1901	α app．	δ app．	$\log r$	$\log 4$
Mai 25	$16^{\mathrm{h}} 3 \mathrm{o}^{\mathrm{m}} 36^{\text {s }}$	$-4^{\circ} 11$ ： 6		
27	295	$4 \quad 5.4$	0.5114	0.3551
29	2733	359.6		
3 I	26 I	354.3	0.5105	0.3541
Juni 2	2429	349.5		
4	2258	345.1	0.5096	0.3539
6	2127	341.3		
8	$16 \quad 1957$	$-33^{8.1}$	0.5086	0.3546

$\mathrm{Gr} .=13.2$ AR．$\pm \mathrm{r}^{\mathrm{m}}$, Decl．干r！3．
Berlin，Kgl．Recheninstitut， 1901 Jan． 26.

1901	α app．	δ app．	$\log r$	$\log A$
Juni 10	$16^{\mathrm{h}} 18^{\mathrm{m}} 29^{\text {s }}$	$-3^{\circ} 35 \cdot 5$		
12	173	$\begin{array}{ll}3 & 33.4\end{array}$	0.5077	0.3560
14	1539	3 31：9		
16	1416	$3 \begin{array}{lll}30.9\end{array}$	0.5067	0．3582
18	1256	$\begin{array}{lll}3 & 30.5\end{array}$		
20	1140	$3 \quad 30.7$	0.5058	0.3611
22	1027	$\begin{array}{ll}3 & 31.5\end{array}$		
24	$16 \quad 917$	$-33^{2.8}$	0.5048	0.3648

A．Berberich．

New Variable Star 71．1901 Aurigae．
 BD．$+42^{\circ} \mathrm{I} 295 \quad 5^{\mathrm{h}} \mathrm{I} 8^{\mathrm{m}} 19^{\mathrm{s}} 5+42^{\circ} \mathrm{I} 8^{\prime} 5$（ I 855 ）．

The above star（BD．mag．$=9.3$ ）is a short period variable，having a period of less than a day．The obser－ vations are satisfactorily represented by the following elements．

```
Period od.7925 = 19 % 1 m 12 m
Ep. Max. 1901 Mar. 3(2415447) 1 3 'hom Greenw. M.T.
Limits of variation 8.m}75\mathrm{ to }\mp@subsup{9}{}{m}.6
Max. to Min. 144 m m
Min. to Max. 44}4\mp@subsup{4}{}{\textrm{m}
Ratio increase to decrease 0.34.
```

Date	Greenw． M．T．	Dist．from last max．	Mag．	$\mathrm{O}-\mathrm{C}$
1901 Mar． 3	$13^{\mathrm{h}} 0^{\mathrm{m}}$	0.00	8.72 pv	-0.04
》 26	1255	0.02	8.9	$+0.14$
Febr． 20	130	0.09	8.76 pv	－0．10
Mar． 27	1010	0.10	8.9	＋0．03
》 31	100	0.14	9.0	$+0.03$
》 27	1155	0.18	8.9	-0.14
April 4	950	0.18	9.2	＋0．15
Febr． 13	130	0.23	9.2	$+0.05$
Mar． 12	1140	0.23	9.0	－0．15
》 24	110	0.31	9.4	＋0．10
》 1	1215	0.35	9.4	$+0.04$
＊ 28	110	0.35	9.3	－0．06
April 1	100	0.35	9.3	-0.06
1900 Mar． 30	120	0.36	9.25 p	-0.13
1901 》 28	1230	0.41	9.3	－0．14
April 1	120	0.43	9.45	-0.02

The observations are distributed pretty uniformly，and give a good idea of the form of the light curve．The last column contains the residuals resulting from comparison of the observations with the light curve．The observations extend from 1900 March i to 1901 April 4.

The variable is in close proximity to $B D .+42.1297$ （ $9^{m} \cdot 5$ ），which forms a very convenient comparison star．On

The following table contains the observations arranged according to the interval by which they follow the last pre－ ceding maximum．This interval is given in the third column in decimals of a day．The observations without any distin－ guishing mark were made with a $23 / 4 \mathrm{in}$ ．refractor，power 75 ． Those marked with a $\geqslant \mathrm{p}$ « were estimated from photographs， and the resulting magnitudes diminished by 0.55 mag ．in order to make them comparable with the visual observations．＊） Observations marked $» p v \ll$ are the means of both photo－ graphic and visual determinations．

	Date	Greenw． M．T．	Dist．from last max．	Mag．	$\mathrm{O}-\mathrm{C}$
1901	Mar． 13	$12^{\mathrm{h}} 15^{\mathrm{m}}$	0.0 .46	$9 \cdot 7$	$+\mathrm{O}_{1} \mathrm{~m}^{1}$
	Febr． 6	1530	0.47	$9 \cdot 3$	-0.23
	Jan． 14	1630	0.49	9.52 p	-0.03
	Mar． 29	1015	0.52	9.55	-0.04
	Jan． 22	15.35	0.53	9.80 p	$+0.20$
	Mar． 25	1130	0.54	9.5	－0．11
	》 2 I	1245	0.55	9.6	－0．02
	Febr． 11	1330	0.63	9.7 pv	＋0．08
	Mar． 18	1110	0.65	9.5	－0．06
1900	April 20	100	0.67	9.65 p	＋0．20
I 901	Mar． 22	1030	0.67	9.5	$+0.04$
1900	》 20	1225	0.68	9.35 p	－0．05
1901	》 26	1010	0.69	9.2	-0.14
1900	》 I	1318	0.73	9.22 p	＋0．14
1901	） 26	1155	0.77	9.0	＋0．15
	Jan． 31	150	0.78	$8.8 \pm$	$+0.02$

the photographs，taken with a 4.4 inch portrait lens，the two stars form a close double star，the variable at maximum being slightly brighter than the other component，but at minimum much fainter．Visually the variable is slightly fainter than the comparison star at minimum，but at maximum it is a full half magnitude brighter，the two stars then forming a very unequal pair．

Hove， 1901 April 10.

A．Stanley Williams．

[^0]
[^0]: ＊）A uniform correction of -0.55 mag．has been applied to the photographic observations，but it is probable that the photographic range of variation is greater than the visual，and that this correction is too small for the lower magnitude．It would seem that the star is redder when faint than it is when bright．

