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1. In the Comptes Rendus for 1861* Sylvester gave without proof
the theorem that, if (p—1) p'is a factor of 2, then, if p is a prime
of the form 4%k+-1, p**! will be a factor of E,, and, if p is of the form
4k—1, p'*' will be a factor of (—1)"'2+ E,, where E, is the n™
Eulerian number.

The principal object of this paper is to prove two general theorems,
from either of which Sylvester’s results in the case ¢ =0 may be
deduced, as well as corresponding results relating to the I-numbers
and other coefficients.

In the latter portion of the paper (§§ 39-65) these general theorems
are applied to obtain the residues, mod p, of various systems of series
containing 1 (p—3) terms.

1. Restdues of the Bernoullian Functions with Uneven Suﬁ’iwes, and
Applications (§§ 2-38).

2. Let p be any uneven prime, and let 4, denote the sum of the
products of the numbers 1,2, ..., p—1 taken r together. Then we
have evidently

2 'L At A2+ A et 4, = (24 1) (24 2) ... (2+p—1).
In a recent paper in the Quarterly Journalt it has been shown that,
if 7 is even and <p—1, 4, is divisible by p, and that, if » is uneven

and >1, 4, is divisible by % and that the residues of the quotients
are

f.lz!, = (— ‘f?f P_l

» = ( 1)2t,modp (t<-——),
A.;“‘L‘.: —1)+ (2t+1)Bt

I (=D ) mod p (¢>0).

¢ Vol. w1., p. 163. ‘

t+ ¢On the Residues of the Sums of Products of the first p—1 Numbers and
their Products to Modulus p® or p3,”" Vol. xxxr., pp. 321-353. The formule
quoted occur on pp. 326, 327.
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It was also shown that
4yt
p
where B, is the ¢ Bernoullian number and

=J, mod p,

J==1+(=D*V By + _;7 .
The value of 4, is #p (p—1), so that it is divisible by p only.

3. Multiplying the equation in §2 by 2 and dividing by p, we
therefore find
B, A

a’ -1 -2 p=d_ -3 Bip-y; -1
Padp ¥ 4 1P + it P ot — 1) 3)_.ul’__1w5+_1'_.a;

r

_a (z+1)... (z+p-1) mod p.
p

Now the Bernoullian function B, (x), # being uneven, is defined by
the equation

B..(w)-— — 1B i ("—1)(”4 2)(r=3) p g1y ..

+("‘1)“"H) Bl(»-l)m!
and therefore .

B,

B, By rmtm s (=10 By, mod .

B (av)=i'}i —darl— iy
P - p 2

Substituting in the preceding congruence, we find

B, (2)+(=1W*VB,, z+ -41'):' o= 2let]) ';m"'f"l) , mod p.
Now

(—1)""'”30(::-”'5'4};;'

=(=1)\e-DB, 4] -1-1;, mod p,

= (—1)“”-” B‘(p—l)_-l + (‘-1)i “,'I)BA(,,_]) y mOd p.
= —1, mod p;
so that the congruence becomes

B, (z)—z = z(z+1) ... (+p-—1) , mod p.
p




1900.] relating to Eulerian Numbers and other Coeflictents. 173

4. When 2 is a positive integer prime to p, one of the p consecu-
tive numbers z, 2+1, ..., 2+p—1 must be divisible by p, and the
other p—1 numbers must have residues 1, 2, 3, ..., p—1 with respect
to p. .

If therefore z = kp +t, ¢ being <p, the formula gives

B, (z)—2 = —(k+1), mod p,
and in particular, if # be any number <p,

B, (z) = z—1, modp.

5. These formulse can be readily verified, for, when z is a positive
OGRr) B (2) = 1P 4248 e 4 ()Y

and therefore, since v*’= 1, mod p, unless » is a multiple of p,
we have, if z<p,

B, (z) =2—1, mod p,
and, if » = kp+1,

B,(z) =2—1—Fk, mod p,

~ since the k terms p ', (2p)*7, ..., (kp)*~* ave = 0, not 1, mod P

6. Now let & = —}7, where 7 is & positive integer prime to p.

The general formula

B, (2) =+ 2 (@+1) "I'J(w.+p_1) , mod p,
then becomes
r"B,,(%) =iy (r+1)(2r+1) P {(p=1)r+1} , mod p,
whence 7B, (%) =14 (r)Er+1) p {p-Dr+1} , mod p.

7. Since r is prime to p, the numbers 7, 27, ..., (p—1) » havejto
mod p the system of vesidues 1,2, ..., p—1; and therefore the
numbers 7+1, 2r+1, ..., (p—1)r+1 have the system of residues.
2,3, ...,p—1,p; that is to say, one of the numbers »+1, 2r+1, ...,
(p—1)r+1 is divisible by p, and the other numbers give the resi-
dues 2, 3, ..., p—1.

To determine which is the factor divisible by p, we notice that, if:
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Ar+1 is this factor, we must have Ar+1 =gp, where ¢<» and
1
r
and therefore we have the formula

7’B, (%-) =1—gq, mod p,

, modr. The product of the factors 2,3, ...,p—1= —1, mod p,

where ¢ is the least positive residue of —1—, mod 7.
p

8. We may conveniently express the least positive residue of any’
quantity a, mod 7, by [a],. _
Using this notation, the result just obtained may be written

"B, (—:.—) =1- [%]r, mod p.

9. This formula enables us to assign the residue of B, (—1—),
p

mod p, for all values of » and all (prime) values of p. -
In general, if p = kr+s, where s<r and is necessarily prime to r,
since p is prime, :

=[5

Thus the number of residues of B, ( _1,> is equal to the number of
-

admissible values of s, that is, to the number of numbers less than »
and prime to it.

10. The residue of #'B, (%) may be expressed in an exactly
similar manner; for, putting x == L in § 6, 7 being prime to 7, we
r

have
L+ (2r+1) ... {(p—l) r+l}

g _t_ = Jp¥-1 ’
B, ( " ) = ¥4 o mod p,
=14 LD D L (=Y r+ Y , mod p

V4

Now, of the p numbers I, 7+, 2r+1, ... {(p—1) r+1}, one, say Ar+1,
is divisible by p, and the others =2, 3, ..., p—1, mod p, so that

we find

B, (—;—) = l—q, mod p,
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where g, is the least root of the congruence pz =1, mod +; or, neing
the notation of § 8,

l l
P 2l =] *
B, ( " ) =1 [P]r’ mod p.
11. It is known that
B, = B,_4(p-y (z), mod p,t
and therefore A0 By ey (8) = 7B, (), mod p.

Putting = = i, and replacing £ by £—1 in this formula, we have
T

AR, b yn (%‘) =B, (Z') =1- [%] ’ mod p.

It has thus been shown that, if p be an uneven prime, and p—1 be a
divisor of Yz, then, if I<p+7,

B, (.%.) =l- [-;—)—]r, mod p.

If 12 p+r, the formula requires modification in the manner in-
dicated in the note to the lust section.

12. As special values of #**'B,,,, ( i '), we have}
421|+IB2'”1 (_i_) _ (_l)nolEm

321141B2"‘1 (%) —_ (_1)100!1""
62”'1132091 (’é) = (—1)"'1‘]-"’

¢ This congruence holds good so long as !<p+7, but for greater values of it
requires modification, ¢; not being then, necessarily, the least root of the con-
gruence pz =!, mods. In general it can be shown that, if ! = Ap+¢, whore

t>0 and <p, then !
"D, ( ’—) =l-q, mod p,

- where g, is not z,, the least root of the congruence pz = ¢, mod r, but 2, + mr, mr
being such a multiple of » as will bring 2, + mr within the range of numbers & + 1,
k+2,..., k+r,ie, ¢ is that root of the congruence pz = {, mod », which lies
between % + 1 and %+ r both inclusive. The value of ¢, may be expressed in terms

of &k and ¢ by L+ L.

Y

In most of the applications of the theorem Iis, or can be so chosen as to b,

<p+r; the principal exceptions in this paper occur in §§ 33-38 and 60-65.
) (r+@2r+d)... {(p=1)r+i} .

[The residue of ... " » mod p, that is, the value of ¢,
forms the subject of the first part of a paper ¢ Residue of the Product of » Numbers
in Arithmeticul Progression, mod p2 and p3 ** (Messénger of Mathematics, Vol. xxx.,
pp- 71-92), which hus beon written since this puper was communicated to the
Society. ]

t Droc. Lond. Math. Sve., Vol. xxx1., p. 206.

1 Quarterly Journal, Vol. xxix., pp. 81, 35, 44, or Messenger, Vol. xxvi., p. 179,
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where E, is the »" Eulerian number, and I, and J,3are the numbers
go denoted in Vol. xxxr., pp. 216, 228 of the Proceedings, viz., E,, I,
J,, are the coefficients in the expansions

1 - L'0+E = a:+F“a:°+&c,

cO8 T 4'

1 I,
———— 2 w I + 4 .
Toosat1 *’{I’Lzl‘” [ 6!”°+&°}’
_2cosa_ o) Sy Iy 0 }
2cosZo+1 {J+ @'t a,+6'a:+&c

13. It is convenient to call the admissible values of p the Staudt
factors for n, i.e., the Staudt factors for n are those values of p for
which p—1 is a divisor of 2n. Thus a number p is a Staudt factor
for =, if (i.) p is prime, (ii.) p—1 is a divisor of 2n.*

14. Using the formula
n (1) = 1 :
TIBP (';—) = 1— [;]r, . mOd s

and taking the case » = 4, we have

[}.] =[1],=1, if pis of the form 4k+1,
Py
and =[3)i=3, " " 4he+3.
Thus, p being any uneven Staudt factor for #,
E, =0 or (—1)"2, mod p,
according as p is of the form 4k+1 or 4%+ 3.
This is the case © = 0 of Sylvester’s theorem referred to in § 1.

15, For » = 3, we have
[11’:' = [1]; =1, if p is of the form 3k+1,
3

and =[]} =2 , w BE42

* In previous pa{)ers (Messenger, Vol. xx1x., pp. 49, 129; Quarterly Journal,
Vol. xxx1., p. 261) I have called values of p w}ucgn Hatmfy these conditions Standé
Jactors of B,. As the connexion is solely betweon the numbers pand n, it seelns
unnecessary to introduce B,. The Staudt factors for » ure the prime factors whoso
product forms the denominator of B,,.
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8o that, p being any uneven Staudt factor for =,
I, =0 or (—1)", mod p,
according as p i8 of the form 3k+1 or 3k+2.

16. The quantities I, formed the subject of a paper in the last
volume of the Proceedings.* That paper contains a table of the firat
thirteen I's, by means of which I have verified the theoremn up to
n=13.

The numbers 2 and 3 are Staudt factors for all values of ». The
number 2 is excluded, as the modulus is always supposed to be an
uneven prime. The number 3 is excluded in this case, as » = 3 and
r must be prime to p. The residues given by the theorem with re-
apect to the other Staudt factors are as follows:—

I, =1, mod 5,
I, =0, mod 7,
I, =1, mod 5,

I, =—1, mod 11,

I, =0, mods 7,13, =1, mnd 5,
I, (no admissible Staudt factor),

I; =1, mods 5, 17,

I, =0, mods 7, 19,

I,=1, mods 5, 11,

I,=-1, mod 23,

I,=0, mods 7,13, =1, mod 5,
I,; (no admissible Staudt factor).

These residues agree with those obtained from the table of I..

17. For r = 6 we have

[1] =[1),=1, if p is of the form 6k+1,
P

and =[3} =5, "

” 6k+5;

* ¢ On a Set of Coefticionts analogous to the Eulerian Numbers,’ Vol, xxxi.,
pp. 216-235.

VOL, XXX11.—NO. 721. N
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so that J.=0 or (=1)"4, mod p,
according as p is of the form 6k+1 or 6k+5.
This result may be derived from § 15 by means of the formula
Jo= (2 42) I,
for, when p—1 is a divisor of 2n, 2" = 1, mod p, and therefore
J, = 41,, mod p.

18. The Bernoullian function 4, (), when n is uneven, may be
defined by the equation .
4, (z) = B, (z) —2"B, (3z).*

Thus we derive from § 6

(r+1)(2r+1) ... {(p-1 1
ML(_{)E r+D)@r+1) .. {(p—-1)r+1}
4 p
2r+1)(4r -1
_ @)+ .. {2(p )r+l}' mod p,
P :
qr (1N _
and therefore "4, (—1_—) = q'—gq, mod p,
where g, ¢’ are the least residues given by the congruences
pr=1, mod r,
pz =1, mod 2r,
respectively.
This result may be expressed by the formula
1 1 1
P —_—) = | = —_—] =
P4, ( - ) = I:plr [p]r’ mod p.
19. More generally we have in the same manner
LN Le+D@r+l) . f(p=1) 41
v () = ;
r
IRICARICADEN e Lol SN
p
. IV T1Y L
whence we find ™4, (-T—) = I—P ]w [pl, mod p.t

* Tho expression for Ay (z) in powers of z was given in Proc. Lond. Math, Soe.,

‘Vol. xxxr., p. 203. . L .
+ In this formula !'must be <p+#; otherwise a modification is requisite of the

same kind as that stated in the note to § 10.
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20. It is not necessary that ! should be prime to 2r, but, if I be
even, = 2, then
L@r+l)(4r+1) ... {2 (p—1)r+1}
p
2Pl (r+1Cr+1) .. {(p 1)r+l
p

2[ ] mod p;*

so that in this case the formula may be written

s () =2 [E] ~[2], motr

21. The expression [EZ-T],,— [%:l

can only have the values zero and r; for the expression is a—,
where a is the least root of the congruence

pr =1, mod 2r,
and 3 is the least root of the congruence
pr =1, modr.

Now, if a<7r, it is clear that 8 must = a, and, if a>r, we must
have 8 = a—». Thus a—f has the value O or r according as the
least root of the congruence px =1, mod 27, is < or > .t

B

* This reasoning is géneml and shows that, if 2 = m/’, then

1. -~[]
IJ mr 7’ r

We may easily prove this formula directly, for —5—] is the least value of z
given by the congruence px = !, mod mr, and, if [ = ml’" ," the congruence becomes

4

;’% =¥, mod r, from which the least value of = is m |:—l- J .
2 dr

+ If the least wwot of the congruence pz = !, mod 2», is = r, we must have
#r = 1, mod 27, and therefore ! must be an uneven multiple of r, = mr say, m being

uneven, in which case
’_m:] _ [nu] - [m] [m :| _
2
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22. The result obtained in § 19 therefore shows that
W l —_ .
174, (7) =0 or 7, mod p,

according as the least root of the congruence
pz =1 mod 2,

is< ror > r. The residue is zero if the root is equal to ».

23. If we put (—;)zr= [;l?—lr—- [}%] ;

then the symbol ( L) . denotes 0 if the least root of the congruence

y S
pr =1, mod 2r,

is < 7 or = 7, and denotes 7 if the least root > . We may therefore
express the result of § 19 in the convenient form

7°4, (-f—) = (—;—)w, mod p.
24, Since 4, (2) = A, yp-1y, mod p,*

we can, by proceeding as in § 11, apply the results obtained in §§19
and 22 to show that, if p is any uneven prime, and p—1 is a divisor
of 2n (that is, if p is an uneven Staudt factor for n), then

ot () =[] (4], et

= ( zl;)a.-’ mod 2

the expression on the right-hand side being .zero.or r according as
[L < or >n

Pl
If 1i8 not < p+7, the formula requires modification in the manner
indicated in the note to §19.

* Proc. Lond. Math. Soc., Vol. XxxI1., p. 204,



1900.] relating to Eulerian Numbers and other Coefficients. 181

25. As special values of #"*' 4] ,, (l) , we have*
p

2?’”111';"01 ('é') - (_l)n E",
4‘2”’114;"‘1 (_‘1:) — (_l)n 2Pm
3‘-’"‘1‘4;»1;! (%’) = (—l)n uy

671 4), (3) = (=13 E3 +3

B,

where P, and H, are defined as coefficients in the expansions

82 — pot Dot Doty Dot e,
cos 2z

1 1=—§-{H Hz’+%“m+H +&c}

2 cos x—
26. We thus have, p being any uneven Staudt factor for »,

E, = (-1 (%)‘, mod p,

"

9P, = (—1)"

E

in

~~

|

—

~
RS | = |
S o\/ ~—

32’“l+3E" = (__l)ﬂ

2 1
27. If p=4k+1, (;)‘_o,
for the least root of =1, mod 4, 18 z=1, which <2, and, if
= 4k +3,
1y _
(2).=2

for the least root of 3z = 1, mod 4, is x = 3, which > 2.
The first congruence in §26 therefore gives I, =0 or (~1)"2,
mod p, according as p is of the form 4%+1 or 4k+3 (§ 14).

# Quarterly Journal, Vol. Xx1x., p. 107 ; and Messenger, Vol. xxvI., p. 178
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28. Taking now the last of the four congruences in § 26, we have
(.1.) =0, if p=12k+1 or 19k+5,
p/n

and =6, if p=12k+7 or 12k+11,
for the least roots of the congruences
z=1, bzx=1 7z=1, llz=1, mod]l?,

are 1, 5, 7, 11 respectively, of which the first two < 6, and the last
two > 6.

Thus the right-hand side of the congruence is 0 or (—1)"6 accord-
ing as = is of the form 4k+1 or 4k+3.

This result agrees with § 14, for, if p is a Staudt factor for =,
3143 _ 343

2 2

=3, modp.

29. The third congruence of § 26 gives
H,=0or (=1)'3, modp,
according as p is of the form 6% +1 or 6k + 5.
This result agrees with § 15, for
H, = (2**'+1) I,;
so that, p being any uneven Staudt factor for =,
H, =3I, modp.

30. Considering now the second congruence in § 26, we have

(;}1,‘),;:0’ if p=8k+1 or 8k+3,

and =4, if p=8k+5 or 8k+7,
for the least roots of the congruences '
=1, 3z=1, 5Sz=1l, 7z=1, modS8§,
are respectively 1, 3, 5, 7.
Thus we find that
"P,=0 or (~1)2, mod p,

according as p i3 of the forms 8k+1 and 8k+3, or of the forms
8k+ 5 and 8k+7.
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31. Since 3 is a Staundt factor for all values of #, this theorem
shows that all the P’s must be divisible by 3. With respect to the
other Staudt factors, it shows that

P, =2, mod 5,
Py=—2, mod 7,

P, =2 mod 5,

P, =0, mod 11,

P, =2, mods 5, 7, 13.

These results I have verified. The values of the first five P's were
given in the Quarterly Journal, Vol. xxix., p. 63.* The value of P,
(viz.,, Py = 7828053417) was calculated for the purpose of this
verification.

32. The principal formulse which have been established in this
paper are
. l l
) #B, (L) =1-[~
@ 5, (L) [P]', modp (§10),

r

(i) 4, (%) = (%)2 mod p (§ 23).

These results combined with those obtained in a previous paper have
enabled us to assign the residues of "' By, ,, (71_-) and 7"*' 4y, (—:—)

for any uneven Staudt factor for » as modulus (§§ 11, 24).
The principal particular cases of the formuls (i.) and (ii.) are

(1) Eip-n=0o0r —2, mod p,
according a8 p i8 of the form 4k+1 or 4k +3 (§ 14).

@) ILp-n =0 or (=1)*D mod p,
according as p is of the form 3k+1 or 3k+2 (§15).

() Pypn=0or (=1)*2 modp,

according as p is of the forms 8k+1 and 8k+3, or of the forms
8k+5 and 8k+7 (§30).

* They are P, =3, Py = 57, Py = 2763, P, = 250737, Pg = 36581523.
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33. I now proceed to consider the expansions in which the quanti-
ties a™*'B,.,, ( 2) and a™*'4;,,, ((—l;) are the coefficients, in order

to determine the most general expausions in which the residues of

the coefficients can be assigned by the formule (i.) and (ii.). We
know that

% sin (2b—a)z _ b2 —a'B, (a>(2w) uBs( )L?fz)__&c

sin ax

Putting 2b—a = ¢, so that b = 1 (c+a), we have

a sinex _ ¢ _ s (at+c) (%) | o, (atc) (22)*
2 sinaz 2 B'( a) a1 te B'( 2a.) 4! .

Similarly, we have

a cosg2b—a!w=aA;(%) —a’4] (%) ('-;a-i)"_’_aad'(%) @‘—&c.,f

2 cos az
giving

o coser @ o3 a+c\ (2z)° Y a+tec @z)‘
2 cosax 2 A3(2)2+A(2)

We thus find, @ and ¢ being unrestricted,

a since c (2z)® (2z)
= =L A A .
2 sinaz 2 ] +4 4! &e.,
a_coscx _ (29*) (Za:)_ —&
2 cosar 2 o o *+6s o
Whe!‘e Au = am’]B'hul (2'2'-%9) ’
en mdA’hnl (%-Eq)
Since ])_':nl (1—"1") = '—B‘hul (ﬂ.'),
and A‘;nﬂ (1—2}) = A;nol (w))
we have also A, =—=a""By, (a;lc)'
eu = a'z'“lA‘;uol ((";lf) .

# Proc. Lond. Math. Soc., Vol. xxx1., p. 207.
t+ Ib., p. 206.



1900.] relating to Bulerian Numbers and other Coefficients. 185

34. If a and c are both even integers or both uneven integers, so
that } (a+¢) is an integer, the residues of A;,_,. and ©,,.,, are given

directly by (i.) and (ii.), viz.,
~1 .
Al(p-l) = % (a+c)—L7L%—Q]a, mod p
1
6y(p-1) = (E"@j—c—)) y modp;
p 2
but, if @ and ¢ are one even and one uneven, we have to use the

ormule (i.) and (ii.) in a slightly modified form.

35. To obtain this modified form, put r = ma, I = b in (i.) and (ii.)
of §32. We thus find

mPa’B,

5)<i-[2]; mor

whence (i) a'B, (7—%) = Tln- {b—- [-%:l } , mod p,
62 o (2) =L (2) 1 s

36. Applying these formulm to the case when a and ¢ are one even
and one uneven, we have

+
Am-l)E%{a*‘c" I:a_pg u} » mod p,
- a+c :
9“,;-1)=%( P )‘; modp.

These formulw also include the case of a+c¢ even (§ 34), for, if b ia
divisible by any number m, = mf3 say, then, by §§19 and 23,

L8] =12),

% (3=
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37. In general, therefore, if p be any uneven Staudt factor for n,

A, :—-‘é{a+c—[a—;—c]} , mod p,

whether a+c be even or uneven. If a+c¢ is even, we may replace
[a+c by 2[§§a+02] )
p Jo p e

38. Similarly, if p be any uneven Staudt factor for n,
=3 (2te
6. =% ( P )4«’ mod p,

whether a+¢ be even or uneven. If a+c¢ is even, the congruence

may be written
9, = (ﬂ%c)) , mod p.

20

Thus the residue of 6,, mod p, can only have the values 0 and a;

and it has the former or latter of these values according as
atc] = »

[ 7 J < or > 2a.

I1. Residues of certain Series containing % (p—3) terms (§§ 39-65).

39. In Vol. xxx1., p. 214, of the Proceedings, a general congruence
theorem was given connecting the first 4 (p—1) coefficients in a
general expansion formula; and the two following formule were
given as particular cases :—

(i.) Eo_E1+E2—~-- +(_1)‘(P"UE.“7_" = O, mod P,
(i) I — I, 4 L—... 4+ (=19 3L, = 0, mod p,

the last term in the second series having the coefficient §. The
values to be assigned to E, and I, are respectively 1 and 1.

Since E,,., = 0 or —2, mod p, according as p is of the form 4k+1
or 4k+3 (§14) and I,y =0 or (—1)*-Y mod p, according as p is

® The formulx for the residues of the A’s and ©’s require modification, if
» < c—a (see notes to §§ 10, 19).
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of the form 3k+1 or 3k+2 (§ 15), these formule show that »
(i.) Eo—El'*‘E,—.-- '*‘(—]-)i (p-a)E“’”a) =0 or —2, mod P
according as p is of the form 4k+1 or 4k+3, and
(i) L—L+L—...+ (=13 o 5 =0 or —3, mod p,
according a8 p is of the form 3k+1 or 3k+2.
40. These results may be generalised by means of the formule (i.)
and (ii.) of § 32, so that we may obtain the residues of similar ex-
pressions in which the coefficients of the expansion are multiplied by

successive even powers of any number m; e.g., we may assign the
residue, mod p, of

E—m'E\+m*Ey— ... + (= I} *ImP 2 B g,

41. To obtain these general results we start with the formula

2{re, (25 -rs, (=) ]

= 1 _ 3 p0-2 1
=B, () +(p—Dy () r'B, . (<)
+(p-1), (2 By (L) + o,
r
where (p—1), denotes the number of combinations of p—1 things

taken ¢ together.*

Since (p—1) =1, mod p, we find, by transposing to the left-hand
side the first term on the right-hand side, and writing the terms on
the right-hand side in the reverse order,

e () o (1) o (1)

1

r

= (rz)"'rB, (}) +(re}# 4By ( =) 4.+ (ref v B, (-1-) mod p.

-* This formula may be derived from the firat formula on p. 155 of Vol. xxrx. of
the Quarterly Journal by putting # = p, using the relation

Vausr ("‘) - (2n + 1) Byy s (=)
to replace 7’s by B’s, and dividing throughout by p.
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Putting rz = —;}L-, and noticing that m*-' =1, mod p, we obtain the

formula
(L) (1) s (1) e (1

1
r
4D, (222) -, (282) ] o, (1),

42. Now, by § 32, the right-hand side

= {m1= 2] onymor [l )

-1+ [?10-], mod p,

& {[E=] ~[=21] ] o[2], o

and we thus obtain the formula

7B, ( 1 ) +m**B, ( 1 ) +m*" B (—}.—) +...+‘m”"'r""B,,_,(—71_—)

-] ] A2, e

Thus the residue of the series depends upon r and m and upon the
residue of p, mod rm.

43. Since 2**'B,,., (1) = 0, the left-hand side is zero when r = 2;
and it is easy to see that the right-hand side also is equal to zero.
44. Since 4B () =(=1"E, (§12),
we find, by putting r = 4,
EO_ “El+m‘E',-. + (—'1)‘ (p-S)E‘( -3)

= { [ L[5 =[5 mete

which gives the residue of
Ey—mB +m'By— ...+ (= 1)1V mP By

for all integral values of m.
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45. For m = 1 the right-hand side of the congruence
={[31-[31 -
+%l pde Lpde pJe
o[22}
pis " Lp-h b
~[1]-[1] |
- [p ]n [p Jc'
N 1 _ l:l _ . .
ow | —| always=1, and | =] =1 or 3, according as p is of the
ps pde
form 4k+1 or 4k+3. Therefore
EO—EI"‘EQ—---+("'1)“p-3’E.(P.3) = 0 or —2, mod P
according as p is of the. form 4k+1 or 4k+3. This formula was
given in § 39.

46. Putting m = 2 in § 44, we have
By—2'E,+2'B,— ...+ (= 1)}-222-3E,

= 31112 } [y
_2+%{ 7 Js [p]s I.p.L' mod p-
The residue [;1]-] =1 or 3, according s p is of the form 4k+1 or
4

4k+3. The other residues are given for the different forms of p by
the following congruences :—

if p=8k+1, =3, mod8, giving 2, = 3,*
" " z=17, ” " x=17;
if p=28k+3, 3x=3, mod8§, giving =, =1,
" " 3z=1, ” » y=25;
if p=8k+5, 5z=3, mod8, giving », =17,
" ” ' Se=1, " " n=3;
if p=8k<+7, 7x=3, mod8, giving x, =35,

» ) Tz = 7, ” ”» T, = 1.

* 7z, will always be used to denote the least root of the congruence in question.
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The residue of the series 18 therefore, in the four cases,
24+1(3-7)-1=0,
2+3(1—5)—8=—2,
2+3(7-3)-1=2,
243 (5—1)—3=0,
respectively. Therefore
E,—2E +2E;—...+(—10e-0923F, =0, -2, 2,0, mod p,
according as p =1, 3, 5, 7, mod 8.

47. Putting m = 3, we have
E, =3B, +3'E;—...+ (= 1)ie-933F, s

“2s (3 [1] (21} -[2], et

The congruences giving the first two residues are

if p=12k+1, z=1, mod 3, giving z, =1,

. » =5 mod8, , @, =35;
if p=12k+5, bz=1, mod 3, giving =z, =2,
» " S#=05, mod 6, , =z=1;
if p=12k+7, 7z=1, mod 3, giving z, =1,
” " 92=5, mod 6, , =2,=5;
if p=12k41]1, 112 =1, mod 3, giving =, = 2,

» ” llz=5, mod 6, ,, =1

Thus in the four cases the residue of the series =0, 2, —2, U, re-
spectively ; and therefore

E,—3E,+3'E,—... + (=133 R, . 4 =0, 2, —2,0, mod p,
according as p =1, 5, 7, 11, mod 12.

48. Similarly, putting m = 4,
Ey—4E,+4E,—... + (—1)i*-942F,

eeb{ 3], 2} - [2] e
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By considering as in the two preceding sections the values of the
residues according to the different forms of p, we find that

E—4E+ 4B~ + (1)} By
=0, -2,0,-22,0, 2,0, mod p,
according as p =1, 3, 5, 7, 9, 11, 13, 15, mod 16.

49. Putting now =3 in the general congruence of § 42, and
using the formula

32’”le:01 (%) = (_1)"I" (§ 12),

we find

IL—m L +m L~ ...+ (=1 =32 L g
e B[] ] 2, s

50. By putting m=1, 2, 3, 4, and determining. the separate
residues exagtly as in the.c&se of r =4, we obtain the following
results :— '

(i') Io_Ix+In—--'+(_1)“p_a)IHp-8).E0 or "%’ mOdP;

according as p is of the form 3k+1 or 3k+2. Thisformula has been
already given in § 39.

(i) L—2L+2'0,—.. +(=1)}¢-92-3] . 5 =0, mod p,
for all values of p.
(iii) IL—3'L+3'L—...+ (=130,
=0,-%,0,0, 3,0, mod p,
according as p =1, 2, 4, 5, 7, 8, mod 9.
(iv.) L—4L+4'L—...+(=1)e-04e-3L o
=0, -3, %,0, mod p,
according as p = 1, 5, 7, 11, mod 12.
51. It may be remarked that in general, if p is of the form krm+1,

(1) vt (1) e (1) 4.

r r

v+ mP 2B, (-;-l-) = 0, mod p;
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for in this case the value of the right-handside of the formuls in § 42.

r

2

=1

+ 217; {t=Dm+1=(m+1)}+1=0.

9Z. 'I'ne A -rormula corresponding to the B-formula of § 41 is

b () et (S22 ] e (1)

r

= (re)P-r 4] ( 71) +(rw)"'sr’Aa( 1 )+ ()4 ( 1 ) mod p,
whence, putting rz = ;1:-'
r4; (i) +mr’4; (%) +m4°4; (—:—) + ot m 34, (—,'17)

=1 {'r”A (m+l) T”A;((T—ll”ltl)} —7PA; (-l),modp.

™

53. By § 35 the right-hand side

=ant () (), 3 - (), mears

and therefore we find that

i (D) (2) (1) oot (1)

T

= A+B

o —C, mod p,

where A =0 or rm accor&ing as the least root of pz=m+l,
mod 2rm, is f or >rm; B=0 or mm, according as the least root of

pa = (r—1) m+1, mod 2rm,is Z or >rm; and ¢ =0 or r, according

a8 the least root of pz =1, mod 2r,is Z or > 1.

54. Since 2450 3) = (1) B, (§ 25),
the formula becomes, by putting » = 2,

E—m'E b Ey— ... + (=10 Ipp3E, = -?% —0, mod p,
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where 4 =0 or 2m according as [m;— 1] < or > 2m,
- 4m

O0=0or2 ” ” [l] < or > 2,
Py

Thus 0 = 0 or 2, according as p is of the form 4% +1 or 4%+ 3.

55. When m =1, 4 = (E) =0, and therefore the series = 0 or
4

p
—2, mod p, according as p is of the form 4k+1 or 4%+ 3.

When m =2, 4 = (i) , which =0, 0, 4, 4, according as p = 1, 3,
p/s

5, 7, mod 8. Therefore the series = 0, —2, 2, 0, mod p, according as
p=1,35 7 mod8.
When m =3, 4= (i

P
3k+1 or 3k+2. Therefore the series = 0, 2, —2, 0, mod p, according

as p=1,5,7,11, mod 12.

When m = 4, 4 = (E) , which =0 if p = 1,3, 5, 7, mod 16, and

p’we .

=8 if p =9, 11, 13,15, mod 16. Therefore the series =0, —2, 0,
-2,2,0, 2, 0, mod p, according as p=1, 3, 5, 7, 9, 11, 13, 15,
mod 16.

These results agree with those already obtained in §§ 45-48. It
will be seen that the second formula (§ 53) is simpler than the
tirst* (§ 44).

) =0 or 6, according as p is of the form
12

# Comparing the two formule of §§44 and 53, we find that they lead to the

equation .
I:m + 1] + [3m+ 1] - [2»1 + 2] + o,
» im L » am 2 am

This relation may be proved independently ; for, if p = 4km + 4, A being < 4m and
prime to it, and if a,, 4,, ¢, be the least roots of the respective congruences

hx=m+1, hx=3m+l, hzx=2m+2, mod 4m,
then h{ay+b—c) =2m+A.4m,

whence G +b—c = 25-; Lom= v, 2m,

v being an uneven integer. Now it is .obvious that v cannot be » 1, for q), &), ¢,
are all _ 4m, so that «; + 8, —¢, cannot exceed 81, and therefore we muet havey = 1.

VOL. XXXIIL.—NO. 722, 0
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56. Since  4™4L., (1) = (=1)*2P, (§25),
we find, by putting r = 4, A
'PO_ ’P1+m‘P e + (_l)i(p—s)'mp-SP‘ (-9 *

Tim {(m+1> + (g%,ﬂ)s} -} (%)., mod p,

=4+3B —0, mod p,

where A4 =0 or 4m, according as I-"%I:L < or > 4m,

B=0 or 4m, ” " [M] < or > 4m,
y4 8m

C=0or 4, " " [L] < or > 4.
pds

As particular cases we find
() P—P+P—...+(=1)3P,, =01, -2, -1, modp,
nccording as p =1, 3, 5, 7, mod 8.
(i) Py—2'P +2'Py—...+ (—1)}-02-2P,
=0,1, -1,-2,2, 1, —1, 0, mod p,
according as p=1, 3, 5, 7, 9, 11, 13, 15, mod 16.
(i) Py—3P+8'Py— .. 4 (—1)i-93=3P, 4
=0,—-1;-1,2,-2,1,1,0, mod p,
according as p =1, §, 7, 11, 18, 17, 19, 23, mod 24.

57. For r = 3 the formula of § 55 gives
Ay (— ) B gt

(2 ), ()t

from which we obtain the particular cases:
(i) H—H,+H,—..+(=1)9H,, ., =0o0r —§, modp,
according as p is of the form 3k+1 or 3k+2.

¢ The value of Py is 1 (§ 25).
t The value of H), i¢ 2 (§25). The values.of H, up to 1 = 13 were given in
Proc. Lond. Math. Soc., Yol. xxxr1., p. 229.
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(i) Hy—2'H,+2'H,—...+ (=1)i¢-92-3H,

] =0, -3, 3, 0, mod p,
according as p=1, 5, 7, 11, mod 12. -

(iii.) Hy—3'H,+3'H,—...4+(=1)}*-93-3 g,
= 05 - 3, %’ '—%: 31 0: mOdP’
according as p=1, 5, 7, 11, 13, 17, mod 18.
58. If p is of the form 2krm +1, the right-hand member of the

general formula is zero, for in this case each of the quantities 4, b,
C (§53) is zero, so that we have

1 ’ ]. ’ 1 - ’ 1 —-—
74, ( )+mr"‘A3 (;—) +mir® 4, ( 7) +...+mP 34, , (7) = 0, mod p.
The corresponding B-formula was given in § 51.

59. I have verified numerically all the formul® involving E's,
I's, P’s, and H'’s in §§45-50 and §§ 55-57 for the values 5, 7, 11,
13 of p.

60. If in §§ 41 and 52 we put rze =m (instead of —11;), we obtain

similar series, but in which the coeflicients are descending powers of
Pl mPe1 P73 L, mf Since mP~!' = 1, mod p, we may also

m?, viz., m
. : . 11 1
write these coefficients 1, —5, —7, ..., —=5.
m m m
We thns find
1 1 , 1 1 (1 1 . ( 1
(1) om (1) don (D) s borma()

r n n m"3

<o (), (m521)} o (1),

, M

(1) o (2] T () i (3

-3

— Y m+1 ’ +r—1 1 |
(222 i (22250) (2],

02
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whence, by § 32,

O (2 don (L) dom (D) ke ()
[ 5] o wer
@0 ot (s s3] dri(H) o )

(55, + (5=} = (), mar

61. It will be seen that in the formulwm (i.) and (ii.) the classifica-
tion of p is much simpler than in the corresponding formule of
§§ 42 and 53, viz., the different cases depend upon the residue of p,
mod r or mod 2r, instead of upon the residue of p, mod mr or
mod 2mr. Thus the number of cases is only ¢ (r) or ¢ (2r) instead
of ¢ (mr) or ¢ (2mr), where ¢ (z) denotes the number of numbers less
than # and prime to it. Not only therefore is the number of cases
smaller, but the cases themselves are independent of m; so that for
any given values of p and m the residue of the series, mod p, depends
only upon the residues of p and m, mod » or mod 2r.

62. Putting r=4 in (i.), we have

.y 1
Ey— —E + E— +(—1) mm”"’

[ [<5]50)  mn

Denoting the right-hand side by R, we find, by putting successively
m =1, 2, 3, 4, that, if p = 4k+1, then

R=0,2, 2,0, according as m = 1, 2, 3, 4, mod 4,
and that, if p = 4k+3, then
R=-2,-2,0,0, according as m = 1, 2, 3, 4, mod 4.
Thus the residue of

1 1
Bt

. g 1
Bim A (=1 S By
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is given by the following table :—

m=1|m=2|m=3 mé«i

3
n

—
o
(o]
o
o

(i

p=1|=2 | -2 | 0 | o

n which the headings of the columns are the residues of m, mod 4,
and the arguments of the lines are the residues of p, mod 4.

Thus, for example, since 7 = 3, mod 4, the table shows that

1 1 1
Bp— i Bk o Bym 4 (= 1) 070

according as p is of the form 4k+1 or 4%+ 3.

Ey,.5=2 or 0, mod p,

63. It is to be noticed that p must not be equal to m, and that the
formula and the results given by the table require modification if
p<m. Forin §10 it was necessary that ! should be < p+7, which
in this case gives m+3 < p+4, that is, p > m—1.

64. Putting r = 2, the formula (ii.) of § 60 gives

1 1 -
E— ;’E’1+ ;EE;—“.+(—])“” a)mn_a-E"(p—S)
= (m+ly_(1
_( A )‘ (p)t' mod p,

from which we may derive, and in a simpler manner, the results
given in § 62.*

I have verified these results numerically for the values 1, 2, 3, 4,
5, 6, 7 of m, and the values 5, 7, 11, 13 of p.

* Comparing the two formulwe, we obtain the relation

[1_?&_+_l] +[1_n__-i~_3] _ [Zm+2:| +2,
Y » [} » 4

which may be proved independently by the same reasoning as that employed to
prove the eimilar theorem in the note to § 55.
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65. Putting =3 in (i.) of § 60, we have

1.1 1
L= — Lt L (— 10—

o[22 (222} - (2], mts

From this formula we obtain the following table giving the residue
of the series aecording to the residues of m and p, mod 3:—

Ii(}‘-s)

il

=3
i
f—
o

oo
o

P=2| -3 0 0

Thus, for example, for m = 5, which = 2, mod 3, we have

11 1
L- 5 Lt g b+ (=109 =

I3 = £ or 0, mod p,

according as p is of the form 3k+1 or 3k +2.
U have verified the table form =1, 2,3, 4, 5 and p =5, 7, 11, 13.
The results require modification if p < m.

66. In this paper I have restricted myself to the consideration of
the Bernoullian functions B, (z) and A/ (z), when the suffix » is
uneven. I have obtained also the residues of these functions in the
case when n is even, but the results are more complicated, and I
reserve their consideration for a separate paper.





