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Note on the Weierstrass Elliptic Functions, and their Applications.

By A. G. GREENHILL.

[Read Mareh 10th, 1887.]

The object of the present Note is to establish, from fandamental
principles, the formule in the Weierstrass notation, corresponding to
those given in Jacobi's notation by Mr. Glaisher in his “ Note on the
Functions Zu, O, I (¥, a),” read before this Society, Feb. 11th, 1880,
and to show how naturally the formule arise from the definitions of
the functions employed; afterwards, to apply the formule to some
well known physical problems.

1. Starting with Euler's differential relation,

Ao dy _
,/X+ idn 0,
where X =ar*+bP+ e’ +dz+te,

Y =ay*+b+ci+dy +e,
and with the integral relation obtained by Euler,
. _ (/X YT\
a (@) +b@+y)+0=( — ).
which is the key-note of the Theory of Elliptic Functions ; then, if X
and Y are already of Weierstrass’s canonical form, namely,
X=4"—ga—gy Y =4y"—gy— g,
this integral relation of Euler becomes, sincenow a =0, b = 4,
‘ _ ‘/X_ ‘\/17 2
4(e+y+s) = (—————m_y ),
writing 4z for C; this rolation iz symmetrical in @, y, and z; and

may be written § .
s+y+z=143 (—‘{-]-3'7-__—';‘-{-@)
)
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I

(22,
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or 1, o VX
1, Y VY |=0;
l, 2 VZ

leading to the symmetrical differential relation

dz , dy  ds _ ..
7% + s + JE= 0;
so that, as shown by Professor Cayley, in Crelle, Vol. 87, p. 74, the
integral of ‘
.ﬁl?i_ + _dl. =0
v JY

may be considered as the particular case of

da_ | dy . ds

vzt et =Y

where 2z is treated as an arbitrary constant, being the value of y
corresponding to a certain value of z, in this case the infinite value,

2. If the general elliptic differential element dz/./U,, where U,
denotes the general biquadratic expression in 2, is not already of
Weierstrass’s canonical form, it may immediately be reduced to it by
putting §=— %‘,
where H, is the Hessian of the quartic U, ; and then (Cayley, Elliptic
Functions, p. 346)

dz__ 4 ds
VU.” V(& —gs—a)

where g, and g, are the quadrinvariant and the cubinvariant of the

2
quartic X ; also - AP —gs—gy = 1%,
where @, denotes the sextic covariant.
Euler’s integral relation in the general case may therefore be put

in the form, .
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or symmetrically,
1,

-

LS Lo e
Icl>

1,

S QR

&

1’ o |

S

‘8. Introducing now the notation of Weierstrass, where if
w= j R
.« V(4—g2~g,)

the canonical elliptic integral of the first kind, then « is an elliptio
function of » which is denoted by gu ; so that

z=pu,
da ,
d — =
an die e

=— V(4P —gz—g,) =— /X
Then, if y = pv, # = pw, we have
uto4+w =0,
and Enler’s integral relation becomes
oy — 6 9
putputpw=1} (zf::g—f)
= 3 (Pw—puy
=1 (pw—pu)
— 3 (Pu—pv
=1 (pu——pv )
or, 1, pu, pu

]
.
’

1, pv, pv{=0.
1, pw, pw

4, Since pu is an even function of «, therefore

pw=p (zt+v),
— 1 (Pe—g),
80 that o (utv)+putpv=13% (pu—-pv) 5
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and, changiug the sign of v, since p’v is an odd function of v, therefore
_ 1 [P utpv\?
p(u—v)+putpr=1 (_—m-@v) .
Subtracting these equations, we obtain
u—0)—p (v 40) = _pupv
pu=v)=puto) = e

the equation analogous to Mr. Glaisher's equation (A) (p.153), wﬂich
he takes as his starting point,

5. Integrating our equation (A) with respect to v,

—_pu
Z(u+v)+£(u—v)+0—Pu_pv....... ..... weenn(4),

where O is the constant of integration, independent of v, and the func-
tion {u is defined by

lu=—=[pudy, u=-—pu,

(Halphen, Traité des Fonctions Elliptiques et de leurs Applications,
p- 135, Paris, 1886) ; so that {u is analogous to Jacobi’s function Zu.

To determine the constant 0 in (A,), put v=10; then pv=,and
C = —2{u, so that

C(uto)+4 (u—v) =2 = g—;—:—’:%;}..................(ﬁ),

analogous to Mr. Glaisher’s equation (8).
6. Putting v = u in (A,), then O assumes the indeterminate form
o~—oco, and must be evaloated ; we shall find, eventnally,

o)+ (u—v)—{2u=—} S;; ((';: tv))—_ ‘:.», g_-;;)

= —Pu_ e
pu—pv  pu’

or
analogous to Mr. Glaisher’s equation (a). For, since

{(utv)+{(u—v)—2fu = - L ,
PUu—gpv
therefore, interchanging « and v,

L () = (u=v)=20v ﬂﬁ%’
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and therefore, by addition,

—lu—lp = L EU=PY
{(utv)—lu—-{v P ouspo’

or =V {p (v+v) +putpr};

and, changing « and v into #+v and u—v,

=3 P (utv)—p (u—v)
‘P (utv)—p (u—v)

=1 Pn_ _pu

— 2

pu pu—pv’

$2u—{ (utv)=¢ (u—0)

01

7. Next, introducing Weierstrass's function G «, defined by

log Gu = [ du du,
(]

or Gu = exp I $u du,
]

so that Weierstrass’s function G« is analogous to Jacobi’s function
Ou, or rather Hu ; then

=0r_4
el A ¥ log 61,

’ ‘lﬁ
and pu:—{u:—aﬁlogﬁu.

Integrating equation () with respect to u between the limits 0
and «, we find

6(v+u) G(v—u) _ = _
log Go +log Go 2logGu = log (pu—pv),
oy — O(v+u) G(v—1)
so that pu—pv= N ,
6 6G(u—

or == _(’_‘i'g'%g(le’l(ﬁ,)
the fundamental formula in the use of Weierstrass's elliptic functions,
analogous to Mr. Glaisher’s equation (3,).

8. By integrating (8) with respect to vinstead of with respect to «,
we find

pu—pv’

[Z (u+tv) dv+[ ¢ (u=v) dv—2v{u =I Pudy
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so'udv = (u+”)
* L pu—pv g(«;( v) =208t v (By),

the elliptic integral of the third kind in the Weierstrass notation,
corresponding to Jacobi’s IT (v, u).

By integrating the equation in § 6,

;‘;Z';” = ¢ (u+v)—Lu—{,

with respect to % and v respectively, we obtain

J.lp“ p”du—log(ﬂ—)g+v v,

pu—pv
e

either of which may be taken as Weierstrass’s canonical form of the
elliptic integral of the third kind ; and these two integrals illustrate
the theorem analogous to that obtmned by the interchange of ampli-
tude « and parameter v in Jacobi’s elliptic integral of the third kind
I (u, v).

Or, interchanging « and v in (8,),

Podu __,  G(u—v)
jpu—pv G+ )+ Buto

so that, by addition,

f gudvtpodu _ o r,_ 9,z
pPu—Hpv

corresponding to interchange of amplitude and parameter.

9. Supposing X = 4a*—g,2—g, resolved into three real linear
factors 4 (s—e ) (z—e;)(2—e;), where e, >e;>e¢,, and denoting by w,
and w, the real and imaginary half-periods of the elliptic functions,
then '

® do

W, = im— W, +w =I Pt @ dm
1 . \/X’ 1 3 . \/X,

Burtuy = f., VX
dz

20,420, = 7} H
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so that u1="‘ %:r%,

A
8 ‘.- JX . \/X’
and, consequently,
puy=e, p(otw) =6, pu;=6;
while P, =g (0+w) =pw=0.

10. Returning to the fundamental formula
pu—pv = — G(u+v) G(u~v)

G'uG'y '
we may suppose the right-hand side resolved into the factors
%({%)-exp (—ulv) - and (ij(u@v) exp (u(b) ;

('9'( +v)
u Gy

# (u, —0) = ¢ (=) = = L= exp (ui),

so that, denoting =~ exp (—ulv) by ¢u or ¢ (, v), then

and pu—pv =¢ (4, v) ¢ (4, —v).
Also, replacing v by the particular values w,, &, + wg, and w,, we obtain
—_ 61’“ 5%“ Ga
P =Gu’ Gu’ Bu’
or pu=+(pu—e), J(pu—e), J/(pu—e);

and then ¢« is a doubly periodic function.

Baut, for any other value of v, the function ¢ (u, v) is multiplied by
a constant factor when the variable is increased by a complete period
20, or 2w, (Halphen, p. 227); this function was introduced by
Hermite, and called by him a doubly periodic function of the second
kind (fonction doublement périodique de second espace).

We see, from § 8, that its logarithm is an elliptic intogral of the
third kind ; for
6(u+v)

log ¢ (u, v) = log GuGo —uly

I%pu—pvd
Pu—gpv
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11. This function ¢% is shown by Halphen (Fonctions elliptiques,
p. 235) to satisfy the equation '

3
g—g’; = (2putpv) 9,

Lamé’s differential equation for » = 1, with Weierstrass's notation.

Lamé's general differential equation with Jacobi’s elliptic function
notation

d” = {n(u+1)Ken’z+h}y

is considered by Hermite in Sur quelques applications des fonctions
elliptiques, Paris, 1885, Premier fascicule. This is a reprint of
Hermite's papers which appeared in the Comptes Rendus, beginning
in 1877.

By the use of Weierstrass’s notation, the work of Hermite is con-
siderably simplified. The equation of Lamé then becomes

d " = {n(n+1) p'u+h} i

and, in accordance with Hermite's results, the solution of this equation
is y = OF (z)+ C'F (—u),

where O and O’ are arbitrary constants, and

F()= (;;)"-ltlw—A, (;%)”40.1:+A, (%)"d(\b‘v...,

G(m-l-w)

where (3] 6060

exp (A —{w) 3 = ¢ (2, v)

also 4,, 4g, ..., \, and po are certain definite constants, rational func-
tions of % and the invariants g, and g,.

12. A great part of Hermite’s work is devoted to the determination
of these constants for the successive irntegral values of #, the com-
ploxity of the work increasing very rapidly.

For n = 1 we have just scen that the solution of the correspouding
equation of Lamé,

3.-1’. = 2pz+h)y,
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is obtained, putting % = pv, in the form

Y= G¢ (wr v)+0,¢ ("'”; ")’

6(z+v)

where ¢ (2,0) = 562Gy

exp (—x{v), as above.

For n = 2, the equation becomes
T = (6poth)y;

and, as we have seen in these Proceedings, June 10th, 1886, p. 374, the
solution is then, putting b = — 3 p (a—b),

6 (z—a) 6(z—0b)
05600

subject to the condition that

exp ( {a+{b)x,

@'a=—p'b, and therefore = p’ (a—b);

and this, by Halphen’s equation (36) (Fouctions elliptiques, p. 230),
can be thrown into the form

d @ ,

oL (e ],

where w=a+,

agreeing thus with Hermite’s form of the result, if

A= lo— _,pa g)b Pa
fo—fa—{b = pa—pb ~ pa—pb’

50 that {(a=b) = {a—1b,

also p (a=b) =—pa—-pd.

13. It is interesting to verify that the above value of y is a sulu-
tion of the differential equation

1 d'/_pr—E};.)(a b).
y da?
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Taking the particular solution
— 0(+a)C(2+b) ., _
Y= T 8a6b6% exp (—da—0b) 7,
1 dy

then T B {(@+a)—lo~La+ (2+b)—{p—{b

—1P2—pa ,pz—pb
! pr—pa + pz—pb’

and, differentiating again,

1 dy_ (1 dyy - —
s =y &) +2er-p @ta)—p @+d)

—(1¢2—pa  ,p2—pb\? - —p(s+d
(1E52E2 +1E2E0) 4 2p0—p (a+a)—p (++D)

=4 iy P2=pa gz—pb
prtpatpbty o b

But, if pa=—pb=gp (a—D),

%P’z—so’a pr—pb _, @ z—p’a
pr—pa pr—pb 7 (pr—pa)(pr—pd)

= 2 (po+patpd),
in consequence of the relations
pa = pb,
or dp’a—g,pa—g; =4 p’b—g,pb—ys;
or 4 (p'a+papb+p'd) =g,

8o that p?z—p”a = (pe+pa) {4(P'e+papr+p’a)—g}
=4 (pr—pa)(p's+papa—pa pb—p'd)
=4 (pr—pa)(pr—pb)(pat+patpb).

. . 1 dy_
Therefore S 6pr+3pat3pd
= 6pr—8p(a—1>),
since pa—b)+patpb=0,

in consequence of the relation

po=—p'b=p (a—b).
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When o’ (a—b) = 0, the solution of the differential equation is an
algebraical function of @z, and we obtain the particular solutions
considered by Lamé.

14, If, however, we turn to p. 106 of Hermite’s work, we must re-
place b by 6 pa, in order to obtain an analogous solution; and then
Lamé’s differential equation, in the form

; jZ—spwspa,
has the solution
y= Od{ﬁéx'g exp( A— {w)’u}

+o L { émﬁ ) oxp (— A+z«u)w}

0 L (s @w) e} +0 L {p(—a,0) )

subject to the conditions

1=y P
el v —pa) pot2pe
sothat  A=—} £Y = (uta)—§ (0=u)+iu,
gaw pa
or A—fo = =} (u+a) =K (v—0);
also pu = 2atig
. a
‘3
or 9“’—50‘1':_’;’%:

giving p w, and consequently A, in terms of pa or .

15. For n =3, the identification with Hermite's results (Sur quel-
ques applications, §c., pages 120 to 129) is obtained by writing Lamé’s
corresponding equation

1 dY

7 d_ = 12pa+h,
and then h==5l=15pq,
or l===3puq,

VOL. xVIIf.~—~N0. 297, 1
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go that the differential equation is

% M =12p2+15pa.

This suggests, by analogy, that the generalised form of Lamé’s
should be written, following Brioschi, in the form

?1/- %1, = n (n+1) pa+n (20—1) pa,

agreeing with the above forms for » =1, 2, 3.
Then (Hermite, p. 120),

]

So = =€y 3|=‘g%)’ .Sa=g_§: .33=gg86» KT

and (Hermite, p. 124)
Q=po, Q=Lpv, Q=p'v—12g, B=1%ipupo, ..,

the same as the coefficients given by Halphen (p. 231) in the ex-
pansion in ascending powers of u of ¢ (%, w).

Then, when = = 3 (Hermite, p. 126), the identification of results
is made by means of the equations

3pw—ﬁ°— =—3l=9pa=13k,
h=—13%h a=3%g, b=2lg, 4a’=b'= 114,
D=P—g¢=3p"a, 8=-=108pa, ..,

— VO = PA . QB
PO=" s pi—ay PUTHT "5 PUTH T spv

. _ _24BC\

RC
sSp¥ - T8sp

pu—e =
The solution of the differential equation
1 d .
— = 12pa+i
y da? path
is, therelore, y = GF(;,;) +C 1V (—2),

where F@)=— @v—;h‘bw,
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— G(z+w) -
and bs = 6aGa P A—¢w)
= ¢ (2, w) exp Az,
: =35 (M-8pu—EY), ...
where h_%()\ 8pow x ),
The direct verification that Fz is a particular solution of this

differential equation is an interesting piece of analysis, but it is
omitted here, as the work is rather long.

16. For higher integral values of », the determination df gpw and X
in the solution of Lamé’s differential equation

% gw—ig =nn+1) pz+h,

in the form y=0F (z)+ OF(—=),

and F@) = (%)""¢¢-A, (%)""@H...,
where &z = @é%i@%)- exp (A —{w) «,

increases rapidly in complication, and the general solution has not
yet been obtained by Hermite; although he attempts the solution
from the consideration of the product F'(z) F (—=) of two particular
solutions, this product being in all cases a doubly periodic function.

17. The physical origin of Lamé’s differential equation is explained
in Maxwell's Blectricity and Magnetism, Todhunter's Functions of
Laplace, Lamé, and DBessel, Ferrera’s Spherical Harmonics, and Heine’s
Kugelfunctionen.

Transforming Poisson’s equation to ellipsoidal coordinates
(Maxwell, L., p. 181), and employing Woierstrass’s notation as cx-
plained in these Proceedings, June 10, 1886 (Vol. xvi1., p. 878), the
equation becomes

)P )T L ) T
(I“' V) d"/’ +(y A) dva '*-(A I") d?.o’ - O'

(¢f. Klein, Ueber Lamé'sche Functionen, Math. Ann., xviit.).
Here A, g, v arc the three roots of the cubic cquation

! Y 2 _
a’+6 toretare
T 2

1
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dcfining the three confocal quadric surfaces through a point; and
then, as has been shown, we should put
WdHN=pu—e, V+A=gpu—e, +N=pu—c,
Adtp=puv—e, btu=pv—e, tp=pv—e,
Aty = puw—e, D4v=pw—e, I+v=pw—e;
aud, in going round three sides of the boundary of tho period rectungle,
% = rw,, for the confocal ellipsoids,
v = w,+sw,, for the hyperboloids of one sheet,
w = lw,+w,, for the hyperboloids of two sheets ;

7, 6 t denoting real proper fractions, tho fourth side of the period
rectangle giving imaginary surfaces; so that at two corners of tho
period rectangle r = 1 or s = 0 gives the focal ellipse, s==1oré¢=1
the focal hyperbola.

Then Poisson’s equation becomes of the symmetrical form

& & @
(pv—pw) 31% + (pw—pu) a}% + (pu—pv) g{% =0.

18. Lamé supposes that ¢ is the product of three functions U, ¥V, W,
such that U is o function of « only, ¥ of vonly, and TV of w only ; and
then the equation becomes

& av cw _
(pv—pw) 7ot (pw—p1) 7o + (Pr—pv) 3555 = 0,
&T

cquivalent to Taa= by +h,
&'V

Vao = 9P +h,
dw

Vi =gpwt+h,

where g and  are arbitrary constants; and g is replaced by » (n+1),
whero » i3 an integer, by analogy with Laplace’s equation, in order
that the integral should be a uniform function; and we thus obtain
threo of Lamé’s differential equations of the same form.

19. The application of Lamé’s equation for » = 2 to the dynamical
problem of the motion of the spherical pendulum is given by Hermitc
(p- 109), and adapted to Weierstrass's notation in these Proceedings;
June 10; 1886 (Vol. svit., p: 374).
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The equation of the projection of the motion of the bob of the
pendulum on a horizontal plane is there given in the form

.o O(uta) G(utb) e
oty =2 Ga6b0'n exp (—{a—14b) u,

where, 2r denoting a complete period of the motion, we must put
= tw,[r+wg;

also 0= w,+7rwy b= sw,,

r and s denoting real proper fractions.

In the spherical pendulum the additional condition p'a = —p'b is
required, but in the representation of the general motion of a point
on the axis of a top, projected on & horizontal plane, this restriction
is not required, while the form of the equation remains unaltered;
but it is no longer the solution of Lamé’s equation, unless referred to
moving axes rotating with a certain constant angular velocity about
the vertical.

20. It is unfortunate, at first sight, that the parameters like a and
b required in the solution of these and similar dynamical problems
are always imaginary ; but this inconvenience disappears when we
employ the above form for = +1y as a function of 2.

As dynamical illustrations of Lamé's equation for n =1, Hermito
considers (i.) the problem of the motion of a body under no forces,
including the equation of Poinsot’s herpolhode; (ii.) the equation
of the tortuous Elastica in equilibrium under balancing forces and
couples at its ends.

21. Let us consider, first, the equations of the Elastica (Hermite,
Sur quelgues applications, §c., p.93). These equations may be written

" "’

Y& —y"d = aa’+ By,
zlmll_zﬂml = ayl—ﬁm'
mlyll-mllyl= ﬂz’ + .y'

where the nccents denote differentiation with respect to the arc s, and
«a, 3, vy denote constants depending on the flexibility of the wire, and
the impressed forces ; also the axis of z is taken along the central
axis of the applied wrench at any point of the curve.

- These eqnations are due in this form to Binet and Wantzel (Comptes
Rtendus, 1844), and may be established as follows : denoting by B the
flexural rigidity of the wire, by Z and N the impressed foree and
couple, and by @ the tangential torsional couple of the wire, then the
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equations of equilibrium are, taking component moments at any point

ayz of the wire,
B ~y"d) = Q'+ 2y uvovnenecnnnnnn (1),

B2 ="2) = QY = 28 .covvveirevrvnnneennn (2),
B(m'y"—w"y') - GZ‘+N .".”“”"““”“““(3),.

equations of the above form. -
Differentiating with respect to s, multiplying respectively by o', ¢/,
7, and adding, gives @'=0; so that @ is constant.

Multiplying (1) by «, (2) by ¥’, and (3) by #, and adding, gives
G—2Z (ay'—2'y) =0,

so that oy —a'y =o* %g =k, a constant;

and therefore ey’ —a"y = 0.

Agnin, multiplying (1) by z, and (2) by y, and adding, gives

Bi" (v —ay)— B¥' (/' —a'y) = G (a +91),

or Bs” = Z (za'+yy'),
so that BY =47 (*+4%)+H.

Then B = 22 {(2+1") (2" +97) — (ay' —2'y)*}

=2Z (BZ—-H)(1-")—-2Z°1¢,

so that 2’ is an elliptic function of the arc s.

We may, if we like, modify Hermite's formule to the Weierstrass
notation, and obtain from these equations

ety =0 %%t@%zexp (A—lw) n,

z=2lu+yu,
where 1 = sw, [c+uwy,

2¢ denoting the length of a complete wave of the elastica; or we may
obtain these equations immediately from the previous solution for the
top (§19), by means of Kirchhoff's Kinetic Analogue, which asserts
that the tangent of the elastica, if properly orientated, can be made
to keep always parallel to the axis of the top, provided that the point
of contact on the elastica moves with a certain definite constant
velocity, and provided that certain initial conditions are satisfied.



1887.] the Weierstrass Elliptic Functions. 279
Then, in the Elastica, in consequence of the Kinetic Analogue,

d v _nd Gutatd). e
(E(:H-W) = Gﬂ 6u6(atDd) exp (—{a—{h) u,

dz _
v 2pu+ty,

(Proc. Lond. Math. Soc., June 10th, 1886) ; and, integrating,

. _ nG(utatd) r
w+1y—06u6(a+b)exp( {a—{b) u,

2= 2%u+yu,
where du /ds is conctant, and therefore

% = sw, [ ¢+ wy;
the imaginary constant w, being added in order that dz/ds should

oscillate between finite limits.

22, In the motion of a rigid body about a fixed point under no
forces, the solution of Euler’s equations of motion,

P _(p— = W (O—a)rp =
Adt B-0)gr=0, Bdt (0—4)rp =0,
dr _

has already been given in these Proceedings, June 10th, 1886 (Vol. xvir.,
p. 366), in the form
Ap' = —m? (B—C)(pu—e,),

Bg* = —m? (C—4)(pu—8a,),
01 = —m* (A—B)(pu—ey),
where the factor m? is now introduced for homogeneity ; and then

d _ o (B—0C)(0—4)(4—=B) _ .5
F=—m ABC =

suppose ; so that u = pt+ o,
= tw, [T+ wy,

2r denoting the complete period of the motion, and the imaginary
constant w, being added in order to make g« oscillate between e, and
ey, and the polhode consequently enclose the principal axis 4.
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also, e, ey, ey, g;,and g, are determined, as before, from the relations
Ap'+Bg'+CrP =T, A%'+B'+0% =@,

where $T and @ denote the constant kinetic emergy and resultant
angular momentum of the system.

23. For the herpolhode, take the equation of § 532 (Routh’s Rigid
Dynamics, 3rd edition),

dg _ T~ (AT—G")(BI-G')(CT—G")
at - q ABCGT

and we shall find (§ 25) that this can easily be thrown into the form

cot? {,

dig 5 _1 p'w
dv " ‘pu—po
=A-lw+i{ (utw)—1 (u—0),
0 that i = (\—lw) ut} log %Z—‘_"_%;
or et = \/ {gl(::_'."ﬁ_}exp (A—{w)u.
Then A= — r .d_t,_ = ABOT

G i~ W@ (B-0)(C—4)(A—B)’

and w is the (imaginary) value of « which makes 2'+%' in the
herpolhode vanish. So that

— 6( 6(u—
49 = B (pumpr) = 1 EE 60z,

and therefore  a+4iy=15% M exp ( A—iw)u,

6(u—- w)
Gubw

where u = tw,[r+w,,

or z—iy =k ———=exp (—A+{w) u,

is the equation of the herpolhode.

24. Referred to axes rotating with constant angular velocity 7/@,
the equation of the herpolhode will be

z+iy = k¢ (4, w),
or z=iy = k¢ (—u, w),
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go that now » and y satisfy Lamé’s equation for 2 =1,

= ——,=7(ﬁ=2m+w,

and this relative herpolhode will be described therefore exactly as by
a particle properly projected under a central attraction proportional to

r(2putpw) =3rpw—=22°15

(compare an article by Pinczon in the Comples Rendus, 12th April,
1887, on the * Herpolhode”).

25. In order to prove the equation

dig _ _po
duw gau—gow

we notice that we must put

Y N ABC ,
NESUE G “'c%\/ —(B—C’)(C’—A)(A—B)}’

also, in the herpolhode (Routh, p. 409),

e M T
St =rt—p =7 (o'~ )
_..—]-lg-‘{ : B p(sou e,)+m’0—‘4(gou—e,)
pt =2 ey T
=X (pu—pu),

provided that
. B-C C-4 A-B T*

pw=4 “tTF atTo T
B=0,C-4 A
A T B ¢
-l _Iye_r
so that po—e = ;«”(B G)(C’ G)

- —1; (B=5)(y—9),

with Hermite's notation, Sur quelques applications, &o., page 24.
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Similarly, by symmetry,

o= h(5-5) (4~

=— —1—, (v=3)(a=3),

rea=-3(8-5)(3-3)

= — L @=3)(B-).
’l

Our w here is thercfore practically the same as the w employed by
Hermite, p. 27 ; also

4 AT—G) (BT @) (OT—G)
!B!G?GG (']

plo=

so that, now (Routh, Rigid Dynamics, § 532),

wr
e -Mil‘,_T(g;——p_v) T @ pu—pu’
e
=r- %‘pf-}w
on putting  p'w=2 “4r-6") (AB]?(;E;??(OT— &)

26. Since the product (AT—G")(BT—@)(0T—@") is negative,
@ v is a negative imaginary, and therefore w = sw,, wheres is a
real proper fraction; and then, by comparison with Hermite's v,
p. 27, s = v/K'; also v is the same as the quantity denoted by a in the
article “ Solution of Euler’s equations of motion by means of Elliptic
Functions”” (Quarterly Journal of Mathematics, Vol. x1v., p. 267), and
a slight consideration will easily show how the angles A, i1, » of that
article can be expressed, by means of Weierstrass’s notation, in as
simple & manner as the angle ¢ of the herpolhode. The projection on
the invariable plane of the spherical curve described by a point fixed
on one of the principal axes will then be found to be given by an
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equation of the form

etiy==%k g—él;—% exp (A\—{v) -

where w+v=w,, 0,+w,;, or w, according as the point is on the
principal axis of 4, B, or C.

27. De Sparre’s theorem (Oomptes Rendus, t. 99 and 101), which

asserts that the herpolhode has no points of inflexion, can now be
proved ; for, writing the equation of the herpolhode

sty = gu = %%%%lexp( A—{w) u,
2—1y = pu = %:;6:2 exp (—A+{w) u,
dﬁ — 17 o " % —_— I_ J .
then & = a"+1y", do =%
and therefore ‘2—9-; doy a2’ +y'y" +i (a:’ " —a"y),
du’ du
and therefore the imaginary part is zero at & point of inflexion.

But %: {¢ (utw) —du—-{w+2r} %%:’—Qexp A—{w) u

pu—pw 6 (u+w) |
(% pu—pw +A) Gubw oxp A—{w) u,

Z—:? (2pu+pw+p“ :::A+)\’)Mexp (A —lw) u,

a4 _ (Leu—p'w_,\)0(u— w) -
du (L pPuU—pw ) exp (—A+{w) u;

and therefore

-—Q% p’u’p"")‘ A (1w by _ ]
v du (2?“+‘°"’+pu_‘w + ){n(m¢+l°w) Mpu—pw)};

and the imaginary part of this expression, since pu, p’u, and pw are
real, @'w is negative imaginary, and X is positive imaginary, is

Ap'ﬁ) 3 , )\[o"'u
2 —_—— 1 - - e 2.
( putpu— +A){apw N (pu Pw)}+pu_pw,
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and this, equated to zero, gives

(putipw) po=A 2 p'u—pupo—p'v)
p’s“"'ﬂe“’ 330 \S - =
+3 Py AN Pw=N (pu—pw) =0,
reducing to a simple equation for pu, giving
pu= NP (Bplw—g) +pupu
N —BApu—2gpw

and, since pu—e, will be found to be negative, pu—e, positive, it
follows that the points of inflexion are imaginary, although they may
be real on Sylvester’s generalized herpolhodes, described by the point
of contact of & confocal ellipsoid rolling on a parallel plane.

28. Let us consider a third dynamical problem, the determination
of the curve assumed by a uniform chain fixed at two points of &
rotating body, when in relative equilibrium.

The equations of relative equilibrium, with the usual notation, are

ds (Tgw) +ma's =0,

o (T—y) +muy =0,

i) o

the axis of ¢ being the axis of rotation.
Three first integrals of these equations are immediately obtainable,

namely, TS ‘1‘3 =T,

1d0 _
Trds_h’

T+ imw’r = A,

r and 0 denoting polar coordinates in a plane perpendicular to the
axis of rotation.

ds _ T
Therefore = T
28 _ B
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9
and therefore 14 dL + g_g; = %:‘ ,
3 3
* 1+ T’:r’ iﬂ
or Pd’ Z’_’ LB l‘_
dz'-l aﬂ 1:: ]
anr T N _ 4_h
or (dz ) ( molr?—2)1—4s el

[
o cubic function of #*; and therefore #* is an elliptic function of 2.
29. If the chain is fixed to two points lying in & plane through the

axis of rotation, the chain will lie altogether in this plane, and the
equation of its curve takes the simple form with Jacobi's notation

r/e = snzK/e.

In the general case, however, the chain sweeps out a surface of
revolution, whose equation is

o’ 49 = d’en’zK/c+bisn?zK /¢,

2a and 2b being the maximum and minimum diameters of the surface.

30. Employing Weierstrass's notation, we must put
A=k (pu—pv),

41,6
go that K o*u (du) k (pu—~pv)*

_dmah . é_?_t_"_ _ 4p!
T (Pu—po)'+ ( 4) (pu—po)— 7,

3 T ’” e (dp'u—g, pu—g,),

. du? o'k
provided that 5 T: ,
aud v, g, and g, are suitably chosen.
Then, since © = v make 7' = 0, therefore
k‘ ‘0” (d“) 4h2 or p’,v S 16’L

2zl = mi'ks!

113 1

and p’v is consequently imaginary.
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31. From the equation g = -h—,

TG
. do_ h ds_ %h 1
we obtain du~ TP du  ma'l pu—pov’
dif _ _ 4 _#v
or dzs ~ *pu—gov’

if p’v is taken as negativeimaginary, and consequently v = sw,, whero
s is a real proper fraction.

Then 10 = 1 log ggu:v; —udv,
&t = 6('“"' ”) )
or 6 (u—fv) .
But = (pu—pv),
and therefore
ooy =re" = ik %(“g”) exp (—ulv) = ik ¢ (4, v),

a—1iy = ik ¢ (—u, v),

give the equations of the curve assnmed by the chain, the projection
of which on a plane perpendicular to the axis of revolution is conse-
quently similar to & herpolhode or the projection of the motion of the
bob of a spherical pendulum ; also, du/dz being constant, we must put

% = gw, [c+ wy,

where 2¢ denotes the whole-length of a complete wave of the chain,
and the constant w, is added in order to make pu oscillate in value
between e, and e,

When the chain is fixed at two points in a planc perpendicular to
the axis of rotation, the curve formed by the chain will be a plane
curve, given by an equation of the form

6 (u 6(u+v)
GuGy
the general equation of a catenary under a central forco varying as
the distance.
A particular case of these catenaries is tho curve

z+iy = exp (—udv) = ¢ (z, v),

rcosh mé = a,
a Cotes’s spiral, the separating herpolhode.
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When this catenary is a free orbit under a central force P, the
intensity must vary as A7+ Br, partly as the third and partly as the
first power of the distance, and then we shall find that du;d? is con-
stant ; in fa.ct,

= y :H_w ” 2pu+tpv=2-3+3pv;
so that P =2"4+3rpu.

32. These three dynamical illustrations show that the elliptic in-
tegral of the third kind must be treated as the logarithm of the vector
of the corresponding azimuthal motion.

[The solutions of other well-known dynamical problems can be
exhibited in a similar form.

Thus, in the motion of a particle inside a smooth paraboloid of re-
volution with vertical axis, the projection of the path on a horizontal
plane is given by

s+ = k¢ (u, v) e,
dt

where — =e—pu
duw 1

and a4y’ = dmz = (pv—pu).

In the motion of a particle on a smooth vertical cone of somivertical

angle a,
a+iy =k (pv—pu) {ZJ_(Zt:; oxp (—2utd) }

]

r=k(pv—pu),
d
and d::, prv—pu;

and the motion of & sphere rolling on a rough vertxcal cono will be
given by similar equations.

The path of a particle on a smooth horxzonta,l table, attached to
one end of a string passing through a hole in the table and support-
ing a particle hanging vertically, is of a similar nature; and tho
particle may be supposed to move on a smooth vertical cone, the
string passing throngh a hole at the vertex and supporting another
particle, without material alteration of the preceding results.

The formuls obtained by M. Halphen in the Journal de I’ Ecole Poly-
technique, 1884, * Sur une courbe élastique,” for the solution of
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M. Maurice Lévy’s problem of the curve formed by a plate, originally
cylindrically circular, due to a uniform pressure on one side (for in-
stance, a circular tube exposed to an external collapsing pressure), can
now be slightly modified in order to be expressed in a similar form;
for, writing 2v and % —v for his v and %, then

z+iy = ap (u+tv,20) ¢ (u—v, 2v),
= o {p(utv)—p2}{p (v—v)—p2v},
Ar+Br+0 = fa {p(u+v)+p (v—v)—2p 20},
(4 +Br+0)'—r* = fa* {p (v—v)—p (u+v)}%
These equations are derived from M. Lévy’s relation

pl = 44)*+ 9B,

counecting p the radius of the curvature, and » the distance from a
fixed point of any point on the curve ; and the relation is immediately
obtained by taking moments about any point on the curve,

a1 plu—v)—p (utv)
P P2 p(u—v)—p (utv)’
dS —_ »
and then o, = e 2v.

De Sparre’s theorem (§ 27) has been considered recently by
numerous writers ; for instance, Darboux, Mannheim, Resal in the
Journal de UEcole Polytechnique, 1885, and Hess, in the Math.
Aunalen.]

April 7th, 1887.
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A new Method for the Investigution of Harmonic Polygons.
By Rev. T. C. Smyons, M.A.

[Read April Tth, 1887.)

1. If PP, P,P, ... be a cyclic polygon such that the perpendiculars
drawn on the sides from some internal point K are all respuctively
proportional to those sides, then P,P,P,P, ... is said to be a harmonic
polygon whoso Lemoine point is IK.

VOL. XVIIL—NO. 298. U



