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1. In the Gomptes Bendus for 1861* Sylvester gave without proof
the theorem that, if (p — l).p' is a factor of 2n, then, if p is a prime
of the form 4fc + l, p**1 will be a factor of En, and, if p is of the form
4fc-l, pi+i will be a factor of (— I)"-1 2 + En, where EH is the wth

Eulerian number. ,
The principal object of this paper is to prove two general theorems,

from either of which Sylvester's results in the case i = 0 may be
deduced, as well as corresponding results relating to the I-numbers
and other coefficients.

In the latter portion of the paper (§§ 39-65) these general theorems
are applied to obtain the residues, modp, of various systems of series
containing \ {p —3) terms.

1. Residues of the Bernoullian Functions with Uneven Suffixes, and
Applications (§§2-38).

2. Let p be any uneven prime, and let A,, denote the sum of the
products of the numbers 1,2, ...,p — 1 taken r together. Then we
have evidently

a-.""1 + Alx»-2+Aix'"3+... + Ap.2x + 4P_, = (x + l)(x+2)... (aj+p-1).

In a recent paper in the Quarterly Journalf it has been shown that,
if r is even and <p—1, A, is divisible by p, and that, if r is uneven
and > 1, Ar is divisible by p2, and that the residues of the quotients
are

p
modp(OO) .

• Vol. in. , p. 163.
t " On the Residues of the Stuns of Products of the first p — 1 Numbers and

their Products to Modulus p* or p3," Vol. xxxi., pp. 321-353. The formulae
quoted occur on pp. 326, 327.
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It was also shown that

P
where Bt is the ttli Bemoullian number and

) 4 ( / )

The value of .4, is $p (p—1), so that it is divisible by p only.

3. Multiplying the equation in § 2 by a; and dividing by p, we
therefore find

p 2 4 p—3 p

Now the Bemoullian function B,,(x), n being uneven, is defined by
the equation

Bm (x) = SL - . ^ - i + ? L = 1 2 ^ - - . ( n - l ) ( 2 ) ( 3 )2 ^
] ' 4 !

and therefore

Substituting in the preceding congruence, we find

JBf, (a-) + ( - iy»-»Bi(,.n x+^x = a ^ + 1> ••(»+P-D , mod p.

Now

+

= — 1, modp\

so that the congruence becomes
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4. When a is a positive integer prime to p, one of the p consecu-
tive numbers x, x + 1, ..., a-4-jp—1 must be divisible by p, and the
other p—1 numbers must have residues 1, 2, 3, ...,p—1 with respect
to p.

If therefore x = hp + t, t being <p, the formula gives

Bp(x)—x = — (fc+1), modjp,

and in particular, if x be any number <p,

Bp (x) = aj—1, mod p.

5. These formulae can be readily verified, for, when a; is a positive

integer, £ , ( « ) - p - i + 2'-» + 3*-I + . . .+(ffl-l) ' -1 ;

and therefore, since rp~* = 1, mod p> unless r is a multiple of JJ,
we have, if x <p,

Bp (x) = sij—1, mod p,
and, if x =zkp + tt

Bp(x) = a; — 1 — h, mod p,

since the fc terms j p p l , (2p)p~\ ..., (A;/?)11"1 are = 0, not 1, mod p.

6. Now let x — —, where r is a positive integer prime to p,
T

The general formula
T> / \ . x (x+1) ... (x+p—1) ,
Bp (x) = (B 4- .v T y i—i- i , mod p,

P
then becomes

, mod pr
\T I p

whence r*l

7. Since r is prime to jp, the numbers r, 2r, ..., (^—1) r have|to-
mod p the system of residues 1,2, ...,^>—1; and therefore the
numbers r + 1 , 2r + l , ..., (p—l)r-fl have the system of residues
2, 3, ..., p— l,p ; that is to say, one of the numbers r + 1 , 2r+ 1, ...,.
(p—l)r + l is divisible by p, and the other numbers give the resi-
dues 2, 3, ...,p—l.

To determine which is the factor divisible by p, we notice that, if:
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Ar+1 is this factor, we must have Xr - f l=gp , where q<r and

= — , modr. The product of the factors 2, 3, ...,p—l— — 1 ,

and therefore we have the formula

rvBt> I—j = 1 — 9 , mod;?,

where q is the least positive residue of -±-, mod r.
P

8. We may conveniently express the least positive residue of any
quantity a, mod r, by [a],..

Using this notation, the result just obtained may be written

9. This formula enables us to assign the residue of r''Bp (—),
mod p, for all values of r and all (prime) values of p.

In general, if p = kr + s, where s<r and is necessarily prime to r,
since p is prime,

Thus the number of residues of r^B^ ( —) is equal to the number of

admissible values of s, that is, to the number of numbers less than r
and prime to it.

10. The residue of r^B^ I—J may be expressed in an exactly

similar manner; for, putting x= — in § 6, / being prime to r, we
have

1(1) B ^ . + n

l ( r + l ) ( 2 r + l ) . . . { ( p l ) r + l}
= l-\ i L mod».

P
Now, of the p numbers Z, r + l, 2r + l, ... {(p— 1) r + Z), one, say Ar-M,
is divisible by pt and the others = 2 , 3 , ...,p— 1, modp, so tha t
we find

—) = I—% mod p,
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where g, is the least root of the congruence px = I, mod r ; or, using
the notation of § 8,

11. It is known that
BH = #,,-*(P-») (»), mod p,t

and th erefore • r*(""1} +" Bk (J,_,, +i> (a?) == r*Bp (a), mod ^ .

Putting x = — , and replacing & by A —1 in this formula, we have

*•"-»•*.„.,,., (1) s -«, (i-) - I- [-i]r. mod P.
It has thus been shown that, if p be an uneven prime, and p — 1 be a
divisor of 'In, then, if l<p + r,

•"•'*•.• ( f ) - | - [ 7 ] ; mod^
If Ẑ Lp + r, the formula requires modification in the manner in-

dicated in the note to the last section.

12. As special values of r2"+l2£,,,+1 I . j , we have£

* This congruence holds good so long as l<p + r, but for greater values of / it
requires modification, qt not being then, necessarily, the least root of the con-
gruence px = I, mod t. In general it can be shown that, if I = kp +1, whore
t > 0 and <p, then I I \

ri'Bp f — J = l-q,, modp,
where q, is not xlt tho least root of tho congruence px = /, mod r, but x{ + mr, mr
being such a multiple of r as will bring xy + mr within the range of numbers k + 1,
k + 2, ..., k + r, i.e., tjt is that root of the congruence px = /, mod r, which lies
between k + 1 and k + r both inclusive. Tho value of i/t may be expressed in terms

of k and t by k

In most of the applications of the theorem / is, or can be so chosen as to be,
< p + r; the principal exceptions in this paper occur in §§ 33-38 and 60-G5.

[The residue of '—I 1" * ^ - ^ , mod p, that is, the value of qh

forms the subject of the first part of a paper ' ' Residue of the Product of p Numbers
in Arithmetical Progression, mod p'2 andj^3 " (Messenger of Mathematics, Vol. xxx.,
pp. 71-92), which has boon written since this papor was communicated to the
Society.]

t 1'roc. Land. Math. Sue., Vol. xxxi. , p. 206.
X Quarterly Journal, Vol. xxix., pp. 31, 35, 44, or Messenger, Vol. xxvi., p. 179.
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where En is the wth Eulerian number, and !„ and Jj.Jare the numbers
so denoted in Vol. xxxi., pp. 216, 228 of the Proceedings, viz., E,,, !„,
/„ are the coefficients in the expansions

cos a; 2! 4! 6!

—-1-— = § j io+ i . »•+ A a>*+ A
2cosa! + l C 2! 4! 6!
2 cos a: . ( r . / , 9 • i/o « • </H a i p 7

2 cos 2.C + 1 C 2! 4! 6! ;

13. It is convenient to call the admissible values of p the Staudt
factors for n, i.e., the Staudt factors for n are those values of p for
which p — 1 is a divisor of 2«. Thus a number p is a Staudt factor
for n, if (i.) p is prime, (ii.) p—1 is a divisor of 2w.*

14. Using the formula

and taking the case r = 4, we have

f i -1 = [1]4= 1, if p is of the form 4& + 1,

and = [ £ ] , = 3, „ „ 4/<; + 3.

Thus, p being any uneven Staudt factor for n,

Eu==0 or ( -1 ) "2 , mod p,

according as p is of the form 4&+1 or 4A. + 3.
This is the case i = 0 of Sylvester's theorem referred to in § 1.

15. For r = 3, we have

P 1 1 = [1]» = 1, if P is of the form 3fc+1,

and =[-B> = 2, „ „

* In previous papers (Messenger, Vol. xxix., pp. 49, 129; Quarterly Journal,
Vol. xxxi., p. 2C1) I have called values of p which satisfy these conditions Staudt
factws of B,,. As the connexion is solely between the numbers p and n, it seems
unneceHsary to introduce JJn. The Staudt factors for » are the prime factors whoso
product forms the denominator of JJn.
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so that, p being any uneven Staudt factor for n,

7,, = 0 or (— 1)", mod p,

according as p is of the form 3k+ 1 or 3fc + 2.

16. The quantities 7,, formed the subject of a paper in the last
volume of the Proceedings.* That paper contains a table of the first
thirteen I's, by means of which I have verified the theorem up to
n = 13.

The numbers 2 and 3 are Staudt factors for all values of n. The
number 2 is excluded, as the modulus is always supposed to be an
uneven prime. The number 3 is excluded in this case, as r = 3 and
r must be prime to p. The residues given by the theorem with re-
spect to the other Staudt factors are as follows:—

I3 = 1, mod 5,

78 = 0, mod 7,

It = 1, mod 5,

7, = - 1, mod 11,

Jo = 0, mods 7, 13, = 1, mod 5,

77 (no admissible Staudt factor),

78 = 1 , mods 5, 17,

79 = 0, mods 7, 19,

7 l 0 = 1, mods 5, 11,

7 n = — 1, mod 23,

7 i a = 0, mods 7, 13, = 1 , mod 5,

7,s (no admissible Staudt factor).

These residues agree with those obtained from the table of 7,,.

17. For r = 6 we have

f—1 = [ 1 ] , = 1, if p is of the form 6fc + l ,

and = [|]9 = 5, „ „

* " On a Set of Coefficients analogous to the Eulerian Numbers," Vol.
pp. 216-235.

V0U XXXII.—NO. 721 . N
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so that /„ = 0 or (—1)"4, mod p,

according as p is of the form 6/c+1 or 6&-f-5.

This result may be derived from § 15 by means of the formula

for, when p—1 is a divisor of 2w, 22" == 1, mo&p, and therefore

/ „ = 4>In, mod p.

18. The Bernoullian function A'n (x), when n is uneven, may be
defined by the equation

Thus we derive from § 6

p
... {2(p-l)r
p

and therefore rpA'p (— J ~q—q, rnodp,

where g, q are the least residues given by the congruences

p>- == 1, mod r,

px — 1, mod 2r,
respectively.

This result may be expressed by the formula

19. More generally we have in the same manner

...{(P-I)r +

y mod. p ;

whence we find rpA'p ( • - j = I — — — , mod p.\

• The expression for A'u (X) in powers of x was given in Proc. Loud. Math. Soe.,
ol. xxxi., p. 203.
t In this formula /'must be <j) + r; othe

same kind as that Htatod in the note to § 10.

The expresso o
•Vol. xxxi., p. 203.

t In this formula /'must be <j) + r; otherwise a modification is requisite of the
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20. It is not necessary that I should be prime to 2r, but, if I be
even, = 2V, then

Z(2r + Z)(4r+Z)... {2(p-l)r

p

„_—r 1 = 2 [ — 1 , modj>;«

so that in this case the formula may be written

21. The expression fJ-l-fi-l
LpJt, lpJr

can only have the values zero and r ; for the expression is a—/3,
where a is the least root of the congruence

px == I, mod 2r,

and ft is the least root of the congruence

px == I, mod r.

Now, if a<r , it is clear that ft must = a, and, if a>r , we must
have/3 = a—-r. Thus a— /? has the value 0 or r according as the
least root of the congruence px = Z, mod 2r, is < or > r.f

• This reasoning is general and shows that, if I = mi', then

P I — r£i-
LPJINI- L/»Jr

We may easily prove this formula directly, for — is the least value of x
LP Jmr

given by the congruence px = I, mod mr, and, if I = ml', the congruence becomes
x r I' "1

» — = i', mod r, from which the least value of x is m —
m LpJr

t If the least root of the congruence px = I, mod 2r, is = »•, we must have
pr = I, mod 2r, and therefore i must be an uneven multiple of r, = mr say, m being
uneven, in which case

p =0.
N 2
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22. The result obtained in § 19 therefore shows that

IVp( — j = 0 or r, mod p ,

according as the least root of the congruence

px = I, mod 2r,

is < r or > r. The residue is zero if the root is equal to r.

23. P ( )

then the symbol f — J . denotes 0 if the least root of the congruence

px = Z, mod 2r,

is < r or = r, and denotes r if the least root > r. We may therefore
express the result of § 19 in the convenient form

24. Since A'n (x) = A'u.k(p.lu

we can, by proceeding as in § 11, apply the results obtained in §§ 19
and 22 to show that, if p is any uneven prime, and p — 1 is a divisor
of 2n (that is, if jp is an uneven Staudt factor for n), then

• • • ^ (!) = ["!] - [ 1 1 , mod?,

= (—) , modp,

the expression on the right-hand side being zero, or r according as

[~±] < or >r.
Lp Jfr

If I is not <p + r, the formula requires modification in the manner
indicated in the note to § 19.

• Proc. Lond. Math. Soc.t Vol. xxxi., p. 204.
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25. As special values of r2"*1^,,^, (— J, we have*

where Pn and JET,, are defined as coefficients in the expansions

cos a; T, . P , « , Pa « , P<» a , o
S~ = P o + 7TT « + TT * + 7.-?^6 + &C,

cos2aj 2! 4! 6!

2 cos x-

26. We thus have, j) being any uneven Staudt factor for n,

\ p I 4

27. If p = ( - ) = 0 ,
\ p I *

for the least root of x = 1, mod 4, is x = 1, which < 2, and, if
^ = 4k + 3,

(M =2,

for the least root of 3x = 1, mod 4, is re = 3, which > 2.
The firRt congruence in §26 therefore gives J?,, = 0 or ( —1)"2,

mod p, according as p is of the form 4k + l or 4& + 3 (§ 14).

* Quarterly Journal, Vol. xxix., p. 107 ; and Messenger, Vol. xxvi., p. 178.
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28. Taking now the last of the four congruences in § 26, we have

(-M = 0 , if p = 12&+1 or 12fc + 5,
\p /is

and = 6 , if p = 12&+7 or 12&-4-11,

for the least roots of the congruences

a s l , 6x = 1, 7x= 1, lla; = 1, mod 12,

are 1, 5, 7, 11 respectively, of which the first two < 6, and the last
two > 6.

Thus the right-hand side of the congruence is 0 or (—1)M6 accord-
ing as n is of the form 4k +1 or 4k + 3.

This result agrees with § 14, for, if p is a Staudt factor for n,

32"+1 + 3 3 + 3 Q

29. The third congruence of § 26 gives

F,, = 0 or ( -1 ) "3 ,

according as p is of the form 6& + 1 or 6k + 5.

This result agrees with § 15, for

so that, p being any uneven Staudt factor for »,

JET,, = 37,,, mod p.

30. Considering now the second congruence in § 26, we have

(-•) = 0 , if p = 8k + l or
\ p It

and = 4 , if p — 8& + 5 or

for the least roots of the congruences

a: = l, 3rc = l, 5oj = l, 7a; = 1, mod 8,

are respectively 1, 3, 5, 7.

Thus we find that

PM==0 or ( -1)"2, modjp,

according as p is of the forms 8/c+l and 8A;+3, or of the forms
8k + 5
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31. Since 3 is a Staudt factor for all values of n, this theorem
shows that all the P's must be divisible by 3. "With respect to the
other Staudt factors, it shows that

P, s 2, mod 5,

P, = - 2 , mod 7,

P4 = 2, mod 5,

PB = 0, mod 11,

P8 = 2, mods 5, 7, 13.

These results I have verified. The values of the first five P's were
given in the Quarterly Journal, Vol. xxix., p. 63.* The value of P9
(viz., Pa — 7828053417) was calculated for the purpose of this
verification.

32. The principal formulae which have been established in this
paper are

(i.) ^ ( i - ) 3 l - [JL] ; modp (§10),

. (§23).

These results combined with those obtained in a previous paper have

enabled us to assign the residues of r2"*1!?^, f — J and rin*xAin*i (—)

for any uneven Staudt factor for n as modulus (§§ 11, 24).

The principal particular cases of the forcnul© (i.) and (ii.) are

(1) -E4(p_,> = 0 or - 2 , modp,

according as p is of the form 4fe-|-l or 47c+ 3 (§ 14).

(2) J I M s 0 o r (-I)1""1', modp,

according as p is of the form 3ft-fl or 3k + 2 (.§ 15).

(3) P , M S 0 O P ( - 1 ) » » - » 2 , modp,
according as p is of the forms 8& + 1 and 8fc + 3, or of the forms

5and8fc+7 (§30).

• They are Pj = 3, Pa => 57, P8 = 2763, P4 = 250737, Pb => 36581523.
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33. I now proceed to consider the expansions in which the quanti-
ties ain+lB2n^ (—) and au*lA2n¥i I —) are the coefficients, in order

\ a I \ a I
to determine the most general expansions in which the residues of
the coefficients can be assigned by the formulas (i.) and (ii.). We
know that

a s_in_(2^a^ = 2b-a _flS ,b_\ ( | ) » + f l 5 / b_ \ (&£
2 smaaj 2 \ a / 2! \ a I 4!

Putting 2b—a = c, so that b = ^ (c + a), we have

Similarly, we have

•I c°a<26-'1)- = a^;(I) - ^ j (A)<M +au;(A) ^ ' - A o
2 cos oo! \ a / \ a / 2! \ a / 4!

giving

a cosca _ a , . , / a + c \ (2a;)2 . ., /a + c\ (2aj)4 .
— — — — a JL3 I ——) — <~ + a ylj I —— l ^-•-j' &c.
2 cosaaj 2 \ 2a / 2! \ 2a / 4!

We thus find, a and c being unrestricted,
a sin ex c K (2a;)2 . A (2a;)* „
2 sin aa; 2 2! 4!

x a _ (2a;)3 . „ (2a;)4 o

where A. = a«"%, 4 l

Since ^.',, +1 (1—-T) = — ^ » + 1 (a1),

and -̂ 'iii+i ( 1 — * ) = -A-in*\ (*)>

we have also A,, = — a2ll+1fi2,,+, ( ? " "? ) ,

* P»w. Zowrf. Math. Soc, Vol. xxxi., p. 207.
t Jb., p . 206.
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34. If a and c are both even integers or both uneven integers, so
that \ (a + c) is an integer, the residues of Aj(P-i> and 0j(P-ij are given
directly by (i.) and (ii.)) viz.,

L p J»

, modp;

but, if a and c are one even and one uneven, we have to use the
ormulro (i.) and (ii.) in a slightly modified form.

35. To obtain this modified form, put r = ma, I = b in (i.) and (ii.)
of § 32. We thus find

»aPB„(—) =6-1"—1 , modi?,
\mal Lp Jwn

(—) = (—m"a"A'p(—) = (—) ,
\ina' \ p I luin

whence (i.) a"B., 1^-) = -i- i ft-T-l 1, mode,
\ma/ m (. LpJma)

(ii.) aM;(-6-) = - ( - ) , mod p.
\mal m \ p /,,„„p 11«

36. Applying these formulro to the case when a and c are one even
and one uneven, we have

v. i- P Jta

These formulre also include the case of a + c even (§ 34), for, if b ifi
divisible by any number m, = m/3 say, then, by §§ 19 and 23,

-P-] =[-]•
m Ljp Jmo L|) Jn

1 (JL) = f l l .
m \ p I linn L p JJa
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37. In general, therefore, if p be any uneven Staudt factor for n,

whether a + c be even or uneven. If a + c is even, we may replace

L p J2« L p J«

38. Similarly, if p be any uneven Staudt factor for n,

whether a + c be even or uneven. If a + c is even, the congruence
may be written

(i^±5>) mod P .

Thus the residue of 0,,, mod p, can only have the values 0 and a ;
and it has the former or latter of these values according as

\*±°\ ;Or>2a.*
L p J«o ^

II. Residues of certain Series containing -|(jp—3) terms (§§ 39-65).

39. In Vol. xxxi., p. 214, of the Proceedings, a general congruence
theorem was given connecting the first %(p— 1) coefficients in a
general expansion formula; and the two following formulas were
given as particular cases :—

(i.) E0-E1 + E2-...+(-l)^"-^Ei(l,.1) =0, modp,

(ii.) I 0 _ I 1 + J 2 - . . . + ( - l ) » ( - ) | J 1 ( / ) . 1 ) e 0 ,

the last term in the second series having the coefficient f. The
values to be assigned to EQ and 70 are respectively 1 and ̂ .

Since -2?j!,,-» = 0 or —2, mod p, according as p is of the form 4k +1
or 4& + 3 (§ 14) and /i(f,_i) = 0 or (—l)*(p'!), mod p, according as p is

• The formula? for the residues of the A's and 0 'B require modification, if
p ^ c—a (see notes to §{ 10, 19).
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of the form 3& + 1 or 3k+2 (§ 15), these formulas show that

(i.) # 0 - # 1 + # s - . . . + (-l)»<"-3>JW3)s=0 or - 2 , modp,

according as p is of the form 4-k + l or 4fe + 3, and

(ii.) I 0 _ I 1 + I8-...+(-l)»<'-3>I4(p.8) =E 0 or -f , modj,,

according as p is of the form 3ft + 1 or 3/c + 2.

40. These results may be generalised by means of the formulas (i.)
and (ii.) of § 32, so that we may obtain the residues of similar ex-
pressions in which the coefficients of the expansion are multiplied by
successive even powers of any number m; e.g., we may assign the
residue, mod p, of

41. To obtain these general results we start with the formula

(1)

where (p—l)t denotes the number of combinations of p—1 things
taken t together.*

Since (p — l)t = 1, mod p, we find, by transposing to the left-hand
side the first term on the right-hand side, and writing the terms on
the right-hand side in the reverse order,

^ - ) , mod p.

• This formula may be derived from the first formula on p. 155 of Vol. xxix. of
the Quarterly Journal by putting n <= p, using the relation

to replace V'B by 2?'B, and dividing throughout by p.
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Putting rx — —, and noticing that mp'i = 1, mod », we obtain the
m

formula

rB, (1) +^^,(1;) +»VB. (1) +... +f-V2U (1)

.if^p(2±l)_rt,(fe=ll-±l)} _,.„, (1),

42. Now, by § 32, the right-hand Bide

2m

—1-4- F— J , modp ,

p ,.OT L p Jrm

and we thus obtain the formula

s . 7. + 1 ( pr -D^ + n - f5±1] I +{11 , modP.2 2m I L p JM L p -L) ipJr F

Thus the residue of the series depends upon r and m and upon the
residue of p, mod rm.

43. Sinoe 22"+J#,,,+1 (£) = 0, the left-hand side is zero when r = 2;
and it is easy to see that the right-hand side also is equal to zero.

44. Since 4 ^ ^ , , , (J) = ( - l ) ' " 1 ^ , (§12),

we find, by putting r = 4,

[--±l] }- [ ! ] , modp,
tm L p Jtm) L p J«

which gives the residue of

E0-m
iEl + miE

for all integral values of m.
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45. For m = 1 the right-hand side of the congruence

-»+*{[!H£LH}].

p la

Now — always = 1, and — = 1 or 3, according as^> is of the

form 4&+1 or 4/c + 3. Therefore

... + (-l)»<p-3).E?l(p.3) = 0 or - 2 , modp,

according as p is of the form 4& + 1 or 4fe-f-3- This formula was
given in § 39.

46. Putting m = 2 in § 44, we have

The residue — = 1 or 3, according as p is of the form 4&+1 or
Lp Jt

4k+S. The other residues are given for the different forms of p by
the following congruences :—

if p == 8/s + l, x = 8, mod 8, giving xx — 3,*

»i »i ® ~ '» >i »> «"i = = ' !

if p = 8& + 3, 3x = 3, mod 8, giving a», = 1,

ii »» " x = ' » i i >i ^ ' I ^ " J

if p = 8k + 5, 5a; = 3, mod 8, giving aj, = 7,

n II 5a; = 7 , „ „ a1, = 3 ;

if p = 8fc + 7, 7a; = 3, mod 8, giving a?, = 5,

II >> ' x — '» II II ®i ~ •'••

• x, will always be used to denote the least root of the congruence in question.
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The residue of the series is therefore, in the four cases,

2+i(3-7)-l=0,

respectively. Therefore

E0-2
iEl+2'Ei-...+(-l)«>>-3)2>-aEi(p_3) s 0, - 2 , 2, 0, modp,

according as p = 1, 3, 5, 7, mod 8.

47. Putting m = 3, we have

The congruences giving the first two residues are

if p = 12& + 1, x = 1, mod 3, giving or, = 1,

„ „ x = 5, mod 6, „ a, = 5 ;

if p = 12ft+ 5, 5* = 1, mod 3, giving xx = 2,

„ „ 5a; = 5, mod 6, „ xx = 1;

if jp = 12/5 + 7, 7x = 1, mod 3, giving x^ = 1,

„ „ 7JB = 5, mod 6, „ », = 5;

if jo = 12/c+ll, llaj = 1, mod 3, giving as, = 2,

„ „ Ho; s 5, mod 6, „ 3, = 1.

Thus in the four cases the residue of the series = 0, 2, — )i, U, re-
spectively ; and therefore

J570-3^14-3%~. . . + (-l)»c-3)3"-3^1(p.3) s 0, 2, - 2 , 0, modp,

according as p = 1, 5, 7, 11, mod 12.

48. Similarly, putting m = 4,
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By considering as in the two preceding sections the values of the
residues according to the different forms of p, we find that

= 0, - 2 , 0, - 2 , 2, 0, 2, 0, modp,

according as p = 1, 3, 5, 7, 9, 11, 13, 15, mod 16.

49. Putting now r = 3 in the general congruence of § 42, and
using the formula

we find

2m ( L p JStii L P J3m 3 LpJs

50. By putting w = 1, 2, 3, 4, and determining the separate
residues exactly as in the case of r = 4, we obtain the following
results:—

(i.) I , - I 1 + I l - . . . + (-l)*c'-«Ij0,-,-3 0 or -f,

according as p is of the form 3A; + 1 or 3fc+2. This formula has been
already given in § 39.

(ii.) I0-2*Il + 2%-... + (-l)"»-»2>->Ii(l,_3)^01 modp,

for all values of p.

(iii.) I0-3%+3%-... + (-iyo-»3>>->Ii(l,_3)

= O,-f,O,O,f,O, modp,
according as p = 1, 2, 4, 5, 7, 8, mod 9.

(iv.) J0-4s/1 + 4%-.... + (-l)^-8>4"-3Jlfp.3)

= °» -f. 1,0, modp,
according as p = 1, 5, 7, 11, mod 12.

51. It may be remarked that in general, if p is of the form fcrm+1,

'-'r'-2Bt.1(—\ =0, modp;
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for in this case the value of the right-hand side of the formula in § 42

—" "™* "7T "H ^— i (r—~ 1) m -j-1 — (ni 4* 1) | -}-1 ^ 0.

oa. xne A -iormuia corresponding to the 5-fprmula of § 41 is

l (1) +(«)«-Vili(I) +...+(nB)y-»^;.1 ( i ) , modp,

whence, putting r» = —,

v^ (I( I ) +mVA'> (7)+...+»"-V-M;., (1)

53. By § 35 the right-hand side

-i{i=±i) +(fe=n-±i) ]_(i),m o d p !
2?>l I * p /inn \ p / 2»in ) \ 7̂ / Jr

and therefore we find that

where .4 = 0 or rm according as the least root of px = m + lt

mod2rw, is ^ or > rm; B = 0 or rm, according as the least root of

jja; = (r — 1) «i + l,'mod 2rm, is ~^ or > rm ; and c = 0 or r, according

as the least root of px = 1, mod 2r, is ^ or > r.

54. Since 22»+%'n+1 (^) = ( - 1 ) " En (§ 25),

the formula becomes, by putting r = 2,

. . .+(-l) i ("-3 )m' '-3^( p_s ) = A-0, modp,
tn
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where A = 0 or 2m according as | — < or > 2m,
L p _Um

G = 0 or 2 „ „ f~—1 < or > 2.

Thus 0 = 0 or 2, according as _p is of the form 4k f 1 or 4fc+3.

( 2 \
— ) = 0 , and therefore the series = 0 or
p U

—2, modp, according asp is of the form 4& + 1 or 4fc-f 3.

When m = 2, A = (—) , which = 0, 0,4,4, according as p = 1, 3,v p /8
5, 7, mod 8. Therefore the series = 0 , - 2 , 2, 0, mod p, according as
p = 1, 3, 5, 7, mod 8.

When m = 3, A= (— ) = 0 or 6, according as p is of the form
\p In

3fc+l or 3fc + 2. Therefore the series = 0, 2, —2, 0, modp, according
as p = 1, 5, 7, 11, mod 12.

When m = 4, A = I—^ , which = 0 if p = 1,3, 5, 7, mod 16, and
\ p I ia

= 8 if p = 9, 11, 13, 15, mod 16. Therefore the series =0 , - 2 , 0,
— 2, 2, 0, 2, 0, mod p, according as p = 1, 3, 5, 7, 9, 11, 13, 15,
mod 16.

These results agree with those already obtained in §§ 45-48. It
will be seen that the second formula (§ 53) is simpler than the
first* (§44).

* Comparing the two formulte of §§ 44 and 53, we find that they lead to the
equation

L P Jim L P Jim L P Jim

This relation may be proved independently; for, if p = 4km + h, h being < 4M» and
prime to it, and if au bx, c{ be the least roots of the respective congruences

hx = w» + 1, hx = 3w»+ 1, hx = 2w»+ 2, mod 4»n,

then h(al + lii—cl) = 2m + \Am,

Ox j . 1

c 2w »2»i•whence ai + A , c { =

j> being an uneven integer. Now it is obvious that v cannot be > 1, for au blt ex

Are all ~^ im, so that «! + £, — ct cannot exceed 8»>, and therefore we must have v =» 1.

VOL. XXXII.—NO. 722. O
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56. Since 4*+I4.+1 (*) = (- l)"2Pn (§25),

we find, by putting r = 4,

1 (Ym + 1\
4m (A jp /8m jp Jim) \pJ»

where J. = 0 or 4m, according as < or > 4m,
\. p Jem

B = 0 or 4m, „ „ — < or > 4m,
L jp J 8«»

(7 = 0 or 4, „ „ \—1 < or > 4.

As particular cases we find

(i.) P 0 -P 1 +P a - . . . + (_l)*d'-3)pi(p_3) = 0, 1 , - 2 , - 1 , modp,

according as p = 1, 3, 5, 7, mod 8.

(ii.) P0_28P1 + 2*Ps-... + (-l)»^-8)2p-8P4(p_,)
= 0 , 1 , - 1 , - 2 , 2 , 1 , - 1 , 0 , modp,

according as p = 1, 3, 5, 7, 9, 11, 13, 15, mod 16.

(iii.) P0-3U\+3^P1-... + (-l)*(*-"J3*-sP4(p-,,

s O . - l i - l , 2, - 2 , 1, 1,0, modP>

according as p = 1, 5, 7, 11, 13, 17, 19, 23, mod 24.

57. For r == 3 the formula of § 55 gives

from which we obtain the particular cases:

(i.) H0-Hl+Si-...+(-iy^Hk(p.3) = 0 or -f, modp,

according as p is of the form 3fc + 1 or dk + 2.

• The value of Po is 1 (§ 25).
t The value of Mo i*£ (6 25). The values, of Hn up to n =» 13 were given in

Proe. Lond. Math. Soc, vol. xxxi., p. 229.
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(ii.) fl;-2>Fl + 2 % - . . . + (-l)«'-»2'->fliM

= 0, -3,3,0, mod;?,
according as p = 1, 5, 7, 11, mod 12.

(iii.) ^ - 3 ^ , 4 - 3 % - . . . +(-l)'<'-8>3"-8fl1(p_S;

= 0 , -3 , f , - f ,3 ,0 , modp,

according as p s l , 5, 7, 11, 13, 17, mod 18.

58. If p is of the form 2krm-i-l, the right-hand member of the
general formula is zero, for ia this case each of the quantities A, I>,
0 (§ 53) is zero, so that we have

;.2(i) = 0,

The corresponding JB-formula was given in § 51.

59. I have verified numerically all the formulae involving JE"S,
I's, P's, and H'e in §§ 45-50 and §§ 55-57 for the values 5, 7, 11,

60. If in §§ 41 and 52 we put rx = m (instead of — ), we obtain
°° \ ml

similar series, but in which the coefficients are descending powers of
ra2, viz., tnv'x, mv~n, m''~i, ..., r/i2. Since m''"1 = 1, modj), we may also

write these coefficients 1, - $ , —r, ..., —•-—..

We thus find

o 2
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whence, by § 32,

61. It will be seen that in the formulfe (i.) and (ii.) the classifica-
tion of p is much simpler than in the corresponding formulas of
§§ 42 and 53, viz., the different cases depend upon the residue of ?*,
rnod r or mod 2r, instead of upon the residue of p, mod mr or
mod 2»/r. Thus the number of cases is only f (r) or <p (2r) instead
of (p (mr) or 0 (2mr), where 0 (n) denotes the number of numbers less
than n and prime to it. Not only therefore is the number of cases
smaller, but the cases themselves are independent of m; so that for
any given values of p andm the residue of the series, mod p, depends
only upon the residues of p and m, mod r or mod 2r.

62. Putting r = 4 in (i.), we have

Denoting the right-hand side by B, we find, by putting successively
m = 1, 2, 3, 4, that, if p = 4& + 1, then

R = 0, 2, 2, 0, according as m = 1, 2, 3, 4, mod 4,

and that, if p = 4k + 3, then

iJ = — 2, —2, 0, 0, according as m = 1, 2, 3, 4, mod 4.

Thus the residue of
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is given by the following table:—

p = l

m= 1

0

- 2

m = 2

2

- 2

m = 3

2

0

m = 4

0

0

n which the headings of the columns are the residues of m, mod 4,
and the arguments of the lines are the residues of p, mod 4.

Thus, for example, since 7 = 3, mod 4, the table shows that

^r ,^(P-3,= 2 orO, modp,

according as p is of the form 4>k+l or

63. It is to be noticed tha tp must not be equal to m, and that the
formula and the results given by the table require modification if
p<vi. For in § 10 it was necessary that I should be < p + r , which
in this case gives ra+3 < p + 4, that is, p > ra—1.

64. Putting r = 2, the formula (ii.) of § 60 gives

) ,

from which we may derive, and in a simpler manner, the results
given in § 62.*

I have verified these results numerically for the values 1, 2, 3, 4,
5, 6, 7 of m, and the values 5, 7, 11, 13 of p.

* Comparing the two formulas, we obtain the relation

L P J i L P J« L P J *

which may be proved independently by the same reasoning as that employed to
prove the similar theorem in the note to § 55.
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65. Putting r = 3 in (i.) of § 60, we have

[May 10,

p p p

From this formula we obtain the following table giving the residue
of the series accoi'ding to the residues of m and p, mod 3 :—

p = 2

m = 1

0

- I

m = 2

«

0

m = 3

0

0

Thus, for example, for m = 5, which = 2, mod 3, we have

^o-lul^-.+l-ir^^-^forO, modp,

according as p i s of the form 3& + 1 or 3& + 2.
I have verified the table for m = 1, 2, 3, 4, 5 and p = 5, 7, 11, 13.

The results require modification if p < m.

66. In this paper I have restricted myself to the consideration of
the Bernoallian functions Bn (x) and A'n(x), when the suffix w is
uneven. I have obtained also the residues of these functions in the
case when n is even, but the results are more complicated, and I
reserve their consideration for a separate paper.




