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On the limits of certain infinite series and integrals. 

By 

T. J. I'a. BROMWICH of Cambridge (England). 

Four investigations*) have appeared recently which deal with various 
extensions of Abel's well known theorem on the continuity of ~ a . x ' ;  
the following note, although quite elementary, seems to include all the 
results hitherto obtained, and shews more clearly the reasons for the 
various conditions which have been g~ven. 

It will be seen that the conditions requisite to prove Theorems 
B, C (w167 3, 4, below) are less stringent (at least in theory) than those 
given by the authors quoted: thus, instead of requiring that _,~nk[ v.I 
is convergent and imposing various further conditions**) on all the 
differences A~v,, A S v , , . . . ,  A~+lv,, we only require that nktv, l shall tend 
to zero as n tends to 0% and that ~nkIAk+lv.l shall be less than 
a number /~, independent of the variable x. In w167 1, 2 we discuss the 
case k = 1 at some length, as the case most frequently used in applica- 
tions; and it is proved that the conditions of Theorem A include those 
given in all the previous investigations on this subject. 

w 5 contains a discussion of a question suggested by a comparison 
of w167 3, 4: Are the mean-values of CesSro and H6lder necessarily the 
same, for a given oscillatory series? This question is answered in the 
affirmative for k ~ -1 ,  2: for higher values of k, we can only say that 
Ces~ro's mean certainly exists whenever HSlder's mean exists, bu~ the 
converse has not been proved to be true. 

In w 6 we obtain two theorems on the limiting values of integrals, 
which correspond to Theorem A and a theorem due to D e d e k i n d  (and 
Cahen)  referred to in w 1. 

*) L. Fej4r ,  Math. Annalen, Bd. 58, 1904, p. 51. G.H. Hardy,  Prec. Lend. 
Math. Soc. (2), vol. 3, 1906, p. 247; and Math. Annalen, Bd. 64, 1907, p. 77. C. N. ~Ioore,  
Trans. Amer. Math. Soc. vol. 8, 1907, p. 299. 

**) That these condiGons are really superfluous is clear from the Lemma proved 
in w 
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w  

Series summable  by a single mean. 

Suppose that the series .~a~  can be summed by taking 
mean, so that if 

then 
s ~ =  ao + a~ + . . . -4- a,, 

So + s~ + . . .  + s,, 
~+I 

has a definite limit s as n tends to co. 
It  follows that we can find a cons~an~ C such that 

Then 

and so 

I S o q - S ~ W . . . § 2 4 7  1)C. 

Is,,I = l(So + sl + . . .  s,,) - ( s o +  sl + . . .  +- ~,,-,) l< ( ~  + 1 )c  

Again if we write 

we find 

and so 

a single 

la, l =  Isn--s,,_ll < 4nC.  

G =  so§247  § sn 

G-- s,,-- s,,_i --- G -  2G-, § G-~" 

These preliminary results being established we proceed next to enun- 
ciate and prove the first theorem, which is a direct generalization of 
one due ~o Dedekind and Cahen*). 

T h e o r e m  A. Su/ppose 

1) that the series ~ a  n is summable by a single mean, as just 
explained; 

2) that v, is a function of" x with the properties: 

(a) . ~ n  I A2v. I < K**) 

(t3) lim n v ~ = 0  

(7) lim v~=  1, 
x-*0  

@x>0, 

*) See E. Landau,  bfiinchener Sitzungsberichte Bd. 36, 1906, pp. 157, 160. 
**) Since all the terms in the series ~ n [  A%n I are positive, this condition im- 

plies the convergence of the series. 



352 T.J. I'x. B~o~wlc~. 

where K is independent of x and n. Then the series ~ a . v ~  converges i f  x 
is positive, and 

lira ~x'a~ v~ = s. 
x--~0 

For we have identically 

ao vo + al vl + �9 �9 �9 -t- any. 

=~oVo + (~1- 2~o) vl + ( ~ -  2~1 + ~o)V~ + . . .  + (~n-- 2~._i + 6._~) V~ 
= aoA~Vo + a~A2vl + �9 . .  + a._~A~v~_~+ a . v . - -  a._iv~+ ~ 

where 
A~Vn----- V n" 2Vn+ l + vn+ ~. 

~r since I~.1 < (" + 1)c, a.a si.ce __Y. Z~% is co.~ergen,t, it 
follows thai the series ~ a , A * v ,  is absolutely convergent; so that 

tends to a definitse limit as n tends ~o infinity. 
Also 

l ~ . v . [ < ( n + i ) V l v . l ,  t a._~v.+~ I < ' ~  01 v.+~ I, 

so tha~ a,v~ and a ,_  a v.+~, tend to zero as n tends ~o infinity, in virtue of 

condition (fl). I~ ~bllows that  ~ a . v .  is convergent and that  
o 

(1) 

QO ~0 

~anV n~ ~ 6  nA~v n. 
0 0 

Taking the special case a 0 = 1, a 1 --  a, ---- a 3 . . . . .  0, we flnd a M = n + 1 
and so (1) gives 

(2) vo =~X'(n + 1) a,v,, 
o 

Thus,  combining (1) and (2), we find that 

--~ 
@ (- + 

0 0 

Now ~ has s as its limit,  so that we can determi, n e m  in such a n + i  
way as to satisfy the inequality 

I 6. if n > m  # ~ 1  8 ( 8  7 = 

o r  

1 ~ . - ( -  + i ) s l <  (n + i)~, 
Also, for all values of n 

]a.I < (n + 1) C, and Isl_~o.  

if n > m .  
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Making use of these inequalities in (3) we have 
i ~ m - - 1  oo 

< 2c + + o  f + + =  f 
m - - 1  

(4) < 2 C ~ ( n  + 1)[ A~v~[ + ~ g  
0 

in virtue of'condition (~). 
Now as x tends to O, A~v~ tends to 0 in virtue of condition (7); 

and, since m has now been fixed, it follows that 
~ - -  1 

(5) lim ~ ( n  + 1) I A ~ I  = 0. 
x--)- 0 

0 

Thus from (4) and (5), we find that 

l im ~_j a, v~-- sv o ~_ ~ K 
x ---)- O 

0 

where ~ may be taken as small as we please, by proper choice of the 
index m: but this choice of m does not affect the limit on the left,  and so 
this limit must be actually zero. 

Hence 

x - ~ O ~  0 

or 

lira " ~ a  v~---- s 
x - ~  0,~--- /  n 

0 

w 

Comparison of the theorem of w 1 with earlier results. 

Consider first C. •. ~ o o r e ' s  Theorem I*); it is there assumed that  
for all positive values of x 

and that 
a ~  ~ o, (o__< ~x =< c), 

where 21, ~ ,  ~, c are certain positive constants. 
When these conditions hold good, (fl) of w 1 is obviously satisfied. 
To examine (a), suppose that x is such that c falls between vx  and 

(v + 1) x, so that 

*) Trans, Amer. Math. Society, vol. 8, April 1907, p. 800. 
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Now, taking a 0-- 0, a t = 1, a~----0, a s = 0 , . . .  in (1) of w 1, we have 

~ , n  h ~ v  n --~ v 1 
so that 

~ n  I a~v. f - vt 
(10 

v+l  *,+1 

Or, using Moore's condition, 

< 
v + l  

and by a well-known elementary theorem this again is less than 
2 B  1 2B 
o (,x)~ < q (c - x ) e  

Consequently condition (a) is satisfied if x ~ c ' ~  c. 
I note incidentally that in the same way Moore's Theorem II (1. c. 

p. 307) can be deduced from the theorem of Dedekind and Cahen already 
mentioned, which requires the condition . ~ I A v ,  l ~ k. 

We consider next H a r d y ' s  Theorem I*) which requires (for k----I) that 

v .~  O, Av .=  O, A2v.>__ 0 
and that .~nv,~ is convergent for x > 0. 

Under these conditions we have 

so that condition (a) of w 1 is satisfied; and nv,~ tends to zero, so that 
condition (/5) is also satisfied. Thus our Theorem A includes Hardy's 
Theorem I (for k ~ - 1 ) .  

As regards Hardy's Theorem II**), we then suppose that 
v . =  ~(.x),  

where 

and also 

Now we have at once 

K 
i ~"(~) I _- < ~+~,, 

I ~"(~) I < M, 

so that 

if~>= 1, 

i f 0 _ < _ ~  1. 

A~ep(nx) ---- r + 2)x} -- 2~0{(n + 1)x} + r 
X X 

o o 

] h2v.] < MxL 

*) Math. hnnalen, Bd. 64, p. 78. 
**) See p. 86 of the paper quoted. 

i f0  < n x ~  1, 
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and also 
]A~vn[ ~ Kx~ i f n x  ~ 1 --~ (~x) '~ +r - -  " 

Hence, since p is positive, we find 

1 

( 1 M x ~ v ( v + l ) +  ~(1+ =<s 
1 and thus we ge~ where v is the integral IBart of x "  

1 (1 + x) + 2~.Kx 

so that under Hardy's conditions, we can apply Theorem A of w 1 above. 
It is of course to be remembered that (for k -  1) Hardy's Theorem II is 
the same as Fejgr's result*), which is therefore also included under w 1 
above. 

Finally, if we use Hardy's Theorem III**), we must suppose that 
A~v~ changes sign only a finite number of times, say r times. We have 
then 

if M is the maximum of n lv ~l: and so condition (a) is again satisfied. 
It is therefore dear that Theorem A inehdes all previous results 

which apply to the case k-----1. 

w  

Series which are k.times indeterminate. 

Following Ces~ro***) we say that a series is k- t imes indeterminate 

if the limit of ~ exists and is finite as n tends to infinity, but the limit of 

3(k-1) does not exist; here we write for brevity 
A ~ -  i) 

S~)=s~ +ksn-~ -~ Kk+l)~! s._~ + . . .  + k(k+l)...(k+~--l)~! So 

*) Math. Annalen, Bd. 58, p. 62. 
**) See p. 88 of the paper quoted. 

***) Bulletin des Sciences mathgmatiques (2), t. 14,, 1890, p. 114; the definition 
of ,,une sdrie k fois inddterminde" is given on p. 119. See also Bore l ,  S~ries Diver- 
genbs p. 91, where, however, the precise definition is not elaborated for higher values 
than k--~ 1. The reader may also consult Ces~,ro, ,,Sulla determinazione assinbtica 
delle serie di potenze" Rendiconti della R. Aecademia delle Scienze fisiche e mate- 
matiche di Napoli 28 ottobre 1893; and Bromwich ,  Infinite Series (London, 1908), 
Arts. 122--129. 
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and 

More briefly, we may define ~ )  by means of ~he identities 

.Zs~ ) ~ = (i - z) - ~ s . ~  

from which i~ follows that 

and 

(i) 

---- (1 - -  x ) - ( k + l ) ~ a , y  ' 

.Zs.,~" = (1 - x)~ Z ~ :  ) x" 

a 

I t  results at once from the last identity thai  

a~_S~)  (k+i)~(2)+(k+l)ko(~) - ~ - . - ,  . . . .  + ( _  1)~+~:)  ~_~ 

where it is to be understood that when a negative suffix occurs 
formula, the corresponding S(# is to be replaced by zero; 
example, 

in the 
so that, for 

-and so on. 

I f  we now 
formulae, we find that  

aov o + alv 1 + a~v~ + . . .  + a~v~ 

(2) = S(ok) Ak+~Vo + S(k) hk+~v~ + . . .  + ~(k)~._k_l h~ + iV. + /~., 
where 

(3) ~ _ _ _ S ( 2 ) ~ { , . _ ~ _ ( k + l ) ~ . _ ~ + ~ + . . . + ( _ l ) ~ ( k +  1 ) ~ }  

+ s(:~+ { (k + 1)~ + + ( -  1) ~-~k(k + 1) 
1 Vn--k+l-- --k+2 " " ' 2! 

o �9 �9 , �9 

+ ~)v~. 
:Now when the series is k-times indeterminate we can find 

stant C, so that ,  for all values of n, 

ao ~ S(o k), al ---- ~k) _ (k -F 1) S(o k), 

substitute for ao, a l , . . . ,  a,~ their values given by these 

s!?) I 
o r  

(4) l s ( ~ ) l <  c n ,  since lira - ~  - N" 
~ - - N O O  

Thus from (3) and (4) we find that  

- - v ~ }  

a con- 

1~1 < c ' ( , -k )~  {Iv~_~l + (k+ i)Iv~_k+ll + - . .  + Ck+ i) Iv, I} 
(k+ i) k 

+ O ' ( - - - k + l ) k { I v . _ ~ + l l + ( k + l ) { v . _ ~ + ~ { + - " +  ' ~, Iv.t} 
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Now remembering that 

1 + (lc+ 1) + (~+l)~ 2~+~ 2x + . . . + ( k + l ) +  1 =  , 

we see that the last inequality, gives 

I/kl < 2~+1o'{ (~-z~)~ Iv._~l + (,,-z~+ iT Iv._,+ll + . . .  + ~'1~.!}. 
Thus B. will tend to zero as n tends to no, provided that 

(5) lira (n%~) -= O. 
7 t ' 4 ~  r  0o 

Under this condition, then, we see from (2) that the series ~ a.v.  con- 
0 

or diverges with the series~S~k)Ak+Iv, .  verges 
0 

Now, since lira -~  = k, and l i r a / ~ l  is ~nite, it fonows that 

the series ~ ,q ( k ) _~ +~  ~n ~ v~ is absolubly cofivergent provided that 
0 

r  

(6) ~ nkl Ak+XV,~] 

is cdnvergent, o 
Thus, under the two conditions (5) and (6), we have the equation 

r  r  

(7) ~ a , , v .  = ~ _ ~  S~ (~) A s + 1 v . ,  
0 0 

in which both sides converge, and the right hand is absolutely convergent, 
although the series on the left may not converge absolutely. 

In particular if we write 

% = 1 ,  a l = a ~ = a  8 . . . . .  O, 
we find 

s o =s~ =s~ . . . . .  1 
a l l d  SO 

Thus 
the identity 

the equation . ~ a . v .  .~S(~ ~) " ~+1 = za v, gives in this special case 

VO 

~ ~. 

0 

Combining (7) and (8) we find that 

(9) S o= 
0 0 

where s may be any number. 

Vn, 
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Suppose now tha~ s is Ces~ro's limit:~ so that 

/ s. (~) } 
= s ,  

while 

lim ~ j =  k--i" 
n-b-co 

Thus we can find m so that 

l s~ ~) -  s ~ ) l  < ~,~, ir ~ > ~. 
Further we can find a constant C such that 

i s2  ) ] < c , <  l s l -<  ~) < c ,~ 
for all values of n. So we find on using these inequalities in (9) 

(lo) 12o ,-,,I 
0 0 

m - 1  oo 

0 m 

Let us now introduce the further conditions that % is a function of x 
such that 

(11) l i m % = l ,  and ~ n k l A ~ + l % l < K ,  if x > 0  
0 

where K is independent of x and n. 
Thus, as in w 1, since lira Ak+lv,~= O, we find from (10) and (11) that 

x.-'~- 0 

x -'-~0 
0 

and since ~ may be made arbitrarily small by proper choice of m (which 
does not affect the limit on the left) we see that 

= 0 ,  
x- -~0  

0 

o r  

lim ~ a,~vn---- s. 
x - ~ - 0  

0 

Thus we have proved: 
T h e o r e m  B. Sup_~ose 
!) that ~ a .  is k-times indeterminate and has the 8urn s in Cesdro's sens G 
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2) that v, is a function of x with the properties: 

(a) "~n~lAk+lv~l< K*)}  i f  x > O ,  
(fl) lira n~v,~ = 0 

(~,) lim v, = 1, 
x--~0 

where K is independent of x and n. The~ the series ~ a , ,  v, converges i f  
is positive, and 

lira ~ a , v ~  = s. 
x - + 0  

This is obviously the exact extension of Theorem A, given in w 1 ; 
we proceed next to consider the effect of using ttSlder's mean instead of 
Ces~ro's in this theorem. 

w  

Series for which H61der's k-fold mean exists.  

The results obtained in w 3 are not capable of being compared di- 
rectly with the corresponding conclusions of Hardy's paper. Indeed Hardy 
does not use Ces~ro's limit at a11, but employs instead another kind of 
generalized mean, firs~ introduced'into analysis by HSlder**);  for the 
sake of brevity, we shall refer to this mean as H61der's mean. 

H(ilder repeats the process of taking the arithmetic mean as often 
as may prove necessary: thus if we write 

(n+l)H~(') = s0 + s 1 + . . .  + s,,, 
and 

(n+l )  H(~+~)=H~or)+H~') + . . . +  H~ ~), ( r -=1 ,2 ,3 , . . . ) ,  

it may happen that /_/~k) tends to a definite finite limit s as n tends 
to infinity. When this in the case, we say that H61der's k-fold mean exists 
and is equal to s. 

We shall now obtain the theorems, analogous to those of w 3, which 
apply when this k-fold mean exists. 

If we apply the transformation used by Hardy (1. % p. 81) to the sum 

(1) aovo + alvl ~ - ' ' "  "4- anvn 

taken up to n terms, instead of to infinity, it will be seen that the sum 
takes the form 

s o A v o + s~ A v, + �9  �9 + s .  A v .  + s~v,  + 1. 

*) As we have already pointed out in connexion with Theorem A, this con- 

dition implies the convergence of the series ~ n  } l As + 1 vn . 

**) Mathematisehe Annalen, Bd. 20, 1882, p. 535. 
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N o w  (as Hardy points out) lira s~ ~-~ n~ = O, so that lim (s,v,,+l) = O, provided 

t h a t  we make use of the hypothesis lira (n%~) = 0, which is the same as 
<Iondition (fl) in w 3. Thus for our purpose we may replace the sum by 

4,2) SoAr o + slav1 + . , .  + s A%. 
Simi la r ly ,  writing 

(nd-1)H~ (l)= s o+ s 1 + . . .  -{- s., 
w e  find that the sum (1) is equal to 

tt(ol) A~vo + 2H:l)a~v~ + . . .  + (n+ 1)H~(')a~v, + (n+ 1) H,(~) Av,+~ 

~tncl again the last term tends to zero as n tends to infinity, because 
//(1) 

l i r a  (niv , )  = 0, and lira n-r=-_ ~ = 0. 

I f  we continue this process we get a set of expressions equivalent to 
{i), nam~ly, 

<3) H~l)&'Vod- 2H~i)A'vl + . . . d - ( n + l ) H ( 1 ) A ~ v ~ ,  

.<4) + + . . .  + @ 

- Ss . . . . .  @ + 
~ n d  so on. The general result is 

k--i n 

<5) Z (--1)t' Z #'), ._~, (v) H (~)~_~, A ' + i - , " V  v 

where the polynomial f~,, (v)is of degree ( k - t 0  in v and is the s a m e  

polynomia l  as" that used by Hardy (1. c. p. 82). I t  is then easy to see that 
the  argument given in w 3 can be at once extended to shew that each 
<)s t h e  series 

r 

is absolutely $onvergent provided that all the series ~n~IA~+l%l are 
O0 

~onvergent ,  when I takes the values 1, 2,,...~ lc. Thus Z %v, is then 
0 

convergent .  And if in addition each of the series ~,nXlA~+lv,,I is less 
f l ian a fixed number K,  we can prove by a method similar to that of 
w 3 ~hat 

lira . ~  % v~ = s . 
x - ~ 0  

W e  have, however, apparently introduced k separate conditions as to the 
differences A~v~, . . . ,  A~+lv,, whereas in w 3 we only needed the one 
c o n d i t i o n  ~nkiA~+Iv~l < K .  We now proceed to shew .that this one 
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condition includes all the others; and obviously this statement will be 
established by proving the following lemma. 

Lemma. I f  .Z ,e . la~ l  < 2r, th~,~ ~ - I  t~,l < K p~ovided that 
lira u. ~ O, ,I beinq any positive inie!Ter. 

For since ~na lAu, , ]  converges, so also does . ~ l A % : :  let us write then 

(6) ~r= Izx%] + ]ZXu~+,l + IZXu.+,i +... .  
Thus 
(7) U.--  U~+~= ILXu~I 
mad 
(s) 

But;, since both u~, 

u . -  v-,, > !a,,~ + ZXu~+, + . . .  + Zxu,_~l 
~ ! u , , - - % ,  if p > n. 

and Up tend to 0 as p tends to o% the last inequality gives 
(9) 
Now we see from (7) that 

(10) ~.e'n~IAu,,!  = 
1 

and 

(:i) 

,p 

1 
Y 

Thus, using (10) 
$, 

(i2) 

But 

2: 

=,,~{ la,s§ Izx%+~f +...} 
oo  

v +  1 

and (11), we find 

1 1 

Hence, letting v tend to 0% we obtain 
~o 

~ { ~ - ( n - i y }  ~r__<K. 
1 

and so, since 

leo 

I 

n ~ ( n - -  1) ~ 
l i r a  - -  - - ~  1 
n-~ I~ ~-I 

U,, is positive, we see from (12) that*) 
O0 

1 

*) K not denoting the same number as before, but still a fixed value indepen- 
dent of x. 

M a t h e m a t i s c h e  A n n a l e n .  LXY.  ~ 4  
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NOW from (9) we have 

so that finally 
> lu,,t 

n ~-I [u,, t < K ,  
1 

which is the inequality stated in the lemma. 
Thus we now have proved 
T h e o r e m  C. Suppose 
1) that ~ a ,  is suncmable by taking k arithmetic means in Hglder's 

manner, and that s is its sum; 
2) that v~ is a function of x with the properties: 

(a) .~n'lA~+av~[ < OK } 
(3) lira n%~ = i f  x > O, 

(7) lira v~ = 1. 
x-~0  

Then the series ~ ,a , v~  is convergent i f  x > 0 and 

lira ~_~a~v~ = s. 
X-4~0 

The similarity between Theorems B, C leads to the conjecture that 
whenever either Ces~ro's limit or Hhlder's mean exists, the other must 
also exist. But so far, I have only completely proved this conjecture for 
k = 2; the proof will be found in w 5. 

Let us now compare Theorem C with Hardy's Theorems*); in 
Theorem I, Hardy assumes that**) A k + l v ~ 0 ,  so that 

k+, kl 

:Now we proved incidentally in w 3 (see equation (8) 13. 357) that 

(k) k + Vo 

so that condition (a) is satisfied when Ak+lv. ~ O. 
In Hardy's Theorem II, we take 

where 
I tp~+ ' (~) ls  i f 0 s 1 6 3  

a n d  

K if ~ > 1, (where O > O) < 

*) As already stated in w ~, the results of Fejdr and Moore only apply to the 
case k----- 1. 

**) Hardy also supposes v,, ~ 0, A v n ~ 0 , . . . ,  A ~v~ ~ 0, but we do not make 
use of these inequalities here. 
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Thus, exactly as in w 2, we find that 

Ihk+~vnl < M x ~ +  ~ 
and 

if O ~ n x ~ _  1 

Kxk+ 1 
IA~+~vnI <= (.x)~+~+~, if nx >= i. 

Then, taking v to be the integral part of ~-, we have 

and 

~ O0 

I r + l  

Hence 

. nk < f t  k d t 
1 1 

0,+I) TM ~,n_(i+e)< f t_(i+e)dt= I 
/~-I- I ' ,,+i �9 e~e 

M (i +X) TM + 2eK nk[a~+ lv-[ < k + i -E- 

and so condition (a) is again satisfied. 
Under the conditions given in Hardy's Theorem III, Ak+lv, changes 

sign only a finite number of times, say r times. Then 

.Znk[a +lv.I _--< la%l + 
where M is the maximum of nklAkv~l; and so condition (a) holds 
here also. 

Thus Hardy's Theorems I - - I I I  are included under Theorem C above: 
but it ought to be observed that it often happens tha~ Hardy's conditions 
are the easiest to use in practical applications 

w 

C o n n e x i o n  b e t w e e n  Ces~ro ' s  l i m i t  and  H ~ l d e r ' s  m e a n .  

Let us write C.(k)= S~(k) A~)' where S~ (k), A~ ) have the meanings assigned 

to these symbols in w 3; then lira C~ (k) is Ces~ro's limit. Also H~ (k) has 

the meaning explained in w 4~ so that lira H.  (k) is HSlder's mean. 
n..~co 

We shall shew that for k----1, 2, when H(, k) has a limit s, then C(,, ~) 
also tends to the same limit s; and conversely, when C(, k) has a limit s 2 
t:1(~ ~) tends to the limit s. 

24* 
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The case k----1 needs no proof beyond the remark that identically 

H(~)= C(~) 

which is obviously true on comparison of th~ two definitions. 
Next, suppose that  /-~) has a limit s; then consider S~ (~). We have 

S.(~) = (n + 1)So + nsl + .  + Sn 

= ito(1)+ 2 H ~ ) + . . .  + (~ + 1 ) B 2  ) 

= (~ + 1)~ B .  (~) - ~ H~)_ ~ - (~ - l )  Hn(~)- ~ . . . . . .  H 2  ); 
also 

Thus 

~) 1 (n + i)(,~ + 2).  

C (~) = 2 Ln + ~ --  

Now,  s ince  

we have  also 

(n + i) (n + 2) 

lim H. (~) = s 

lim ~ 8 .  

Further ,  by an extension (due to S to lz*) )  of Cauchy's theorem on the 
limits of quotients, we have 

(~ + i)I/~ ~) i 
2 ( n + ~ )  --- E s .  

= s ,  i f  l ira H ~  (~) = s .  
n- - -~  oo 

l im n ~/(~)_, + (n --  i) g~(~)_ ~ + . . .  + tt0 (3> = lira 
(n + l) (n + ~) 

1-I61100 
lim C~ ~) 

On 
we r e m a r k  tha t  

the other hand, if it is known that C (~) tends to a definite limit s, 

so that  
z 2  ) - $2)_~ = (n + l )  H~ 1) 

(n + 1) ~(..2 ) = H~ ~) + H} ~) + . . .  + H. (~) 

= s 0  ( , ) + _ ~  { - } + . . . + _ _  
i ~q(s) .~ (s) 

n + l  { ~n - -  } ~ n - l )  �9 

*) S~olz, Mathematische Annalen, Bd. 14, 1879, p. 234; Allgemeine Arithmetik, 
Bd. 1, p. 173. B r o m w i c h ,  Infinite Series, p. 378. The theorem states that 

lira f (n)  -~ lira f ( n +  1) - -  f(n) 

provided that the r ighbhand limit exists, and that r tends steadily to co  with n 
(so that q0(n+l)  ~ q~(n)). Cauchy's theorem is given by taking qo(n) --~ n. 
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Thus 

or 

( . +  i) m ,) s~ s?) = i . 2  F G T + ' " q  
s$)_~ s$) 

n(n+i) + ~ +----/ 

Co (~) v? ) ~ 0 + e) 05 - ~ { + +-..+d~Li}+~ 

2(n+i) + u  �9 

If we apply Cauchy's theorem to the fraction above we get 

and so 

co (~) + c} ~) +... + 02 ) o~ ~) 
lira = lim ..... i ~_.~ ~(~+l) ~...  2 = ] - s  

lira H(~ ~) = s, if lim C~(~) = s. 

Thus Hglder's mean and Cesdro's limit are certainly equivalent f ~  
k = l ,  2. 

It seems probable (as already remarked at the end of w 4) that these 
limits may be always equivalent, in the sense that the existence of either 
implies that of the other and also the equality of the two limits. And 
in fact Dr. K. K nopp  has 'proved*) that when H,  (k) has a definite 
limit s, then also lira C~k)= s; but the proof of the converse theorem**). 
appears to present algebraical complications which I have not so far 
succeeded in surmounting. 

It is, however, clear from Knopp's result that Cess limit is.at  
least as general as H5lder's mean; and, on account of the greater simpli- 
city of the algebra (compare w167 3, 4) it seems preferable to use the 
former rather than the latter, as a definition of the ,sum" of an oscilla- 
tory series. 

w  

Corresponding theorems for integrals .  

In view of the results obtained by Moore (1 c. p. 311--325) it would 
seem at first sight likely that a set of conditions (for convergence factors 
in summable integrals) could be formulated which would be exactly parallel 

*) Inauguraldissertation, Berlin 1907, p. 19--23; this dissertation reached me 
during the investigations given here. I had already obtained Dr. Knopp's result for 
k ~-~ but had not established it in general. 

**) If  true, this theorem would be: When Cn (~) tends to a definite limit, then J~r~ (k) 
tends to the same limit. 



366 T.J. I'A. B~o~w~cH. 

to those of w167 1, 3 above for series. But this expectation is not quite 
fulfilled in the case corresponding to that of w 1, and so far I have not 
carried the investigations further. 

Suppose that the function r is uniformly continuous for all values 
of t ~ a > O~ and that the integral 

oo 

(1) f  (t)dt 

is summable*) and has the sum s. Suppose furth6r that the function 
f (x ,  t) has the proper~y 

(2) l im f (x, t~ = 1 
x--}.- 0 

then we wish to determine conditions corresponding to (a), (fl) of w 1 
which will justify the equation 

r /' 
(3) lira f (x ,  0 g,(t) dt = s. 

Moore proves (1. c. p. 315) thai5 when the integral  (1) is summable, 
and (p(t) is uniformly continuous, then 

(4) lim ~' (~ = O. 
t-+oo t~ 

.The equation (4) should be contrasted with the result  used in w 1, that 
when a series is summable (by a single mean) a constan~ C can be found 
so that 

I s , , ] < ( 2 n + l ) C ;  

but it appears that when (p(t) has a summable integral,  there is no reason 
for the existence of a constant C such that 

I~(t)! < Ct; 

just as a function may have a convergent integral (to ~ )  and yet need 
not be always less than a fixed value. 

If now we apply the process of integration by par~s, ~ e  find that 

and 

then 

*) Tha~ is if 
t 

f ~(t) d t = ~, (t), 
r 

t 

f ~l (t) at = ~, ~) , 
r 

lira/ }=  
t - - ~  
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t t 

~f dt (~) f v(t) f(x,t) dt = ~p~(t) f (x , t )  - - f o p ,  (t) 
a cl 

of = ~ ( t )  [ (x ,  t) - % ( t )  ~ 
t 

+ f %  if) gg dr. 

This transformation suggests the conditions which here must corre- 
spond to (a), (~) of w 1. In fac~ we shall a s s u m e  t h a t  f(x, t) satisfies 
the conditions 

0o 

(a) t - ~  dt < K i f x > O  

(~) t' If[ < z 

where K is independent, of x and t; but X may depend on x, though 
not on t. 

Y Then in virtue of (a) ( t - -a )  ~fz.~. is a convergent integral; and 

t 

j " 0~f 0f (6) ( t --  a) -g~ dt  ~ ( t - -a)  -~-~ -- f(x, t) -t- f(x, a) . 

Of must tend to some Thus as t tends to c% it is clear from (6) that t~-~ 
r162 

definite limit; otherwise f ( t -  a) 0~f ~ d t  could not be convergent. 
a 

of But, in virtue of (fl), t f  tends to zero, and so t ~  cannot have any 

other limit than zero*) and so we have 

of _- o. (7) lira t ~i 
t - ~ o o  

:Now it follows from (4) that  

(8) lira cp~ (t) f(x,  t) -~ 0 
t --~-oo 

as a consequence of condition (fi). 
Also, since 

t - - ~  

*) In general if F(t) tends to zero, i~ is easy to see tht~ 

lira F'(t) ~ 0 ~ lim F '  (t). 

it 

a 

on integration we find that 
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it follows from (7) that 

(9) 

Finally, we see that 

]im [cp~ ( t ) ~ / =  O. 

oo 

f 3~f dt (10) ~ ( t )  Ot' 
O~ 

is an absolutely convergent integral, because 

converges in virtue of (~). 

aodf I  r ~-t~ t dt 
a 

Thus we see from (5), (8), (9) and (10) that the integral 

f ~(t) f(x,t) dt 

is convergent [br all loositive values of x. 
Further the same four equations shew that 

oo oo 

(11) ~(t)f(x,t) dt = %(t) -g-~dt. 
a 

In particular from (6) and (7) we find the special result 

(12) f (t--a) ~ f  dt  = f(x,  a).  

Thus, combining (11) and (12) we obtain 

(13) f ~(t) f(x,t)dt- sf(x,a) 

J " ~ f  = s(t-a)I  dt. 
65 

The equation (13) exactly corresponds to equation (3) in w 1; and 
by repeating the argument given there, certain obvious changes being 
made, and using condition (a), it is easy to prove that 

oo 

lira f ~(t)f(x,t)dt -= gm sf(x,a) = s. 
x - , . O  a x-4-O 

Thus we obtain the result: 
Theorem D. Suppose that q~(t) is uniformly continuous for t>~ a > O, 

and that the integral | 
f ,~(t) dt 
a s  
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is summable and has the sum s. 

provided that 

Then 
O~ 

lira /'q~(t) f (x , t )  dt ~- s 
x . + O  a 

(a) t ~-~ d t < K  i f  x > O ,  

(fl) t ' ! f  t < X 
(~) l i ~  f (x , t )  = 1 

x - + 0  

where K is independent of x and t; while X is independent of t, thaugh 
not necessarily independent of  x. 

It is also easy to establish the following theorem: 
T h e o r e m E. Suppose thai the integral 

o~ 

.fl (t) et 
a 

converges to the value s. Then 
O0 

j ' ~ ( t )  f(x, t)  dt = s lira 
x - + O  a 

provided that 

~f 

a 

(~) l i ~  f (x ,  t) = o 
t . . ~  ~ 

(r) lim f (x ,  t) = 1, 
x . + O  

i f  x > 0 ,  

where K is independent of x and t. 
It is easy to modify the method used at the beginning of w 2 to 

prove that the conditions of Theorems D, E include those givea by Moore 
(1. c. pp. 318, 325). 

Save for the form of the condition (/~), Theorem D corresponds 
precisely to Theorem & for series; while Theorem E is the exact analogue 
of the theorem of Dedekind and Cahen already referred to in w 1. 


