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Homographic and Circular Reciprocants. By L. J. Rosers, B.A.

[Read March 11th, 1886.]
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In the following pages the following abbreviations will always be
employed :
dy dy &y

t,a,b,c, ... denote 3w ar P

respectively,
n denotes the characteristic of a reciprocant, and ¢ the degree, in
cases where the reciprocant is homogeneous.

As I shall have to refer to homogencous and orthogonal recipro-
cants, it will not be out of place to state first the manner in which
successive educts in each system are formed. In every case these
unreduced educts will be employed as the protomorphs of the corres-
ponding system. We shall begin with the simplest forms, viz., the
mixed homogeneous, and pass on to pure, and then orthogonal forms.

§ 1. The formation of mixed homogeneous reciprocants has been
explained by Prof. Sylvester in Mess. of Math., Sept., 1885. The
simplest absolute reciprocant of tho system is a/#, and the successive
educts are formed by operating with 'tlT ‘%, each operation giving a
new absolute reciprocant. )

Now, if we take such a fuuction u that

ap\'_
(%)

dz/ ~ de’
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this operation is T and, if we consider its effect on a reciprocant of
dpe

characteristic », and omit the denominator &}, it is equivalent to
td,—§na, raising the characteristic 3.

We write then ' il;: = t(;-i — Lua,
and detine M), M, ... by the following equations :—
M=a (n=23)
M, = tb—3a® (n=6)
2M, = 2%~ 10tab +9a* (n=29) e (s
42, = 48'd—308ac— 204°b* + 12440’ —8lu* (n = 12)
&e.,
so_that d—dﬂf = M,y

In this system every M is negative in character; and therefore every
reciprocant function of the M’s must be either of an odd or an even
degree in every term, though not necessarily homogeneous.

Thus 2M;—9M; is a reciprocant (the post-Schwarzian), the degree
being 0dd throughout, but M+ AL, is not ; = is given by the equation

n = 23,4+ 3ad, +4bd,+ ...,

and in an irreducible function of the Al's, # = 3w, where w is the
common weight of each term ; but, if the Al-function contain a factor
t the characteristic of the remaining factor is 3w—2v, since the
characteristic of ¢ is 2. As we only concern owrselves with this re-
maining factor, we shall write

= w—v

n = 310—2v}

§ 2. Pure Reciprocants.
Pure reciprocants are formed by the successive operation of

a-t % on any absolute pure reciprocant.
d

If we take a function p such that

(%) =%
dal — da?’
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this operation is cgi, and is equivalent to the operation of ad,— T’;— b
p

. on a pure reciprocant of character n. Hence

g _ s_n .
dp—a3, 3 TR ¢))

omitting denominators as in § 1.
Operating successively with ;—i- on the well-known pure reciprocant
p

3ac—>5b% which we shall call 3R,;, we get the following system of
pure educts,

3R, = 3ac—5b* (n=8) °
IR, = 9a’d—45abc +40b* (n=12) % ...... (2),
9R, = 9a'—9a’ (7Tbd + 5¢°) +255ab'c—160b* (n=16)
&e.,
go that %%—' = R,.,

In this system any R with an even suffix is positive, and any with an
odd suffix is negative in character. Any isobaric function of the R's is
a reciprocant, and there is no restriction as in the case of mixed re-
ciprocants.
As in the homogeneous mixed system, we have
n = 3ad, +4b8,+ 5¢d.+ ...,
and in an irredacible R-fanction » = 4w ; bat, if a” occur as a factor,

1= w—v

n = 4w~ 3v}
Any pure reciprocant is annihilated by ¥ where
V = 84%,+ 10abd, + (15ac+10b%) 8.+ ...,

in which 10ab = ¢, (82?) + 4ab, 15ac+10b* = 3, (10ab) +Sac;
the next coefficient = ¢, (15ac+ 10b%) + 6ad, &c.

§ 3. Orthogonal Reciprocants.

In this system the geunerating operation is
d

-1 4 4
1+¢) dx’ or ds’

where (%)’= 142
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Acting on the numerator of an absolute orthogonal, zi‘—i- is equivalent
S
to (1+4¢)9,~nla, and raises the characteristic by 8. The simplest

absolute orthogonal is a (1+1*)~%, which we shall call ¢,, being 11_@’

s
where ¢ and s are intrinsic coordinates. Or rather, omitting denomi-
nators, we have, for the system of orthogonal protomorphs,

h=oa (n=3)
¢s = (1+¢) b—3a% (n=6) ¢ «oere(l),
¢s = (1 4+8) c—10abt (1 + ) +3 (582°—1) a® (n=9)

&e.

Here also, as in mixed homogeneous reciprocants, every ¢ is nega-
tive in character, and the same remarks apply to ¢-functions as to
M-functions.

The characteristic of any ¢-function, containing (14 £')” as a factor,
is just the same as what we had in M-functions,

n = Sw—2»,
and 1= w—v.

The differential equation for determining n is more complicated
than in the previous cases. We have, in fuct,

nt == (14+8) 0,4+t (3ad,+4b0, + 5¢6.+ ... )+ V .coeevuvenn (2),
where ¥ is the pure reciprocant annihilator.

I have hitherto been obliged, for the sake of explaining my nota-
tion, to dwell at some length on facts already known; but the chief
difference of notation liesin the fact, that I have used as protomorphs
in every system the unreduced educts of the first and simplest form.
Unless this principle be adhered to, the M-, -, and ¢-functions will
not be isobaric, as is necessary that they should be. I have morcover
always made the coefficient of the leading term in every protomorph
in any system equal to unity.

One point of difference must be noticed as regards the weights of
the letters ¢, a, b, ¢ ... in the M and I protomorphs.

In making a = M,, th—3u® = M, &c., we assume the weights of
- t,a, b,... tobe 0, 1, 2, ... respectively; but, in writing ac— &0 = R,
&c., we agsume the weights of «, b, ¢, ... to be 0, 1, 2, ... respectively.
This is done in order to make the characteristic of cach protomorph
in either system a constant numerical multiple of the weight.
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As an example of the utility of these protomorphs, we can deduce
some interesting properties of the operator V.

It is easy to show that any M-function can be expressed in terms
of t, M), M,, R, Ry, ...

For, let F be such a function, and let it contain letters as far as f.
Then, since 3; and I ave linear in f, wo see that M, is a function of
¢ a, byc, d, e, ;. In the same way, M; and e are functions of ¢, a, b,
¢, d, R, In this way we may eliminate b, ¢, d, ¢, f from the A-func-
tion and replace them by functions of E;, L,, By, Ii, AL,

The operation of ¥, therefore, on I is
Vt.8+ VM, oy + VM0, + VR, .0p,+...,

every term of which vanishes except the third, and

= yar, AF _ gy 4F
Vl’ — ﬂ[’ dM2—3at(ZMa SO INE NN a0V N e '(3)'

Now & il be a reciprocant, for,let F' be expanded in . powers

w &L

ddM,
of 1l,, viz., F= A+BM+CM +...,
where ., B, 0 are rcciprocants, then, if

F be of characteristic »  and character g,

s0 will A 9 " ” 9
B " n—6 ” -q,
C ” n—12 . q
&C. &vb‘.
Morcover, ar B+20M,+3DM; +...,

4,

overy term of which is obviously of chavacteristic »—0, and charac-
ter —q.

q 2, 4I —_— . -
Hence 3a* —— or VI is a veciprocant of characteristic n+2 and

3

character —q ..o (4).

The same reasoning applies to orthogonals, since all such can be
expressed in terms of 148, ¢, ¢;, Iy, By, &c. ¥V therefore acting on
an orthogonul yields another of opposite character, and of character-
istic greater by 2 than the first.
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Similarly, the operation 2%, — V is the same as

35 4 0p0M, d__ a
200 +20 0 o Vi,

which 1is easily reduced to

3 a4 4.
208,420, g7 or 2t(t3,+M,dM2).

If therofore ¥ be expanded in forms of ¢ and M,, the operation
s d
tat + Mn EE

will only alter the value of the numerical coefficients in the expansion,
1.e., it will give another reciprocant of the same kind.

Hence 2£%3,— V gives a new mixed homogeneous reciprocant, in-
crcasing the characteristic by 2, and not altering the character ...(5).
Now, 1—# is a negative reciprocant of characteristic 2, therefore
201+ 66—+ V

and a-v
both add 4 to n, and ave positive operations, i.e., do not alter the
character.

Adding and dividing by #, whose n is 4, we geb the positive operator

(LB &=V eioiiiiiiieiirer (5,
which does not alter the character.
Acting on tb—Ju*, we thus get
(1+8) b—38a’
Acting on tc—5ab, we get

(1+ ) c—10abt + 150",

Tho operator (G) seoms to be analogous to the reciprocantive opcrator
9, for orthogonals ; for, operating on the last two obtained orthogonals,
we come back to the reciprocants we started with. The same is
casily found to be trauc gencrally, if we start with a mixed lLomo-
gencous reciprocant which only contains ¢ to the first power.

This analogy seems to foreshadow the results established in the
next section.

§ 4. Comnection between Orthogonal and Mixed IHomogencous Re-
ciprocants.
YOL. XVIL—N0. 267. Q



226 Mr. L. J. Rogers on [March 11,

Let £, n be determined by the equations
E=uwtys, n =9+,

dy d*y

and let 7, a, /3 vepresent y Ty eee s
dET dE

T4+0  (Q+8)*

dg =l+t=13 \/1—:—-£

d

We have then T

-

20 dv__ 2a_
(L) & A+6)*

« 9 0 _ K

or — - . - = —, —‘5-—, 8
A O T LR S E O L

ay.

Dilterentiabing again, we get

=3¢ _ & (1+8) b3 de

B S B ¢ U R
or B & (141 b3
® a+ey

By this process we form tho suceessive orthogonal protomorphs on

the right hand, and the mixed homogencous in & and » on thoe left.

Culling, thercefore, the latter g, py, ..., we get
“4":‘7!"'} ST 4 | ¥
Ky = Uy

and, generally, kP, = ',

where k=—2V—1

Any homogencous isobaric p-function only differs by a constant from
the corresponding p-function, so that if any Al-function be cquated to
zero, and its complete primitive be y = f (&), then the corresponding

¢-function will have grai=Ff+yi) v (2)
for its complete primitive.

Morcover,any orthogonal can be converted into a mixed homogeneous
rociprocant in £ and 4. For, sinco a ¢-function must be isobaric, we
may neglect the powers of 41, as we sce from § 1, and since the degrees
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of the terms are either all even or all odd, only even powers of « can
occur, after neglecting some power of «, if necessary, which runs
through the whole. Hence the rosultmg p-function is always real.
Thus ¢;+18¢? is the well-known orthogonal

(1+8*) c—10abt + 15a%,
so that the corresponding p-function is
Kty 18kpd = & (s +18p3),
or, giving x its value —2v/—1, &e get
2y~ 9p1,
which is casily seen to be the post-Schwarzian in £ and ».

§ 5. A Homographic Reciprocant is a rcciprocant that remains un-
La+M Ly4+M

altered when @, y arc changed into , —, respectively,
where LMNL'M'N’ are constants. 2+N " y+N »

Such reciprocants, when cquated to zero, give of course complete
primitives of the form I—;IE'*%'L =f (1%%1) RTTTRRSTRRURRUPR ¢ § X

They will, moreover, always be mized pnd homogencous, since we may
put Az +p for z, and Ny <+ for 3, without affecting the reciprocant,
but we cannot put Az+ py + v for 2, &c., so that this class caunot con-
tain purc reciprocants.

Let us first consider differential expressions which romain Wnaltered
La+M
‘e+ N
to this set, and is also & reciprocant, it will be an homoguﬁ,phlc re-
ciprocant.

when « is changed into | If :ulny function of ¢, a, b, ... belong

It is well known that if u, y bo functions of «, that

w10 (%)

- (8 o () - (B2 (5 ()] o

Now, if %= ‘%{JNM ,
&r dg ,(d’:v '
then A du’) -
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as is easily shown, and consequently

—3g . . .
£ t‘”a' = the same expression with « instead of z,

and is therefore unaltered if » be changed homographically. We
may, moreover, differentiate as often as we please for y, i.e.,, operate

with % a%, and we shall get a series of functions which remain un-
altercd by this change in . If w be the power of ¢ in the denomina-
tor of any such function, the opera,tioﬁ —1t— [—;% is evidently the same

as operating with ¢5,—wa on the numerator and adding 2 to w, and
w will be given by the equation

w = £d,+ 2ad, + 308, + ....

The numerators of the successive educts are

th—3a® (w=4)
fc—6tab+6a® (W=16)7 .eovrieriiiniinnn...(3).
&e.
Assuming as an annihilator 49,4 B8+ ... = H say, we see that
' H (td,—wa) =0,

omitting the cxpression to be operated upon. That is,
tHo, = wd = ¢ (Hé,—9d.H),
because 0. H=0.

But Hd,— 9. H contains no differential operators of the second order,
and because J, = ad;+bd,+... we get

t (H3,—3,H) = tA8, 4t (B—3,4) 8,+t (O—3.B) &+ ...
= A (13,4240, +3bd, + ...),

therefore t (B—é,4) = 2a4, &e.

Testing for th— 2a%, we must evidently have
{B = 3a4,

therefore t0, A = ad.

Integrating, we get 4 =,

and because B -6, A = 2a,

C—9,.B = 3b, &c.,
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we evidently get H = t3,+3ad,+ 600, 4+ 10cd,+ ... ...covnne.on.o (),

so that the pﬁ.rticula,r differential functions in question are binariants,
and can be converted in ordinary invariants by changing ¢ into a;
ainto 2!b; b into 3! ¢, &e.

§ 6. Besides the annihilator given in § 5, homographic reciprocants
will also have another annihilator which bears a remarkable analogy
to V.

It is easy to show, from § 5 (2), that the expression

th—2q°
2

-———t—L—- remains unaltered on changing y into Ly+M

y+N'’

and consequently we may differentiate as often as we please for z,
and we get a series of expressions having the same property.

The power of ¢ in the denominator is the same as ¢, the degree of
the numerator, therefore

1= 10, +ad, + b+ ...,
and the operator for the numerator is
8. —1a.
Proceeding, as in § 5, and assuming
43,4 Bay+ ...
as an annihilator, we get ¢ (B—é,4) = Aa,
t(C—2,D) = A4b, &e.
Testing for tb— %a,’,'we have, as before,
tB = 3ad,
10, A = 2aA4,
whence A=1
and : B—04 = at,
C—oD = bt,
D—4C = ct, &e.,

giving the law of forming the successive coefficients. Hence the
annihilator is :

80, + 3atd, + (4bt+3a?) 3.+ (5ct+10ad) du+ ...  veee.... V.
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Homographic Reciprocants have therefore two annihilators, but
neither are sufficient to prove the reciprocant property.

§ 7. Hitherto we have obtained only one homographic reciprocant,
but if we can obtain one more we can deduce an infinite number.
For we can then obtain one absolute homographic reciprocant, which
by differentiation for # will give another non-absolute reciprocant, also
homographic. This, combined with the first to form another absolute
reciprocant, will, by again differentiating for «, produce another; and
the process may be carried on indefinitely.

. We can ensily show that

AMM=5Mi+0’M; oo, (1)
is homographic. _

" By actual calculation we easily find

HM, =1t,
HM, =0,
HM, = tM,,

4HM, = 10tM,—2atM,.
Hence H(4M, M,—~5M}+a*M})
= M, (10¢M,—2atM,) —10tM, M, +2at M} = 0.

We see, therefore, that there will be au infinite number of homographic
reciprocants.

§ 8. We now come to a class of reciprocants for which the most
suitable name seems to be Circular Reciprocants.

We have seen, in § 4, that from any class of M-functions can be
deduced o corresponding class of ¢-functions, the latter being real
only if the former be reciprocants. Now, we have obtained such a
class in Homographic Reciprocants, viz.,

M, 4M,M,—5M3+a’M,, &c.,
see § 7, whence we see that the class of ¢-functions

¢5’ 4'%?4—51::—-4“’% ee &C.
are not altered if we change

z+yi into L m+'z/i)+1l[’

2+yi+ N

and y+at into %L}Dg
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Since we may replace z by —¢ in either of these equations, wé obtain
the relations that

w2+y2 becomes —(:u_-f-lV)’_-I-y'i— ,
o (Le+M)(z+ N)+ Ly?
" (=+N)'+y
, . @N=iny
7 (m+Ny+y?

with a further transformation obtained by interchanging = and y,
and adding dashes to L, M, N.

On account of the numerators and denominators of the fractions
presenting circular forms, we shall call such ¢-functions that are
annihilated by (1) Circular Reciprocants. The simplest is ¢,, or
(1+¢*) b— 3a’, giving the general cquation to a circle as complete
primitive when equated to zero.

Thursday, May 13th, 1886.
J. W. L. GLAISHER, Esq., F.R.S., President, in the Chair.

Mr. F. W. Watkin was admitted into the Society.

The following communications were made :—

On Cremonian Congruences contained in Linear Complexes :
Dr. Hirst, F.R.S.

Solution of the Cubic and Biquadratic Equation by means of
Weierstrass’s Elliptic Functions: Prof. Greenhill.

On the Complex of Lines which meet a Unicursal Quartic Curve:
Prof. Cayley, F.R.S,

On Airy’s Solution of the Equations of Equilibrium of an Iso-
tropic Elastic Solid under conservative forces: W. J.
Ibbetson, B.A, ’

Conic Note: H. M. Taylor, M.A.

On the Converse of Stereographic Projectionand on Contangential
and Coazxal Spherical Circles: H. M. Jeffery, F.R.S.

The following presents were received :—

¢ Royal Society, Proceedings,” Vol. xr., No. 242.

¢¢ Educational Times,’” for May.

¢¢ Physical Society—Proceedings,” Vol. vi1., Pt. 4; April, 1886.
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“Solid Geometry,” by Percival Frost. 3rd ed., 8vo; London, 1886

¢ Annals of Mathematics,” Vol. 1., No. 6, Jan. 1885; Vol. 11., No. 1, Sept. 1886 ;
Charlottesville, Va.

¢“Bulletin de la Société Mathématique de France,” T. x1v., No. 2.

* Journal do 1'ficole Polytechnique.” 55 cahier; 1885.

“ Bulletin des Sciences Mathématiques,’”’ T. x.; Mai, 1886.

¢ Atti della R. Accademia dei Lincei—Rendiconti,” Vol. 11., F. 7and 8.

‘¢ Archiv for Mathematik og Naturvidenskab,” B. 10, H. 1, 2, 3, 4.

¢ Mémoires de la Société des Sciences Physiques ot Naturclles de Bordeaux,”
3me Serie, T. 1, 1884, T. 2 (1% cahier), 1885.

¢ Mitteilungen der Mathematiscten Gesellschaft,’” in Hamburg, No. 6; Mars,
1886.

*¢ Tidsskrift for Mathematik,” V. Rackke; 3 Aargang, 1—6 Hefte.

‘¢ Jornal de Sciencias Mathematicas e Astronomicas,” Vol. v1, No. 6.

¢ Observations pluviométriques et thermométriques de Juin, 1883, A Mai, 1884 ;
rapport sur les Orages de 1883.”" 8vo, Bordeaux, 1834, par M. Lespiault.

‘¢ Observations pluviométriques et thermométriques de Juin, 1884, & Mai, 1885,
rapport sur les Orages de 1884.” 8vo, Bordeaux, 1885.

C. Neumann—*¢¢ Uber dio Kugelfunctionon P, und @, insbesondere iiber die
Entwicklung der Ausdriicke

Dy (en+ V1=, vV 1—zg2cos¢) und Q, (22, + v 1—22. v/ 1—s7 cosg),
nach den cosinus der Vielfachen von ¢,”’ (des xm. Bandes der Abhand der
Math. Phys. Classe der Konigl. Sichsischen Gesellschaft der Wissenschaften,
No. v.), Leipzig, 1886.

““ Theory and Practice of the Slide Rule; with a short explanation of the proper-
ties of Logarithms,”” by Lt.-Col. J. R. Campbell, F.G.S. ; Spon, 1886 (from the
Author).

¢ Apnali di Matematica,”” T. x1v., F. 1.

On the Qomple of Lines which meet a Unicursal Quartic Ourve.
By Prof. Caviey.

[Read May 13th, 1886.]

The curve is taken to be that determined by the equations
ziyiziw=1:0:6:06,
viz., it is the common intersection of the quadric surface © = 0, and
the cubic surfaces P = 0, @ = 0, B = 0, where
| 0 = zw—1yz,
P =a%—1,
Q = 22’ —y*w,

"R= z‘—yw’. .





