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THE DISTRIBUTION OF ENERGY IN THE NORMAL 
RADIATION SPECTRUM. 

BY LEIGH PAGE. 

IN their attempt to derive a radiation formula from classical dynamics 
Rayleigh and Jeans have been led to an expression which is in dis

agreement with experiment in so far as it demands that in the state of 
equilibrium the radiant energy in the ether should consist mainly of 
waves of infinitesimally short wave-length, and that the total energy 
per unit volume should be infinite. Lorentz has been led to the same 
expression by a consideration of the absorption and emission due to the 
free electrons contained in a piece of metal placed in a field of stationary 
radiation. In fact it has been asserted that this radiation formula is 
based only on the most general principles of classical dynamics and elec
trodynamics, and that any other expression for the distribution of 
energy in the normal radiation spectrum must be in contradiction to 
these principles. 

The only radiation formula agreeing with experimental observation 
is that due to Planck. In obtaining his formula Planck considers the 
absorption and emission of ideal linear oscillators capable of executing 
only simple harmonic vibrations. His justification in using this special 
mechanism lies in the fact that KirchhofFs law shows that the distri
bution of energy among the waves of different frequencies in a stationary 
field of radiation depends only upon the temperature of the material 
bodies with which the radiation is in equilibrium, and not at all upon 
their nature. However Planck finds it necessary, in order to obtain 
his formula, to make a number of revolutionary assumptions, at least 
one of which is in contradiction with classical electrodynamics. The 
following are the more important assumptions on which Planck bases 
his theory: 

(a) While an oscillator absorbs energy continuously according to 
classical electromagnetic theory, the radiation of energy demanded by 
the electrodynamic equations is replaced by an emission by quanta. 
To be more specific, Planck assumes that an oscillator of frequency v 
can emit only when its energy is an integral multiple of hv, h being 
Planck's constant, and that when emission does take place the oscillator 
loses all its energy and starts absorbing afresh. Such an assumption 
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not only involves a form of emission of energy ut ter ly outside tha t 

contained in the electromagnetic theory, bu t is in contradiction with 

classical electrodynamics in tha t it supposes the radiation of energy 

demanded by the electrodynamic equations to be non-existent. 

(b) The ratio of the probability of no emission, when the energy 

accumulated by an oscillator is an integral multiple of hv, to the proba

bility of an emission is proportional to the intensity of the vibrations 

exciting the oscillator. If we grant assumption (a) assumption (b) 

seems reasonable, although its only justification lies in the fact tha t , in 

addition to the other assumptions, it enables Planck to deduce a formula 

which is in agreement with experimental facts. 

(c) The constant of proportionality contained in assumption (b) is 

determined in such a way tha t the formula derived shall reduce to the 

Rayleigh-Jeans expression for long wave-lengths. 

These three assumptions enable Planck to find the energy density of 

radiation for any frequency in terms of the average intrinsic energy of 

the oscillators of the same frequency with which the radiation is in 

equilibrium. To determine the value of the average energy of the oscil

lators in terms of their temperature, another assumption is necessary: 

(d) liw is the probability tha t any given oscillator lies in any particular 

element of extension-in-phase, then in passing from one element of 

extension-in-phase to the next Aw/w is not sufficiently small to make it 

possible to replace the summation by an integration in the expression 

for the entropy of the oscillators. In fact the elements of extension-in-

phase are supposed to be of a size equal to the action quan tum h. Con

sequently Planck finds for the average energy of a linear oscillator of 

frequency v the expression 

hv hv 

ekT _ j 

instead of the expression 
kT (2) 

given by classical dynamics. 
From these four assumptions Planck deduces the expression 

Sirhv3 

_ c* (3) 

ehT _ ! 

for the energy density per unit frequency of homogeneous radiation of 
frequency v and temperature T, c being the velocity of light in vacuum. 

T h e object of this paper is to show tha t the radiation formula (3) 
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may be obtained from the expressions given by classical dynamics and 
electrodynamics for the absorption and radiation of energy, provided 
we make use of a single supplemental assumption in determining sta
tistically the distribution of energy among the absorbing and emitting 
oscillators. We shall, like Planck, make use of Kirchhoff's law in that 
we shall consider a stationary field of radiation in equilibrium with ideal 
linear oscillators capable of executing simple harmonic vibrations. We 
shall imagine a large number of these oscillators of every frequency placed 
inside a rigid perfectly reflecting envelope, and allowed to come into 
equilibrium with one another and with the enclosed radiation. These 
oscillators will absorb and emit according to classical dynamics and 
electrodynamics. Hence if / is the electric moment of an oscillator in 
terms of Lorentz's unit of electric charge, the energy of its oscillatory 
motion at any instant will be given by 

U = \LP + \Kf = 2TTVC2L, (4) 

where L and K are constants, and where C is the maximum value of the 
electric moment, or the product of the amplitude of vibration by the 
charge. The rate of absorption of energy from the electromagnetic 
field will be given by1 

dA uv 

~di =12L ^ 

and the rate of radiation by1 

dR 2irv2U 

Hi^^L' (6) 

So far we have made use only of classical dynamical and electro-
dynamical theory. To determine statistically the average value U of 
the energy of oscillations of frequency v we shall now introduce a supple
mental assumption, to wit: 

The motion of an emitting and absorbing linear oscillator of frequency v 
is stable only for those amplitudes for which the energy of its oscillations is an 
integral multiple of hv. 

Hence the energy associated with an oscillation of frequency v must be 
equal to nhv where n is an integer. However it is not necessary for the 
development of our theory that the energy of the oscillation should be 
exactly nhv but merely that it should lie between nhv — 8 and nhv + 8, 
where 8 is very small compared to hv. Moreover it is not necessary to 
assume that the energy is, at every instant, an integral multiple of hv 

1 See "Planck's Heat Radiation" (translation by Masius) pages 160 and 165 for corre
sponding expressions in electrostatic units. 
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within the limits assigned above, but merely that the time during which 
the energy is not &n integral multiple of hv shall be very small compared 
to the time during which the energy is an integral multiple of hv. 

In attempting to explain how this condition of the oscillator may be 
maintained—in view of the fact that the rate of absorption of energy is 
changing from instant to instant, and that even if the average absorption 
were just sufficient to balance the emission from an oscillator of energy 
nhv it would not balance the emiss'on from one of the energy (n+i)hv 
—it is necessary to remember that there are forms of restricted motion 
which involve neither emission nor absorption of energy. For example, 
a ring of evenly spaced electrons revolving in a circle about a positive 
charge placed at the center would neither emit nor absorb energy, so 
far as the motion in the plane of the circle is concerned. If such a ring, 
however, vibrated as a whole in a direction perpendicular to its plane, 
it would constitute one of the simplest types of linear oscillators consistent 
with Rutherford's model of the atom. So far as the degree of freedom 
involved in this vibration is concerned, there would be both absorption 
and emission of energy. However there might be some connection 
between the two degrees of freedom referred to, such that the energy 
associated with the absorbing and emitting degree of freedom might 
always tend toward an integral multiple of hv, any surplus or deficit of 
energy being taken care of by the other degree of freedom. 

Again, there is no reason to suppose that an electron itself might not 
possess considerable energy of rotation. If the charge on the electron is 
distributed symmetrically with respect to its axis, there will be no emission 
of energy in consequence of its rotation. In addition to its rotation 
about a diameter, the electron might constitute the movable element of an 
ideal linear oscillator. Some connection between the vibratory motion 
and the rotation might result in a distribution of energy such that the 
energy of the oscillations would always tend toward an integral multiple 
of hv. 

This speculation as to the method by which the vibratory energy of an 
oscillator is maintained at some integral multiple of hv does not provide 
any mechanism by which the energy of the oscillations may pass from one 
integral multiple of hv to another. Such a transition, however, would 
probably take place only during the encounters between different oscil
lators. In fact, if we are going to apply the theory of probability to the 
derivation of an expression for the average energy of an oscillator, we 
must suppose that such transfers of energy may occur. This does not 
limit the transfers of energy to cases where the ratio of the frequencies 
of the colliding oscillators has certain particular values. For if the 
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collision results in any surplus or deficit of oscillatory energy above or 
below the nearest integral multiple of hv, such surplus or deficit will be 
rapidly extinguished by transfer of energy between the emitting and 
non-emitting degrees of freedom. 

A slightly different interpretation of our fundamental assumption 
would consist in the supposition that only when the energy of an oscillator 
was between nhv — 5 and nhv + b could the oscillator exist in the emitting 
and absorbing form. For energies outside of these limits the electrons 
and positive nuclei constituting the oscillator might form new aggrega
tions such that their energy would be associated with types of motion 
involving no absorption or emission. A change of the energy content, 
as a result of collision, to the proper value would cause the elements of 
the oscillator to so rearrange themselves as to again constitute an ab
sorbing and emitting mechanism. From this point of view we would have 
particles of all energies—the distribution of energy following the Maxwell-
Boltzmann law—but only those whose energies were integral multiples 
of hv would count in determining the conditions of equilibrium between 
matter and ether. 

AVERAGE ENERGY OF AN IDEAL LINEAR OSCILLATOR IN TERMS OF ITS 

FREQUENCY AND TEMPERATURE. 

Suppose that we have inside a rigid adiabatic envelope N\ linear 
oscillators of frequency vi, N% of frequency *>2, etc. in thermal equilibrium 
with one another and with No non-absorbing and non-emitting degrees of 
freedom. Since the energy of each oscillation is completely determined 
by its amplitude of vibration, the state of the system so far as the oscil
lations are concerned will be determined by the way in which N± oscil
lations of frequency vi, N% oscillations of frequency J>2, etc., are distributed 
among the elements of extension-in-phase in a four-dimensional general
ized space having as coordinates the three positional coordinates x, y, z, 
and q, where q = C2. Since the energy of an oscillation of frequency v 
is limited to values between nhv — 6 and nhv + 5, where n can assume 
integral values only, the elements of extension-in-phase will not fill the 
whole of this generalized space, and will have different positions for 
oscillations of different frequencies. For example, the projection on the 
x> J* Q. space of the elements of extension-in-phase for oscillations of 
frequency v will be the solids bounded by the planes obtained by giving 
integral values to n in the equations 

2ir2v2qL = nhv — 5, 

2ir2v2qL = nhv + 8. 
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So far as the N0 non-emitting degrees of freedom are concerned, the 
elements of extension-in-phase will fill the whole of the generalized space 
having as coordinates x, y, z and the variables determining the energy, 
since the energy associated with each of these degrees of freedom is in 
no way restricted to particular values. 

Let us suppose that the state under consideration is one in which iVoo 
non-emitting degrees of freedom are in element of extension-in-phase 
Oo, iVoi in element of extension-in-phase i0, etc., Nio oscillations of 
frequency v\ are in element of extension-in-phase 0i, Nu in element of 
extension-in-phase ii, etc. Then the thermodynamic probability of the 
state, or the number of ways in which the state can be formed, is 

TJ/ | Nol 1 f N±\ 1 f N2l 
NQolNoilN02l • • • I [NwlNulNnl • • • J | N20\N21\N22l • • • J ( 3 ' 

where, of course, the second figure in the subscripts does not refer to the 
same element of extension-in-phase for oscillations of one frequency as 
for those of another, nor for oscillations as for non-emitting degrees of 
freedom, at least in so far as the coordinates specifying the energy are 
concerned. 

Now the state of equilibrium is that state the probability of which is 
a maximum. Since the logarithm of a positive quantity is an increasing 
function of the quantity itself we may find the maximum of log W 
instead of that of W. If by w^ we denote N^/Ni, i. e., the mathematical 
probability of an oscillation of frequency v% being in element of extension-
in-phase j , it may easily be shown that1 

log W = - 2 Ni 2 wa l og wa- (7) 
i j 

1 In getting (7) from the expression for W use is generally made of Sterling's formula. A 
simpler and more direct method which obviates the use of Sterling's formula is the following: 

If x is a large integer 

log x\ = log 2 -f log 3 + • • • -f- log x 

•J. log xdx 

== x log x — x 

since the.curve y = log x approaches parallelism to the x axis as * increases. 
Hence 

log W = 2 {log Nil - S log Nat} 
i i 

%Wij = I . 
j 

Hence 

= S i Ni log Ni - Ni - S Nij log Nu 
i J 

= S Ni { 2 wa log Ni - S ttty log Nu } 
i J J 

log W = — 2 Ni 2 ^ 7 log Wij. 
i j 
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For equilibrium log W must be a maximum subject to the conditions 
that the total volume and the total energy remain constant. 

For maximum of log W we have 

1 L Ni X (log wa + i)8w%j = o. 
i 

From the constant volume condition we have as many equations as 
there are values of i, of the form 

3 

From the condition of constant total energy we get 

2 Ni 2 UijdWij = O, 
* 3 

where Uu is the average energy of a degree of freedom of type i in element 
of extension-in-phase j . 

Using Lagrange's method of undetermined multipliers we get 

wa = one-*^, ' (8) 

where ft is independent of the type i of the particular degree of freedom 
under consideration while en is not. 

So far as the non-emitting degrees of freedom are concerned UQJ may 
have any value from zero to infinity, although for oscillations of fre
quency Vi, Uij is limited to values between nhvt — 8 and nhvi + 8, 
except possibly for inappreciable periods of time immediately following 
collisions. Consequently expression (8) does not lead to the principle 
of equipartition of energy, namely that the average kinetic energy asso
ciated with each degree of freedom is 1/2/3 quite irrespective of its type 
or frequency. In fact, for the emitting and absorbing oscillations we 
have 

wif = caere «*"*. (9) 

Hence the average energy of an oscillation of frequency v will be 

00 

T,'Nvave-^Avnhp 

0 

Z iter1"*' 
hv~ . 

0 



2 3 6 LEIGH PAGE. [ | ^ 

If we put x = ffliv, we have 

- 7 erx + 2e~2x + se~3x + • • • 

i + e-* + e~2x + 

= fcv 7 r-0 ( i - €TX) 
(I - g-*)2 V J 

hv 
(10) 

t> — JL 

In or der to find x in terms of the temperature T we must first determine 
av and /3 in terms of the total volume V and the total energy Ev of all 
the oscillations of frequency v. Let Gi denote the size of an element of 
extension-in-phase for oscillations of frequency V{. Then 

d = j j J j dxdydzdq 

= gifffdxdydz, 

where gi = j dq. 

Hence, for oscillations of frequency Vi 

£ w« = 7 ^ E e~^ fffdxdydz 
Uig 

Vgi a 

d I - e~x 

since the elements of extension-in-phase fill up the whole of the x, y, z 
space, even though there are unoccupied gaps in the q space. 

But 

J 

Therefore 

If Ei is the total energy of all the oscillations of frequency Vi 

Gi 
Ei = Nihvij^J2ne-^nhvifffdxdydz 

__ Njhvi 

~ ex — i 

as can be seen at once from (10). 
Hence 

(12) 

Nihvi 

-*:+-ET- (I3) 
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So, if we put 

y Nihvi hvt' 

and substituting the value of ex from (13) in (11) 

_ Gj 1 G{ 1 

^ Vgi(i + U±\ Vgiil+y)' 
' hvj 

Hence the probability win of an oscillation of frequency v{ having an 
intrinsic energy between nhvi — S and nhvi + 8 is, from (9) 

w<»= {l+yy+n- (l6) 

Now we are ready to write down the expression for the entropy of the 
oscillations. If Wi is the thermodynamic probability of the state of, 
equilibrium of the Ni oscillations of frequency Vi, then the entropy 5» 
of these Ni oscillations will be, by definition, 

Si = k log Wi. (17) 

As we are dealing with oscillations of a single frequency we can drop 
the subscript i. Hence 

5 = k log W 

= — kN^Wj log Wj 

= - kN [^«-^h] 

Now, by definition 

Hence 

^logit^r ( I 8) 

T \dEly 

1 k 1 +y 
= - l o g -

T hv & y 
hv 

I _ TT _ _ Eta. - tl 

file:///dEly
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and 
Nkv 

(19) 
ekT - 1 

or1 

— Z77; 

(20) 

Nhv 

ehT - 1 

U — Av 
ekT __ ! 

1 , 1 + y 
= 7- log — = 

hv y 

1 

kf 

Also 
T T 4 - A; T 

(2I> 

which is independent of the frequency or nature of the oscillation, as it 
should be. 

Moreover, we have from general thermodynamic theory 

t _ tdS) 
T \dV)E 

giving the laws of Charles, Boyle, and Avogadro, namely: 

pV = NkT. 

T H E RADIATION FORMULA. 

The radiation formula follows from the results of the preceding analysis 
at once. In the state of equilibrium the rate of radiation must, on the 
average, be equal to the rate of absorption. Hence from (5) and (6) 

STV2U f x 
uv = — . (22) 

cr 

Substituting the value of U from (20) we get the radiation formula 

_ cB (23) 

ekT - 1 

T H E PARTITION OF ENERGY. 

From the radiation formula we can find the way in which energy is 
distributed among the different degrees of freedom in the ether in the 
case of thermodynamic equilibrium. It is, however, necessary to em
phasize one essential difference between the ether and material media. 

1 This expression is the same as that obtained from the first form of Planck's theory. 
Indeed much of our formal analysis is similar to that by means of which Planck first ob
tained his radiation formula, although the interpretation given is quite different. See 
Vorlesungen iiber die Theorie der Warmestrahlung, first edition, page 157. 
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Energy travelling in the form of waves of frequency v through a material 

medium may be converted in par t or in whole into energy of another 

frequency by the agency of the medium itself. Such is never the case 

in the ether. Energy travelling through the ether in the form of waves 

of frequency v will remain unchanged forever unless transformed into 

waves of another frequency by being absorbed and reemitted by mat ter . 

Hence the distribution of energy among the different degrees of freedom 

in the ether is conditioned entirely by the characteristics of the mat te r 

with which it is in equilibrium. Consequently this distribution would 

be quite different for ether in equilibrium with mat te r so constituted 

t ha t the energy per degree of freedom associated with each radiat ing and 

absorbing oscillation of frequency v is an integral multiple of hvf from what 

it would be if the material oscillations were capable of containing any 

amounts of energy whatsoever. 

Consider N± linear oscillators of frequency vi, N2 of frequency v2, 

etc., inside a rigid adiabatic perfectly reflecting envelope in thermal 

equilibrium with each other and with N% ethereal modes of vibration 

of frequency vi, N2' ethereal modes of vibration of frequency v2, etc. 

The s ta te of equilibrium is the one having maximum probability. Fol

lowing the same line of reasoning as before, the probabili ty tha t a material 

oscillation of frequency v has an energy between nhv — 5 and nhv + 5 

is, as before, 

w = ae-*nhv (24) 

while the probabili ty tha t any one degree of.freedom of vibration in 

the ether of frequency v has an energy U' is 

where Uf is not restricted in value in the same way as is the energy of 

the material oscillations. Now the elements of extension-in-phase 

must be all of equal probability. Hence Z7', which denotes the average 

energy represented by an element of extension-in-phase, must change in 

going from one to the next by a constant amount , say e. So we have 

w> = a'er**\ (25) 

Consequently we can show by exactly the same method as used in the 

case of the linear oscillations in mat te r t ha t the average energy Uf 

associated with each degree of freedom in the ether of frequency v is 

given by 

U' = ^r^-. (26) 
ekT _ j 
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Now the number of degrees of freedom per unit volume of the ethereal 
modes of vibration of frequencies between v and v + Av is given by the 
well known expression 

%TTV2Av , .. 

(27) 

Consequently 

±\av = 

uvAv = 

u„ — -

c* ' 

8T6V2
 J 

—-— dv 
cz 

e 
ekT _ j 

87T€Z>2 

c* (28) 

Comparing with (23) we see that 

e = hv 

and that the average energy associateA with each degree of freeAom of a 
simple harmonic vibration of frequency v, whether in matter or in ether, is 
given by 

u= u> = - # - . (29) 
ekT - 1 

SUMMARY. 

Planck's radiation formula has been derived from the expressions 
given by classical dynamics and electrodynamics for the absorption and 
radiation of energy with the aid of the supplemental assumption that 
the motion of an absorbing and emitting linear oscillator of frequency v 
is stable only when the energy of its oscillations is an integral multiple 
of hv. This assumption avoids the necessity of replacing the emission 
of energy demanded by the electrodynamic equations by an emission 
that is discontinuous in time and difficult, if not impossible, to reconcile 
with the phenomena of diffraction and interference. 

The partition of energy among the different degrees of freedom in the 
ether has been investigated, and found to be the same as in material 
oscillators. 

SLOANE PHYSICS LABORATORY, 

August , 1915. 


