •.. +8,)(f¥—fv+l) + (.S0+ ... +S n ) / n

= (fO-fr)Mo.r-l+frMr,n,

• See, e.g., Bromwich and Hardy, Proceedings, Vol. a., p. 172.

SKIt. 2 . VOL. 4 . NO. 9 2 8 .
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where Mo,, _i lies between the least and greatest of

and Mr,n between the least and greatest of

Let e be an assigned positive small quantity. We can choose r so that for
v^ r

and, a fortiori,

for n ^ v ̂  r ; and therefore we can choose r so that

Mr,n
n+1

for all values oin^r. But when r is fixed we can obviously choose n
so that

n+1
When r and n are thus chosen

n+1
<2Itfe,

where M is the maximum of fQ(x). The lemma is therefore proved.

LEMMA 4.—If the conditions of 3 are satisfied except that

Km
n=oo

= s

then

the convergence to this limit will in general not be uniform.

For let s0 = s-\-t0, sx = s+tv . . . . Then

lim ^-i-ci-r•••->-^ = 0

n=» n+1

and therefore
n+1
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converges uniformly to zero. Also

but the convergence to this limit will not in general be uniform unless / n

converges to its limit uniformly, which will not generally be the case.

LEMMA 5.—If lim V K + - + J » = 0

and the fn's satisfy the further condition

fn Jn+l^Jn+l fn+2

for all values of n and x in question, then the series
00

^ Sn {fn—fn+l)
0

is uniformly convergent.

In the first place

/(>-/« = C/o ~/ l )+ . ••+(/«-!-/*) > » (Jn-l-fn).
Hence a constant K can be assigned so that for all values of x and n

fn-l-fn<Kln.

NOW Sp {fp—fp+l) + Sp+l (fp+l—fp + 2)+ • • • +Sa-1 ifq-l ~fq)

= SP C/p — 2 / P + 1 +/p+2) + (SpH- Sp+l) (fp + l — 2fp+2 +fp+z)

+ ... •
... +Sq-o)(fq_2 — 2/g_1+/fl)

...+Sq-i)(fq-.i—fq),

the modulus of which is less than

where M is the maximum of / 0 (x). The lemma is therefore proved.
s 2
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LEMMA 6.—If the /»'s satisfy the conditions of 5, but

the series 2 sn(fn-fn+l)
o

is convergent (but, in general, not uniformly convergent).

Let Sn = s+tn;
then, by 8, the series 2tn(fn—fn+i) is uniformly convergent. On the
other hand, the series 2s(/n—/n+i) is convergent, but not uniformly con-
vergent, unless fn tends to its limit uniformly.

7. Proof of Theorem 2.—Let s be the sum of the divergent series 2an,
and let

Oo — CLQ—s, a\ = av a'% — a2, . . . , s,t =• ao-\-ai-\-...-^-an = sn—s;

then 2d4 is summable, and its sum is zero; i.e.,

Km «o+«i+•••+«; = o.
n-f-1

By Lemma 3, 4 /o+* .A+. . •+« ; / .

tends uniformly to 0 for n = oo; and, by Lemma 5, the series

is uniformly convergent. Hence, if
n

Sn = 2
0

Sn tends uniformly to a limit for n = oo, and so, by Lemma 1,

n
Sn = 2 S,, (jv

0

does the same.

Now dvfv = (sv—s'v-i)fv = svfv—s'v-.\fv-\+s'v-i{fv-\—fv)

Hence, if <rn = a0 fo+ax / x + . . .+anfn, cr'n = ao /o+ a i / i + • • •

d \n+l)
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and therefore tends uniformly to a limit for n — oo . But

<7~J~a4-+Q'7t _„/_]_

and therefore also tends uniformly to a limit for n = oo. Hence the
series 2aM/rt. is uniformly summable, and, if the functions fn are continuous,
its sum is a continuous function of n. The theorem is therefore proved.

8. In order to show more precisely the relations of the preceding lemmas and theorem I
take a very simple example.

Let «o=l> rt,=~2, fl2 = 2, «3 = —2, ...,

so t h a t A'2/I = 1, *•>« + i = — 1,

and lim *o + ' i + - + «« = 0 •
n + 1

and suppose fn (x) = x". Then

(i.) •«/«=.(-)«*»,

-^±hf« = i+ (-)"•»••""'

which converges uniform!)/ to 0 for n — co (Lemma 3).

(ii.) Again S «„.,(/„_,-/„) = 2 (-)•-» a"-1 (1 -.r) = (1-*) {l + (-)«- ' «»}/(i +.e),

which tends uniformly to (1 — .s)/(l + •*•") for « = oo (Lemma 5). For, although a;" does MO* tend
uniformly to its limit,

x"-zn*l-(xn + i-xn*2) =x"(l-xf $; 0,

and l-a;»+ 1 = ( l - . r ) + (.-e-.r2) + ... + (.»•»-«» + ') ^ (« +1)(*»-*'••>),

so that a;'* (1 —ar) < —,
»+ 1

and therefore does tend uniformly to zero.

(iii.) Finally, <rH = 1 -2.>; + 2.v--... + (-)" 2xn =l x + 2 ( - ) " ? — ,
1 + a; 1 + a;

and
ii + l \+x (n+l)(l+x)-

which tends uniformly to (1—«)/(l +#) for n = oc (Theorem 2).

If the conditions were altered by changing rt0 into 1 + a (a =£ 0), we should have

and * / . + «,/, + -.•-Mi./,.
« + l y

where « l -4, ^ )
»<+ 1 1—.c

<p = a (x= 1),

and the convergence of <p to its limit is not uniform (Lemma 4). Similarly 2 sv_i (/,_i — /„) is in-
creased by the addition of the non-uniformly convergent series 2a (x"-l—x>l) (Lemma 6); but it is
easily verified that the uniformity of convergence which is prescribed by Theorem 2 is not
affected, the two non-uniformities (60 to say) cancelling one another.
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9. Applications of Theorem 2.—(i.) If fn(x) — xn,

/ , l - 2 / u + 1 + / H + 2 = xn{l-xf > 0

for 0 <; x ^ 1 and all values of //. Hence, if 2,an is summable, 2,anx
n is

uniformly summable for 0 ^ x ^ 1 ; and its sum is a continuous function
of x for x = 1, which is Frobenius's theorem cited in § 1.

(ii.) If /„ (.c) = >rz (ii ^ 1, x ^ 0), it is easy to see that the first and second differences of

/„ are positive (or zero). Hence we obtain the theorem that, if 2 an is summable, %ann~* is

uniformly summable for all positive values of .c, including zero, and its sum is a continuous
function of x for .>• = 0. That is to say

2X 3*

if the latter limit exists. For example,

1* 2 3

(iii.) If Jn(q)=-£L
1 + q

Hence, if %an is summable. 1a,,qnl(\ + QU) is unifoiinly summablo for 0 ^ ? ^ 1, and represents
a continuous function of q, in particular for 7 = 1 .

For instance, from the formula

OhT.
we deduce that lim - = 1-4 ( £ - £ + . . . ) = 1 - 4 . J- - O.f

J . I W

(iv.) Consider the series —? -^—-+ —*—.— ...,
v ; l - ? s i_54 x.ji.

whose sum is easily found! to be — {E— k'*K).
2ir-

We may wi-ite this in the form —^— 2a,,/« (<?),
1-5-

where »» = ( - l ) " and /„(<?) = J ! !
1 + #•1 + #•* + ... + q-

and it is easy to verify that the first and second differences of /„ are positive. Hence 2 o»/M is
uniformly summable. For q = 1 it takes the form

1-1 + 1 - . . . = i.

* Fundamenta Nova, $ 40, (6).

+ Strictly speaking, the divergent series should be written

X IJ.y., by niakinp r = \ir in formula (I) of $ 41 of the Fundamenta Nova.
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,,2
We deduce that K{E-k"*K)~

for q = ] .

10. It would be easy to multiply instances of interesting applications
of Theorem 2. Those which I have given are fair examples of some of
the simplest types which naturally occur, and the length of this paper
forbids that I should attempt to treat them in a more systematic manner.
I shall conclude by indicating briefly certain actual or possible further
generalisations.

In the first place we may at once enunciate

THEOREM 2 a-1.—The conclusions of Theorem 2 {and the lemmas "pre-
liminary to it) are still valid if the functions fn(x) are not restricted to be
real and positive, and the condition that the first and second differences of
the functions are not negative is replaced by the conditions

2 | / , - / ,+i I < # . 2 (v+1) \fv-2fv+1+fv+21 <K,

for all values of m, n, and x.

The course of the proof is unaffected save for slight modifications in
the case of Lemmas 3 and 5.

Consider, for example, the series

&4 (v, q) = 1 + 2 2 ( - ) " <?"' cos 2»n-r.
I

Taking an = 2 ( - )ncos 2nm> (n >0) and /„ = q"3, we may verify without difficulty that the con-
ditions of the theorem are satisfied. Since the series

1 — 2 cos 2TTV+ 2 cos inv—...

has the sum zero when summed by Cesaro's method, we deduce that

(v, q) = 0.*

THEOREM 2 a 2.—The preceding conclusions are not affected if the
terms of the series 2an are functions of x, provided the series be uniformly
summable.

A much more interesting and more difficult question is that of the
extension of Theorem II. to cases in which the summation of 2an requires

* See Borel, Legons stir les Series divergmtes, p. 7 ; L. Fejer, Math. Annalen, Bd. LVIII.,
p. 66; Hardy, " Note on Divergent Fourier Series," Messenger, Vol. XXXHI., p. 144. I reftir
later to Herr FejeVs investigations.
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one of the extended forms of the mean value process, e.g., when, if

»+l
sn oscillates for n = oo, but

(2) Sp -\-S\ + . . .+S w

has a limit.

The following more general theorem is naturally suggested, and I have
no doubt that it is true. We define " summable " to mean " summable
by k repetitions of the mean value process." Then,

If the first, second, ..., (k-\-l)-th differences of the functions fn{x)
are positive (or zero) for all values of x and n in question, and the
series 2a«. is summable, then the series "2anfn(x) is uniformly
summable, and therefore its sum is a continuous function of x

—with corollaries and generalisations in every way analogous to those of
Theorems I. a and II. Such a theorem would be related to Holder's
extensions of Frobenius's theorem as is II. to Frobenius's and I. a to Abel's
theorem. But I have not up to the present succeeded in overcoming the
algebraical difficulties attendant upon a complete and rigorous proof.

In the most interesting cases Theorem II. is generally sufficient. But
the latter theorem does not cover such cases as those in which 2aM is a
series like 1 —2+3 —4 + ... or I2—22+32—42+... .

An example in which a result more general than that of II. is needed may be found in the
theory of two electrified spheres. In the paper already referred to, Prof. Bromwich, seeking a
rigorous proof of Lord Kelvin's theorem that the force acting between two spheres in contact and
at potential V is £ V3 (log 2—^), requires to show that, for small values of 6,

0

The first approximation was established in § 3 (iv.). To obtain the second we must prove that

lim-St-)-^-----.1 J =vV
,„,, 0 \no sinhwfl/'

The limiting form of the series is J- (1 —2 + 3 — 4 + ...)>

which is summable by two repetitions of the mean value process, and has the sum ^7. Here we

could take a» — (—)"-' n and /„ (0) — — ( ], and so obtain the result desired.
n0 \n0 funhwfl/

Although I have not succeeded in proving the suggested general theorem, I have, starting
from a theorem of Herr Fejer's, succeeded in proving a number of theorems of a more special
character which do enable us to deal effectively with cases 6uch as these: e.g., to assign the
limit of

l+q 1 * 1
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for q = 1. I confine myself at present to stating one of these theorems. Herr Fejer's theorem
(modified so as to correspond to Theorem 2*) runs as follows:—If

(i.) 2 «/, is suminable (to the sum s),

(ii.) the functions f»(x) and their first and second differences are positive (or zero),

(iii.) 2 nfn (x) is convergent for x>0,

(iv.) lim/,, (z) = 1 for all values of n,

then 2 a,,/,, (x) is absolutely convergent for x >0, and its limit for x = 0 is s.

The more general theorem is that the same conclusion holds when k repetitions of the mean
value process are necessary in order to sum the series 2 "n, and

(ii.)' the first, second, ..., (&+l)-th differences of the functions /„(x) are positive
(or zero),

(iii.)' tnkfn(x) is absolutely convergent.

The proof is not difficult. The other theorems relate to cases in which condition (ii.) or
(ii.)' is not satisfied. 1 have included proofs of these theorems in a paper which will be pub-
lished in the Mathematische Annalen.

* The conditions actually stated by Herr Fejer differ from the above in the restriction of
/ n (x) to be of the form <f> (nx), and the substitution for (ii.) and (iii.) of the conditions

I*WI <£* I •"(')! < - - ,

where p > 0. The proof of the theorem as I fetate it may be made a good deal simpler than
Herr Fejer's proof.


