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Note on the Weierstrass Elliptic Functions, and their Applications.

By A. G. GREENHILL.

[Read March KM, 1887.]

The object of the present Note is to establish, from fundamental
principles, the formulae in the Weierstrass notation, corresponding to
those given in Jacobi's notation by Mr. Glaisher in his " Note on the
Functions Zu, 0«, II (u, a)," read before this Society, Feb. 11th, 188C,
and to show how naturally the formnlee arise from the definitions of
the functions employed; afterwards, to apply the formulae to some
well known physical problems.

1. Starting with Euler's differential relation,

where X = ax*+bx*+ex9 + dx + e,

Y=ay* + by* + cyi + dy + e,

and with the integral relation obtained by Euler,

x—y
which is the key-note of the Theory of Elliptic Functions ; then, if X
and Y are already of Weierstrass's canonical form, namely,

this integral relation of Euler becomes, since now a = 0, b = 4,

4 ( .

writing 4* for C; this relation is symmetrical in $, y, and 2; and
may be written
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or 1, x, */X

1, y, y r =0;
1, £, sfZ

leading to the symmetrical differential relation

so that, as shown by Professor Cayley, in Grelle, Vol. 87, p. 74, the
integral of

may be considered as the particular case of

dx , d y , dz _

where z is treated as an arbitrary constant, being the value of y
corresponding to a certain value of x, in this case the infinite value.

2. If the general elliptic differential element dxly/UIf where TJm

denotes the general biquadratic expression in x, is not already of
Weierstrass's canonical form, it may immediately be reduced to it by

putting s = — -=?,

where ITm is the Hessian of the qnartic JJX ; and then (Cayley, Elliptic
Functions, p. 346)

dx i ds

where gt and gs are the quadrinvariant and the cnbinvariant of the

quartio X; also 4s8—gr̂ —gr8 = —f,

where Ox denotes the sextic covariant.
Euler's integral relation in the general case may therefore be put

in the form,

Vu

u, uv

= constant;



1887.] the Weierstrass Elliptic Functions.

or symmetrically,
1 Ms <Z>

265

U. Z7*

5 = 0.

3. Introducing now the notation of Weierstrass, where if

(m &*_

tlie canonical elliptic integral of the first kind, then x is an elliptic
function of u which is denoted by pu; so that

and

x = pu,

dx ,— — pudn

Then, if y = pv, z = pw, we have

tt+v+w = 0,
and Enier's integral relation becomes

pu + pv+pw=zX liLZZZKZ
\pv-pw

—pul

l •

or.

pu—pv I

1, pu, p'n

1, pv, p'v = 0.
1, pw, p'w

4. Since pu is an even function of w, therefore

so that
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and, changing the sign of v, since p'v is an odd function of v, therefore

pu — pvI

Subtracting these equations, we obtain

the equation analogous to Mr. Glaisher's equation (A) (p. 153), which
he takes as his starting point.

5. Integrating our equation (A) with respect to v, .

where 0 is the constant of integration, independent of v, and the func-
tion £« is defined by

(u = — jpu du, fu =z—pnt

(Halphen, Traite des Fondions Elliptiques et de lews Applications,
p. 135, Paris, 1886) ; so that £w is analogous to Jacobi's function Zw.

To determine the constant 0 in (Aj), put v = 0; then pv = oo, and
C = - 2{u, so that

(/),
pu—pv

analogous to Mr. Glaisher's equation (/3).

0. Putting v = u in (A,), then 0 assumes the indeterminate form
co—oo, and must be evaluated ; we shall find, eventually,

£gE3 w.
pu—pv pu

analogous to Mr. Glaisher's equation (a). For, since

therefore, interchanging u and v,

{(w+v)-{(«-v)-2fr =
.
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and therefore, by addition,

or

and, changing M and « into M+I> and w—v,

—to (u—v)y t- £ (w—
—p (w—v)

^ p"u _ fp'u

7. Next, introducing Weierstrass's function (5M, defined by

log (5« = I tu du,
Jo

or (5M = exp I £M du,
Jo

so that Weierstrass's function (5M is analogous to Jacobi's function
0?t, or rather Hu; then

r (5'M d , —•
M̂ = ~ - = — l o g ©M,

and p»t = — £'M = — -pj log (5 M.

Integrating equation (/3) with respect to u between the limits 0
and M, we find

so that

oror

the fundamental formula in the use of Weierstrass's elliptic functions,
analogous to Mr. Glaisher's equation (/3,).

8. By integrating (|3) with respect to v instead of with respect to M,
we find

[ C («+«) dv + f f (M-V) dt>-2t>C« = f £ ^ _ ,
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(ft),

the elliptic integral of the third kind in the Weierstrass notation,
corresponding to Jacobi's II (v, u).

By integrating the equation in § 6,

pu—pv

with respect to u and v respectively, we obtain

f £ ̂ * = ^ <fo = log % ^«,
Jo pu—pv ° (ov

either of which may be taken as Weierstrass's canonical form of the
elliptic integral of the third kind; and these two integrals illustrate
the theorem analogous to that obtained by the interchange of ampli-
tude u and parameter v in Jacobi's elliptic integral of the third kind
n (u, v).

Or, interchanging u and v in (0,),

I . «C — Jogp • ^ I
J pu—pv (D(« + U]

so that, by addition,

pu—pv

corresponding to interchange of amplitude and parameter.

9. Supposing X = 4a$8—g%n—gi resolved into three real linear
factors 4 (as—e1)(x—ei)(x—ea), where e,>es>e8, and denoting by w1

and <us the real and imaginary half-periods of the elliptic functions,
then

f dx
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,, . f dx [** dx
so t h a t W = ^ = : ^

and, consequently,

while p'ux = p ' (w1 + w8) = p'wt = 0.

10. Returning to the fundamental formula

we may suppose the right-hand side resolved into the factors

(5(u—v— u£v) and J ^
(5u(5v

so that, denoting {°^u'\v) exp (_w^y) by AM or 0 (w, u), then

0 («*, -») = 0 (-u, v) = - - g ^ ^ exp (ufr),

and pu—pv = 0 («, v) ^ («, — v).

Also, replacing v by the particular values iou wl -f- w8, and a>s, we obtain

__ €>ttt 0att (58tt
SIM ' (DM ' (5>M '

or ^wrryCpM—e,),

and then 0 M is a doubly periodic function.

But, for any other value of v, the function <f> (M, V) is multiplied by
a constant factor when the variable is increased by a complete period
2w, or 2w8 (Halphen, p. 227); this function was introduced by
Hermite, and called by him a doubly periodic function of the second
kind (fonction doubleinent periodique de second espace).

We see, from § 8, that its logarithm is an elliptic integral of the
third kind; for

( « , • ) = log

fpu—pv
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11. This function <f>u is shown by Halphen {Fonctions elliptiques,
p. 235) to satisfy the equation

Lame's differential equation for n = 1, with Weierstrass's notation.

Lame's general differential equation with Jacobi's elliptic function
notation

is considered by Hermite in Sur quelques applicatiom des fonctions
elliptiques, Paris, 1885, Premier fascicule. This is a reprint of
Hermite's" papers which appeared in the Gomptes Bendus} beginning
in 1877.

By the use of Weierstrass's notation, the work of Hermite is con-
siderably simplified. The equation of Lame then becomes

and, in accordance with Hermite's results, the solution of this equation

is y = 0F(x) + (yF{-x)y

where 0 and 0' are arbitrary constants, and

( A \ " - l / A \»"> / A vinJ

where *JJ = ^T^l exp (X—£w) x = ex'0 (a?, w) ;

also Av A3, ...,X, and put are certain definite constants, rational func-
tions of h and the invariants gt and </v

12. A great part of Hermito's work is devoted to the determination
of these constants for the successive integral valae3 of n, tne com-
ploxity of the work increasing very rapidly.

For n = 1 we have just seen that the solution of tho corresponding
equation of Lame,
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is obtained, putting h = pv, in the form

0 = 0* (a, v) + C'<p(-x,v),

where <j> (#, v) = vW + v) e xP (— x(°)> a s above.

For n = 2, the equation becomes

and, as we have seen in these Proceedings, June 10th, 1880, p. 374, the
solution is then, putting h = — 3 p (a—6),

a! - a ) G»(aj— 6)

subject to the condition that

p'a = — p'&, and therefore = ^' (a—6) ;

and this, by Halphen's equation (36) (Fonctions elliptiques, p. 230),
can bo thrown into the form

dx L <5xSu )

. n> d ( (3(x — u) , .. v.\ 7
+ 0 — j J- ^ -; exp ( <a- ^6) ;c [,

dx C (!) ;c 5 w J

where w = a + b,

agreeing thus with Hermite's form of the result, if

A = fa — fa—(b = i c •— = —! r

pa—(>b pa — pb

BO that f ( a - 6 ) = fri—^"6,

also p (a— b) = — pa — p b.

13. It is interesting to verify that the above valuo of y is a solu-
tion of the differential equation
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Taking the particular solution

= «(»+«)«
(5a (56 6 so

then i-^ = a»+a)-^
y ax

A p x—p'q
8 p»—pa 2 px—

and, differentiating again,

pz—pa px-pb

But, if p'a = —p'b = p ' (a—6),

x p'x—p'a p'z—p'b _ JL p<3a;—p'%a
T px—pa px—pb 2 (px — pa)(px—pb)

in consequence of the relations

or 4p8a

or

so that p^x-p^a = (paj + pa) {4!(p'>x+pap3}+p'ia) — r/2}

= 4 (px—pa)(pix+pa px—pa pb—p^b)

= 4 (pa—pa)(px—pb)(px+pa+pb).

Therefore — f̂  = Gpx + Spa
y dx*

= 6px—3p(a—b),

uinccj p(a—t)+pct + p& = 0,

in consequenoo of the relation
p'a = — p'b = p ' (a—b).



1887.] the Weierstmss Elliptic Functions. 273

Whon p' (a—b) = 0, the solution of the differential equation is an
algebraical function of pxt and wo obtain the particular solutions
considered by Lame.

14. If, however, we turn to p. 106 of Hermite's work, we must rc-
placo h by 6pa, in order to obtain an analogous solution ; and then
Lame's differential equation, in the form

has the solution

— -A
y dx*

dx L (5x6(o

- J: ^ ' oxp (—X+^w) a;

subject to the conditions

so that

or

also pa, =

X— ŵ = — |£(w + a)—'^(u—a) ;

or put — pa = — * *-r— ,
pa

giving pw, and consequently X, in terms of pa or h.

15. For n = 3, the identification with Hermite's results (Sur quel-
qties applications, 8fc.% pages 120 to 129) is obtained by writing Lame's
corresponding equation

and then

or
VOL. XVIli.—NO. 207.

y

h

dx'

= -

1 =

bl = 15p«,

: — 3 p a,
T
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so that the differential equation is

This suggests, by analogy, that the generalised form of Lamp's
should be written, following Briosohi, in the form

— - 4 = n
y ax

agreeing with the above forms for n = 1, 2, 3.

Then (Hermite, p. 120),
2

and (Hermite, p. 124)

fi = pw, fi, = | p'«, SI, = p'w—1&, fig = i p w p'o), ...,

the same as the coefficients given by Halphen (p. 231) in the ex-
pansion in ascending powers of u of <f> (w, w).

Then, when w = 3 (Hermite, p. 126), the identification of results
is made by means of the equations

\»_3 pw- &JH - - si = 9 pa = |ft,
A

220s

The solution of the differential equation

is, therefore, y = OF(x) + O'F ( - » ) ,

where F(x) = -j-^^x—^h^Xt
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and *a> = 60"+") exp (\-(u>) x
<5x(5 w

= ^ (OJ, w) exp XOJ,

where 7i = -| f Xs— 8f»w — *-r-)»

The direct verification that Fx is a particular solution of this
differential equation is an interesting piece of analysis^ but it is
omitted here, as the work is rather long.

16. For higher integral values of n, the determination df fpw and \
in the solution of Lame's differential equation

= n

in the form y = OF (x) + CF ( - JC) ,
/ rl \"-l / it \»-3

and F(x) = (^) *x-A1 (f-

where $a? = ?Va?'v<tf^ e xp (X — fa) x,
<5x(9<a

increases rapidly in complication, and the general solution has not
yet been obtained by Hermite; although he attempts the solution
from the consideration of the product F (x) F (—x) of two particular
solutions, this product being in all cases a doubly periodic function.

17. The physical origin of Lamp's difEerential equation is explained
in Maxwell's Electricity and Magnetism, Todhunter's Functions of
Laplace, Lame, and Bessel, Ferrers's Spherical Harmonics, and Heine's
Kugelfunctionen.

Transforming Poisson's equation to ellipsoidal coordinates
(Maxwell, I., p. 181), and employing Woierstrass's notation as ex-
plained in these Proceedings, June 10, 1886 (Vol. xvn., p. 378), the
equation becomes

g g 3
(c/. Klein, Ueher Lame'sche Functionen, Math. Ann., xvm.).

Here A, n, v aro tho three roots of the cubic equation

T 2
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defining the three confocal quadric surfaces through a point; and
then, as has been shown, we should put

a' + X ssptt—ej, b* + \s=pn— e-1, c' + X = pu — <?8,

»8 + /* = p«—Ci, b*+n = pv — ev tf+pzzpv—e,,

ri' + v = pw—eu W + v = pw—cit c' + v = pio-et\

autl, in going round three sides of the boundary of tho period rectangle,

u = rwlt for the confocal ellipsoids,

•y = wx +S(i)s, for the hyperboloids of one sheet,

w = iu)l + w3l for the hyperboloids of two sheets;

r, s, t denoting real proper fractions, tho fourth side of the period
acctanglo giving imaginary surfaces; so that at two corners of tho
period rectangle r = 1 or s = 0 gives the focal ellipse, s = 1 or t = 1
tho focal hyperbola.

Then Poisson's equation becomes of the symmetrical form

(pv-pto) |7a+(Pltf-P*O0 + (PM-^)|£ = O.

18. Lame supposes that (f> is the product of three functions U, F, IF,
such that IT is a function of u only, F of v only, and IF of %o only; and
then the equation becomes

d Uequivalent to -- a =* gpu+h,

Vdv*

d*W _ ,j

where g and h are arbitrary constants; and g is replaced by n (« +1),
whero n is an integer, by analogy with Laplace's equation, in order
that the integral should be a uniform function; and we thus obtain
three of Lamp's differential equations of the same form.

19. The application of Lamp's equation for n = 2 to the dynamical
problem of the motion of the spherical pendulum is given by Hermito
(p. 109), and adapted to Weierstrass's notation in these Proceedings-,
June 10j 188G (Vol. xvn., p; 374).
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The equation of the projection of the motion of the bob of the
pendulum on a horizontal plane is there given in tho form

= 2il <5(u+a)6(u+b) ( _ , a _ w Ui

6a(5b(5u

where, 2r denoting a complete period of the motion, we must put

also a=a>j+rw8, b — su>s,

r and s denoting real proper fractions.

In the spherical pendulum the additional condition pa = — p'6 is
required, but in the representation of the general motion of a point
on the axis of a top, projected on a horizontal plane, this restriction
is not required, while the form of the equation remains unaltered;
but it is no longer the solution of Lamp's equation, unless referred to
moving axes rotating with a certain constant angular velocity about
the vertical.

20. It is unfortunate, at first sight, that the parameters like a and
b required in the solution of these and similar dynamical problems
are always imaginary; but this inconvenience disappears when we
employ the above form for x-piy as a function of t.

As dynamical illustrations of Lame's equation for n — 1, Hermito
considers (i.) the problem of the motion of a body under no forces,
including the equation of Poinsot's herpolhbde ; (ii.) the equation
of the tortuous Elastica in equilibrium under balancing forces and
couples at its ends.

21. Let us consider, first, the equations of the Elastica (Hermite,
Sur quelques ajjplications, 8fc.t p. 93). These equations may be written

y'z"-y"z'=:ax'+Py,

z'x"—zV = ay'—-fix,

x'y "—x"y = az' + y,

where the accents denote differentiation with respect to the arc s, and
«, /3, y denote constants depending on the flexibility of the wire, and
the impressed forces; also the axis of z is taken along the central
axis of the applied wrench at any point of the curve.

These equations are due in this form to Binet and Wantzel (Comptes
Iiendus, 1844), and may be established as follows : denoting by B tho
flexural rigidity of the wire, by Z and N tho impressed force and
couple, and by Q the tangential torsional couple of the wire, then the
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equations of equilibrium are, taking component momenta at any point
xyz of the wire,

B(y'z"-y"z) = Gx'+Zy (1),

B(z'x"-z"x') = Gy'-Zx (2),

B(x'y"-x"y')=Gz'+N (3),

equations of the above form.
Differentiating with respect to s} multiplying respectively by x\ y\

z', and adding, gives Q'— 0 ; so that 0 is constant.

Multiplying (1) by x, (2) by y\ and (3) by z, and adding, gives

Q-Z(xy'-x'y)=0,

so that xy —xy = r2 — = 7t, a constant;
as

and therefore xy"—x"y = 0.

Again, multiplying (1) by a?, and (2) by y, and adding, gives

Bz" (xy'—xy) —Bz (xy"—x"y) = 0 (xx'+yy')y

or Bz" = Z(xx'+yy')t

so that Bz = \Z (a39+y8) + H-

Then W» = Z% {(»'+*/)W+y*)-(xy -vyY]

= 2Z {Bz-E){\-z'%)-2^1i\

so that z' is an elliptic function of the arc 8.

We may, if we like, modify Hermite's formulae to the Weierstrass
notation, and obtain from these equations

x + iy = 0 ,: ' exp (\—fw) n,

z = 2 f« -f 7?t,

wh ere w = sw, / c 4- <«>j,

2c denoting the length of a complete wave of the elastica; or we may
obtain these equations immediately from the previous solution for the
top (§ 19), by means of Kirchhoff's Kinetic Analogue, which asserts
that the tangent of the elastioa, if properly orientated, can be made
to keep atways parallel to the axis of the top, provided that the point
of contact on the elastica moves with a certain definite constant
velocity, and provided that certain initial conditions are satisfied. •
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Then, in the Elastica, in consequence of the Kinetic Analogue,

at*

(Proc. Lona". Maifc. tfoc, June 10th, 1886) ; and, integrating,

x+i ^ c r ^ + a + fe) (_<a_#) w ,
(5w(5>(a + &)

where dw / ds is constant, and therefore

the imaginary constant w8 being added in order that dz / ds should
oscillate between finite limits.

22. In the motion of a rigid body about a fixed point under no
forces, the solution of Euler's equations of motion,

A&-(B-C)qr=0, B<&-(O-A) rp = 0,

has already been given in these Proceedings, June 10th, 188G (Vol. xvn.,
p. 366), in the form

Ap> = - m a (B-

Bq* - - m 8 ( 0 -

Cr* =-m*(A-B)(pu-es),

where the factor m? is now introduced for homogeneity ; and then

dv? _ (B-C)(O-A)(A-B) _
dt* ~ ABC

suppose; so that

2r denoting the complete period of the motion, and the imaginary
constant w3 being added in order to make pu oscillate between e, and
et, and the polhode consequently enclose the principal axis A.
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Also, e,, elf es, git and gs are determined, as before, from the relations

A?+Btf+Ci* = T, AY+B'q'+CV = (P,

where \T and 0 denote the constant kinetic energy and resultant
angular momentum of the system.

23. For the herpolhode, take the equation of § 532 (Routh's Rigid
Dynamics, 3rd edition),

dt = -Q+ ABGQT

and we shall find (§ 25) that this cau easily be thrown, into the form

di<f> ___» t p'u)
du * pu—pot

so that if = (\-f«) « + i log ̂ (t t+M) ,
©(it—w)

or

7" /7/8 A HPT1*
1 hen A = — -— —— s= . _ — x r - r r —

Cr du 5

and o> is the (imaginary) value of u which makes as1+ 2/* in the
herpolhode vanish. So that

an.d therefore »+iw = fc ̂ 5 "L^* exp ( X—fw) w.

or aj-»y =

where w = <

is the equation of the herpolhode.

24. Referred to axes rotating with constant angular velocity T/Q,
the equation of the herpolhode will be

a+ty = Jc<p(u, w),

or %—iy =s ̂  (—tt, w),
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so that now .u and y satisfy Lamp's equation for n = 1,

and this relative herpolhode will be described therefore exactly as by
a particle properly projected under a central attraction proportional to

r(2pM + pw) = Srpto—2r9/k*

(compare an article by Pinczon in the Comptes Rendus, 12th April,
1887, on the " Herpolhode").

25. In order to prove the equation

di<f> ,. x p i o
— \ -s ,

an pu—p<o
we notice that we must put

Q du G (

also, in the herpolhode (Routh, p. 409),

, . o , s Me* ( , T*

Jlfe4

provided that
B-C ,C-A t A-B T*

-O , G-AA A-B
c

so that p w _ e i = - - ( - - - ) ( - - -

with Hermite's notation, Sur quelques applications, <fco., page 24.
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Similarly, by symmetry,

1

Our w here is therefore practically the same as the w employed by
Hermite, p. 27; also

- _ _
r

so that, now (Routh, JBigfid Dynamics, § 532),

pu—pu)

26. Since the product (AT—&)(BT—GP)(OT-CP) is negative,
p'b/ is a negative imaginary, and therefore to = 5w8, where s is a
real proper fraction; and then, by comparison with Hermite's v,
p. 27, s = vjK; also v is the same as the quantity denoted by a in the
article " Solution of Euler's equations of motion by means of Elliptic
Functions" (Quarterly Journal of Mathematics, Vol. xiv., p. 267), and
a slight consideration will easily show how the angles X, /i, v of that
article can be expressed, by means of Weierstrass's notation, in as
simple a manner as the angle <p of the herpolhode. The projection on
the invariable plane of the spheincal curve described by a point fixed
on one of the principal axes will then be found to be given by an
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equation of the form

283

x+iy = k (X—(v) u,

where w+« = w,, <i>x + <">s, or w8, according as the point is on the
principal axis of A, B, or G.

27. De Sparre's theorem (Oomptes Rendus, t. 99 and 101), which
asserts that the herpolhode has no points of inflexion, can now be
proved; for, writing the equation of the herpolhode

SH=2 exp ( -

and therefore ^ ^ i = a5V/+yV/+* ( « ' / - « V ) ,

and therefore the imaginary part is zero at a point of inflexion.

But ^

pu—pto

r

exp (X

du \" pu—pto

and therefore

and the imaginary part of this expression, since pu, p'u> and pea are
real, p'ta is negative imaginary, and X is positive imaginary, is

(2pu+pw-
\ pu—pu

'u,-\ (pu -
pu—pia
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and this, equated to zero, gives

- P ^ ) = 0,

reducing to a simple equation for pw, giving

and, since pu—ea will be found to be negative, pw—e8 positive, it
follows that the points of inflexion are imaginary, although they may
be real on Sylvester's generalized herpolhodes, described by the point
of contact of a confocal ellipsoid rolling on a parallel plane.

28. Let us consider a third dynamical problem, the determination
of the curve assumed by a uniform chain fixed at two points of a
rotating body, when in relative equilibrium.

The equations of relative equilibrium, with the usual notation, are

f
ds

= 0,

ds V Is) - °'
the axis of z being the axis of rotation.

Three first integrals of these equations are immediately obtainable,

namely, T% = T»>

TV* — = /J

r and 0 denoting polar coordinates in a plane perpendicular to the
axis of rotation.

Therefore —s = —
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andtherefore l+g+ r»g = | ,

i | &* h* _ T3

°V + dz^ T0V ~ To
2'

a cubic function of r8; and therefore rJ is an elliptic function of z.

29. If the chain is fixed to two points lying in a plane through the
axis of rotation, the chain will lie altogether in this plane, and the
equation of its curve takes the simple form with Jacobi's notation

r/a = anzK/c.

In the general case, however, the chain sweeps out a surface of
revolution, whose equation is

a;3+f = a3 en2 zK/c + 63 sn8 zK/c,

2a and 26 being the maximum and minimum diameters of the surface.

30. Employing Weierstrass's notation, we must put

so that k'p^u I -—) = •• (pu—pv)*
\dz I 10

7m— (P«~P«)8+ f ̂ - -4J (pu-pv)- — ,

provided that — = £ - — ,

aud pv, git and <78 are suitably chosen.

Then, since u = v make r8 = 0, therefore

16/i3

B
4ft

nnd jj'u is consequently imaginary.
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31. From the equation r» ̂  = A ,

weobtain d± = - L d± = - ^ 1—
dfot Tjr1 dw *nw9# pu-pv'

or

if p'v is taken as negative imaginary, and consequently v = sw8, whero
s is a real proper fraction.

B u t r3 = /c9 (jpu — pv)_x

and therefore

= r e " =

a—ty = i/c^ (—u, v),

give the equations of the curve assumed by the chain, the projection
of which on a plane perpendicular to the axis of revolution is conse-
quently similar to a herpolhode or the projection of the motion of the
bob of a spherical pendulum; also, duldz being constant, we must put

where 2c denotes the whole length of a complete wave of the chain,
and the constant a>s is added in order to make pu oscillate in value
between e, and es.

When the chain is fixed at two points in a piano perpendicular to
the axis of rotation, the curve formed by the chain will bo a plauo
curvo, given by an equation of the form

exp ( - « & ) =

the general equation of a catenary under a central force varying as
the distance.

A particular case of these catenaries is the curve

rcoshm0 = a,

a Cotes's spiral, the separating herpolhode.
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When this catenary is a free orbit under a. central force P, the
intensity must vary as Ar*+Brt partly as the third and partly as the
first power of the distance, and then we shall find that du/dt is con-
stant ; in fact,

JL.JL-.tHi- P =
x y x + iy r

so that P = 2r*+3rpv.

32. These three dynamical illustrations show that the elliptic in-
tegral of the third kind must be treated as the logarithm of the vector
of the corresponding azimuthal motion.

[The solutions of other well-known dynamical problems can be
exhibited in a similar form.

Thus, in the motion of a particle inside a smooth paraboloid of re-
volution with vertical axis, the projection of the path on a horizontal
plane is given by

x+iy = hf> (u, v) ex",

, dt
where — = e,—pu,

du
and x^+y* = 4nnz = &8 (pv—pu).

In the motion of a particle on a smooth vertical cono of soinivertical
angle a,

x + iy-h (pv-pu) \ *>(«*+*> exp (-2wfr) ] """*,

r = k(pv-pu),

, dt
and — = pv—pu;

du
and the motion of a sphere rolling on a rough vertical cono will be
given by similar equations.

Tho path of a particle on a smooth horizontal table, attached to
one end of a string passing through a hole in tho table and support-
ing a particle hanging vertically, is of a similar natnre; and tho
particle may be supposed to move on a smooth vertical cone, tho
string passing through a hole at tho vertex and supporting another
particle, without material alteration of the preceding results.

The formulas obtained by M. Halphen in the Journal de VEcole Poly-
technique, 1884, " Sur une courbe elastique," for the solution of
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M. Maurice Levy's problem of the curve formed by a plate, originally
cylindrically circular, due to a uniform pressure on one side (for in-
stance, a circular tube exposed to an external collapsing pressure), can
now be slightly modified in order to bo expressed in a similar form;
for, writing 2v and u— v for his v and uf then

v, 2v)<p (u—v, 2v),

r =

f*-t>)-2p2«},

These equations are derived from M. Levy's relation

- = 4Ar + 2B,
P

connecting p the radius of the curvature, and •>• the distance from a
fixed point of any point on the curve; and the relation is immediately
obtained by taking moments about any point on the curve,

a__ _ 1 p'(ti—v)—p'(u+v)
p p'2v p(u—v)-p(u+v)'

and then — = iap'2v.
du

Do Sparre's theorem (§ 27) has been considered recently by
numerous writers; for instance, Darboux, Mannheim, Resal in the
Journal de VEcole Polytechmque, 1885, and Hess, in the Math.
Annalen.']

April 1th, 1887.

Sir JAMES COCKLE, F.R.S., President, in tho Chair.

Messrs. Joseph Edwards, M.A., Fellow of Sidney Sussex College,
Cambridge; Robert Russell, M.A., Trinity Collego, Dublin; and
A. N. Whitehead, B.A., Fellow and Lecturer of Trinity College,
Cambridge, were elected members.

The following communications were read (or taken as read) :
On the Intersections of a Circle and a Piano Curve: Prof.

Genese.
A new Theory of Harmonic Polygons: Rev. T. C. Simmons*
On some Properties of Simplicissima, with especial regard to the

related spherical Loci: W. J. C. Sharp.
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On Briot and Bouquet's Theory of the Differential Equation

F (u, ^) = 0 : Prof. Cayley, F.R.S.

The Cosine Orthocentres of a Plane Triangle and a Cubic
through them : B. Tucker.

Note on a Tetrahedron: Dr. Wolstenholme.

The following presents were received:
" Mathematical Questions and their Solutions, from the • Educational Tinws,1 "

Vol. XLVI.

" Proceedings of the Royal Society," Vol. XLII., NOS. 251 and 252.
"Educational Times," for April.
"Transactions of the Cambridge PhilosophicalSocioty," Vol. xiv., Partij., 1887.
" Johns Hopkins University Circulars," Vol. vi., No. 66, March, 1887.
" Smithsonian Report," 1884, Part II. ; Washington, 1885.
"Transactions of the Connecticut Academy," Vol. VII.,Part i .; Newhiivon, 18SG.
" Bulletin des Sciences Mathematiques," T. xi., March and April, 1887.
11 Bulletin do la Societe Mathematique do France," T. xv., No. 1.
" Beiblatter zu den Annalen dor Physik und Chemie," B. xi., St. 2 and 3.
" Acta Mathematica," 9 : 3 .
"Atti della Realo Accademia dei Lincci—Rendiconti," Vol. in., F. 3 and 4 ;

Fubbrajo, 1887.
" Bollettino dollo Pubblicazioni Italiane, ricovute per Diritto di Stampa," Num.

29 and 30 ; Firenze.
11 Actes do la Socie'te' Helvetique dos Scionccs Naturelles," reunio a Gcnevo los

10, 11, et 12 Aout 1886, 8vo; compto-rondu 1886—86 ; Geneve, 1886.
" Compte-rendu des Travaux presentes u la Soixante-ncuviemo Sosuion do la

Societe Helvetique des Sciences Naturelles," reunie a Geneve les 10, 11, et 12 Aout
1886, 8vo; Genbve, 1886.

" Mitthcilungen der Naturforschendon Gescllschaft in Bern aus dem Juhro
1886," Nr. 1143—1168, 8vo; Bern, 1887.

"Jahrbuch iiber die Fortschritte der Mathematik," B. xvi., H. 2 ; Jahrgang
1884.

" Jornal do Sciencias Mathematicas e Astronomicas," Vol. vn., No. 4; Coiinbra,
1886.

" Ueber die Integration der w»-tenWurzel aus einer rationalun Function," von F.
Klitzkowski, 8vo pamphlet; Greifswald, 1887. Inaugural disuertation.)

A new Method for the Investigation vf Harmonic Polygons.
By Rev. T. C. SIMMONS, M.A.

[Scad April 1th, 1887.]

1. If P^PiPsPt... be a cyclic polygon such that the perpendiculars
drawn on the sides from some internal point K aro all respectively
proportional to those sides, then P1PiPiPi... is said to be a harmonic
polygon whoso Leinoiue point is K.
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