2. Let Q_{2m} denote the quadrinvariant of the 2*m*-ic and let C_{2m+1} be the source of a covariant of degree 3 in the coefficients, such that

then, if $\delta = a_0 \frac{d}{da_1} + 2a_1 \frac{d}{da_2} + 3a_2 \frac{d}{da_3} + \dots,$

operating with δ on (1), and remembering that $\delta Q_{2m} = 0$, $\delta C_{2m+1} = 0$, we have $\delta V_{2m+1} = 2Q_{2m}$ (2).

From (1) it follows that

$$V_{2m+1}Q_{2p}-Q_{2m}C_{2p+1}=a_0(V_{2m+1}Q_{2p}-V_{2p+1}Q_{2m}),$$

where $V_{2m+1}Q_{2p} - V_{2p+1}Q_{2m}$ is a source of degree-weight (4.2m+2p+1). In the case before us m = 3, p = 2, 2m+2p+1 = 11, and

$$V_{2m+1}Q_{2p} - V_{2p+1}Q_{2m}$$

is the source of a covariant of degree-order (4.6) for the binary seventhic.

Replacing the sources by the corresponding covariants, we have

$$(3.7)(2.6)-(2.2)(3.11) = (1.7)(4.6)$$
(3),

a syzygant of degree-order (5.13).

Now, since there are four linearly independent covariants of this degree-order, and four compound covariants, of which (3) shows that there are only three linearly independent; it follows that there must be a ground-form of this degree-order to make up the number of independent covariants.

The source of this ground-form is Θ , which is known to be a groundsource [of degree-order (5.3) (5.8)] for the quintic and sextic.

It may be shown that Θ is not a ground-source for any quantic of higher order than the seventhic.

Addition to the foregoing Paper. By Prof. CAYLEY.

[Read Dec. 14th, 1882.]

The extreme importance of Mr. Hammond's result, as regards the entire subject of Covariants, leads me to reproduce his investigation in the notation of my Memoirs on Quantics, and with a somewhat different arrangement of the formulæ. For the binary seventhic

$$(a, b, c, d, e, f, g, h (x, y)^7,$$

the four composite seminvariants of the deg-weight 5.11 (sources of covariants of the deg-order 5.13) are

I.			IJ		
1.7	4.6	· ··· ···	2.10	3.3	Deg-order.
1.0	4.11		2.2	3.9	Deg-weight.
a+1 .	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$\begin{bmatrix} 2 & 2 \\ ac + 1 \\ b^3 - 1 \end{bmatrix}.$	3.9 ach +2 dg -7 ef +5 u9b2h -2 bcg.+7 bdf +22 be3 -25 c2f -27 cde +45 d3 -20	Deg-weight.
	$bd^2e - 10$ $c^3f + 27$				
	$c^{2}de - 45$				
	$cd^{3} + 20$				
Ĺ					
I	II.		I		
2.6	3.7		2.2	3.11 `	Deg-order.
2.4	3.7	••• •••	2.6	3.5	Deg-weight.
$ae + 1 \\ bd - 4 \\ c^3 + 3$	$a^{2}h + 1abg -7cf +9de -5a^{0}b^{2}f + 12bce - 30bd^{3} + 20$		$ag + 1 \\ bf - 6 \\ ce + 15 \\ d^2 - 10$	$a^{2}f + 1$ abe -5 cd + 2 $a^{0}b^{2}d + 8$ $bc^{3} - 6$	

and it is here at once obvious that there exists a syzygy of the form I. = III. - IV.; in fact, if in III. and IV. we write a = 0, then the values are each

 $= -2b (4bd - 3c^2) (6bf - 15ce + 10d^2);$

hence III. -IV. must divide by *a*, the quotient being a seminvariant of the deg-weight 4.11, which can only be a numerical multiple of the second factor of I., and is in fact = this second factor, that is, we have the syzygy I. = III. -IV.

Working out the values of the four products, and joining to them the expression for the irreducible seminvariant of the same degweight 5.11 (0, x^8 of my tables for the binary sextic), we have the table:

	·						
5.10	5	.11	0	I.	III.	IV.	II.
a ⁸ dh	a	eh		+1	+1		
eg		fg		-1		+1	
$\int f$	a ¹	bdh		4	-4		
a ² bch		beg		-2	-7	-5	
bdg		bf ³		+6		-6	
bef		c ⁸ h		+3	+3		+2
		cdg		-2		+2	-7
cdf		cef	-1	-6	+9	+15	+5
ce³		$d^{2}f$	+3	+10		-10	
d ^s e		de ^s	-2	-5	-5		
ab ^s h	a	b ^s ch					-4
b ³ cg		b ³ dg		+20	+28	+8	+7
b ³ df		b'ef	+1	+ 57	+12	-45	-5
b ³ e ³	·	bc ³ g		-15	-21	-6	+7
bc ³ f	·	bcdf	-14	-24	- 36	-12	+22
bcde		bce ³	+11	- 30	-30		-25
bd^3		bd³e	+1	-10	+40	+50	
c ⁸ e	·	c ⁸ f	. +9	+27	+27		27
c^3d^3		c ³ de	-14	-45	-15	+30	+45
a⁰b⁴g		cđ ⁸	+6	+20		-20	-20
b ³ cf	a	°b•h					-2
b ^s de		b ⁸ cg		•			-7
b^2c^3e		$b^{s}df$	+8		-48	- 48	-22
$b^{2}cd^{2}$		b ⁸ e ⁸	-9				+25
$bc^{s}d$		$b^{1}c^{1}f$	-6		+36	+36	+27
c ⁶		b ^s cde	+16		+120	+120	-45
! <u>}</u>		b^3d^3	8		-80	-80	+20
		bc ⁸ e	-3		-90	-90	
		bc^3d^3	+2		+60	+60	
		c^4d)	I)

90

I have prefixed to the table the literal terms of the deg-weight 5.10; for the deg-weights 5.11 and 5.10 the numbers of terms are = 30 and 26 respectively; and it is the difference of these 30-26, = 4, which gives the number of asyzygetic seminvariants of the deg-weight 5.11.

On Compound Determinants. By R. F. Scott.

[Read Nov. 9th, 1882.]

1. Consider the determinant of order n+m,

 $D = \begin{vmatrix} a_{11}, & a_{12}, & \dots & a_{1n}, & b_{11}, & \dots & b_{1m} \\ a_{21}, & a_{22}, & \dots & a_{2n}, & b_{21}, & \dots & b_{2m} \\ & \dots & & \dots & & \dots \\ a_{n1}, & a_{n2}, & \dots & a_{nn}, & b_{n1}, & \dots & b_{nm} \\ c_{11}, & c_{12}, & \dots & c_{1n}, & h_{11}, & \dots & h_{1m} \\ & \dots & \dots & \dots & \dots & \dots \\ c_{m1}, & c_{m2}, & \dots & c_{mn}, & h_{m1}, & \dots & h_{mm} \end{vmatrix}$

which we may regard as made up of four blocks of elements. A block of *n* rows and columns of elements a_{ik} ; a block of *n* rows and *m* columns of elements b_{ik} ; a block of *m* rows and *n* columns of elements c_{ik} ; and finally, a block of *m* rows and columns of elements h_{ik} .

Let A stand for the determinant of order n,

$$\begin{array}{c}a_{11} \ldots a_{1n} \\ \ldots \\ a_{n1} \ldots \\ a_{nn}\end{array},$$

and let the system of first minors of the determinant A be denoted by

$$\begin{vmatrix} A_{11} & \dots & A_{1n} \\ \dots & \dots & \dots \\ A_{n1} & \dots & A_{nn} \end{vmatrix}$$

If we border the block of elements a_{ik} in D with a row and column from the blocks of elements c_{ik} and b_{ik} , and that element from the block of elements h_{ik} where these rows and columns intersect, we get a system of m^3 elements of the form

 $p_{ik} = \begin{vmatrix} a_{11} & \dots & a_{1n}, & b_{1k} \\ a_{21} & \dots & a_{2n}, & b_{2k} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn}, & b_{nk} \\ c_{i1} & \dots & c_{in}, & h_{ik} \end{vmatrix}.$