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Some Theorems of Kinematics on a Sphere. By E. B. ELLIOTT.

[Head Feb. 10/A, 1881.]

1. The theorems in question have to do with the spherical areas
passed round by points of a spherical figure as it moves upon its sphere
without changingsize or form through a complete cycle of positions ending
with its original one, and are the analogues of the theorem of plane kine-
matics, known as Holditoh's, and of others given by Messrs. Leudesdorf
and Kempe, in the " Messenger of Mathematics " for 1877 and 1878.

Let the radius of our sphere be R, and consider AB an arc of great
circle upon it of given length, and consequently subtending a given
angle, a -f/3 say, at the sphere's centre. Let this arc be divided at 0
into two constant parts a and /3. The chord
joining AB is, of course, also of constant length
2JBsin£(a-J-/3), and, if the radius to 0 meet it
in C, then AO': OB = sin a : sin /3, a constant
ratio. Thus the consideration of the kinematics
of a constant arc moving on a sphere, and a
point always dividing it into two constant parts
a, jS, resolves itself into that of a rod of constant
length, moving with its two ends on a sphere,
and the point 0' which always divides it in a constant ratio sin a : sin /3.

Again, since ^ = S ^ g « S2£ifcL±fi, the concentric sphere
° OA BvaAOO cos|(a—/3)

on which 0' moves is of radius JBC0S *y ,{.
cost (a—p)

2. Now the rod AB, in any position, has three distinct motions open
to it,—(1) a'rotation about the centre of the sphere in the great circle
plane which contains i t ; (2) a rotation about its own middle point in
the plane, which contains it, and is at right angles to this one; and (3)
a translation at right angles to itself in this second plane. Let it bo
given an infinitesimal displacement dd of the first kind; then the two
ends At B are displaced on the sphere in virtue of it, through distances

each Jldd, and the point 0' through a distance ig c o s f (-n+^]dd.
cos£(a —p)

Again, let the rod be given simultaneously or successively displace-
ments d<f>, ds of the second and third kinds respectively; then, writing
2c instead of 222 sin i(«+/3), the length, the consequent displacements
of A and B on the sphere will be ds + cd<j> and ds—cd$ respectively, in
directions at right anglos to the first displacements of those points, and
that of 0' upon its own sphere will be ds+ s ? n ^ ~ s | u q ctty at right

Sinp-ftsiua



48 Mr. E. B. Elliott on . [Feb. 10,

angles to its first displacement. Thus, d (A) and d (B) being rect-
angular elements of area on the given sphere contained by these
rectangular displacements of A and B respectively,

d(A)=Rd8(ds + cd<p)
and d (B) = RdO (ds-cd<p)t

and there is a corresponding rectangular element on the sphere which
is the locus of O\ viz.,

| ( ^ ) Sina

From these, eliminating ddds and ddd<f>, we get

(sin a + sin /3) c n S f [a~^ d (<7) = sin (3d (A) + sin a d (B),
cos£(a-f/i)

, / / r , _ cos | (n+ft) sin fid (A) + s\n ad(B)
1.6, t a ( u ) — — rr . : :—z •

cos f (a— p) sin a + sinp
Now, suppose that the one end A of our rod pass just completely

round the perimeter of an area (̂ 4) on the sphere, and that meanwhile
the other B pass also just entirely round the perimeter of another area
(B), so that 0' also passes round the perimeter of an area (C) on its
own sphere. Then, if the two areas (.4), (B) are such that they can
just completely be covered by pairs of corresponding points, each pair
of which are possible simultaneous positions of the two ends of our
rod, the areas can be split up entirely into elements d (A), d (B), d (C),
to which the above result applies. Summing, then, we have a like
relation between the whole areas

cos jf«-f/3) sina
cos£(a—/3) ' sineffsinp"

But now each point 0' is, as has been seen, the central projection of
the point 0 which divides the arc AB into two parts a, /3; and each
element d (C) surrounded by 0 is simply the corresponding d (0')
multiplied by the square of the ratio of tbo radii of the two spheres on
which they lie. Consequently, we see that, if the two ends of a moving
arc of great circle of given angular length a + fl pass simultaneously on
the sphere just all round closed areas (/I), (B), which can be covered
by corresponding points as above described, the point 0 which divides
it into two constant arcs a, /3, will in the same motion pass just all
round an area (0) given by

(0) =
cos* £ («+/?) cos \ (u—fi) sin a + sin (i
sin n f7?) + BJn ft (A)
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In verification, proceeding to tbe limit when the sphere becomes a
plane, this agrees with the generalised form of Hold itch's theorem,

for it is a caBe where the relative area 8 vanishes.

4. Now it is not always that the two spherical ardas (A), (B), passed
round by the two ends of an arc that moves through a complete cycle
of positions to its old one again, can be entirely covered by pairs of
points, each of which is distant from its conjugate by an arc equal to
the moving one. t t always is possible when each closed curve lies
entirely without the other, in which case the moving arc returns to its
first position without having made a complete rotation ; but when, as
is the case if one area (A) lies within the other (B), the arc has to make
a complete rotation before returning to its old place (or rather, con-
sidering the arc rigidly fixed to a closely fitting spherical surface which
Blips on the fixed sphere as it moves, when in the motion this spherical
surface returns to its first position, having in the mean while completely
turned through 2w about some one of its diameters), it cannot be done.
Tbe relation (2) then has not been proved for such areas.

As preliminary to discovering the relation which takes its place, left
us consider first a special motion. Let one end A of the moving aro
remain fixed, so that the other B describes a circle of angular radius
a+/3 with it as centre, and so 0 one of radius a. Gall the spherical
areas of these circles (b) and (c); then

(6)=4jrJS8sin»i(a+j8), (c) = **&' s in^a (3,4).

Itfow, generally, taking our given surrounded areas (A), (I?), call (4)
the inner; and within it let there be described an infinite succession
of continually smaller curves, each differing infinitesimally from, the
preceding, and the last one being a point. Then there will be a
corresponding infinite succession of curves, the first differing infi-
nitesimally from (B), and each infinitesimally from the preceding,
such that arcs of length a 4-/3 can move all round with one end on
any one of them, and the other upon the corresponding one of the
other system; and the last of these must be a circle (6) about the point
which is the last of the first system as centre. Eaoh of the second
system of curves will lie mostly, as a rule altogether, within the
preceding, and consequently the last of them, the circle (ft), will
generally lie entirely within the first one (2?). But the method does
not fail in case part of the circle lie without it, provided the natural
convention be made, as has alroady been done implicitly, that areas
passed round by a point in one sense of rotation being considered
positive, those passed round in the other senso are uegative.

VOL. XII.—NO. 169. E
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So, also, corresponding to each curve of the -4-system, and the
conjugate one of the 2?-system, there will be a carve of a 0-system;
and the last of these, corresponding to the point (a) and the circle (b),
will be a circle (c) of angular radius o.

Now the areas (.4), (B) — (6), (0) — (c) are made up of elements
such as those which composed the (A), (B), (0) of equation (2). We

»ia°W e , therefore, (O)-(s) =

Hence, substituting for (b) and (c) from (3, 4), we have

Bui n (3) + sin ft M) _ J , M ( • i a sin' & (a+ff
8in(a+iS) ~ * * * 18m "2 sin

(5).

In case the slipping spherical surface, to which the moving arc is
supposed rigidly attached, has to make n revolutions instead of one in
the course of the complete motion, the circular areas will have to be
reckoned n times instead of once. Thus the general result, of which
(2) and (5) are special cases, is

n/3 (A)

The area of ((T), enclosed upon its own sphere by the curve which
C, dividing the chord AB in the constant ratio sin a : sin (3, describes,
is of course found at once from that of (0) by multiplying by the
square of the ratio of the radii. Thus

(CY\ — coa ' i ( a + /3) ( sin a (B) + sin ff (A) A_T>1 sin j a sin |/3 7
K%/) ~ cos» i (o - 0 ) I sin (a+/3) *B1r'tt cos \ (o+/J) )

(7).
The limiting form which (5) or (G) takes when B is made infinite,

is Holditch's theorem of plane kinematics, as extended by Woolhouae.

5. In (6) let (B) = (-4), i.e., let the two ends A, B of our moving
arc go round either the same spherical curve or two curves of equal
area; then we get, reducing,

(0) cos \ (a+/3) = (4) cos | (a - 0 ) — 4IMT2P sin y sin - | ,

which may be written

in which n is zero and 1 respectively in the cases of the most simple
and usual complete motions contemplated in (2) and (5), and is always
a positive or negative integer.
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6. "We have already considered our moving arc AB as a part of a
spherical figure, or indeed of a whole spherical surface, fitting the
fixed sphere closely, and moving on it through a closed cycle of posi-
tions. Let us discuss now the areas surrounded by different points of
this moving surface that are not all on the same great circle; and
firstly find the locus of points which in the complete motion pass round
areas equal to a given one.

Let At B, 0, D be four points of the moving
surface which pass round equal areas (-4), and
let the arcs AB, OB meet in P. Then all the
arcs in the figure are constant, and the above
results apply. Using then (8), we obtain a value

A p pn
for t a n — tan ~ in terms of (A), (P), and

constants; and, again, precisely the same value
HP pn J*for tan ̂ f tan £p. Thus
2 2

tan 4* tan ™ - ten «* tan *»

But this is the necessary and sufficient condition that A, B, 0, D lie
upon the same circle, small or great, of the sphere. The locus required,
then, for any given value of (A) is a circle.

Let 8 be the centre of this circle, p its radius, p'= 8P\ then we have
A P PBtan±(p+p) tan\ (p-p) = tan^f tan ~ = const.,

by (8), if (P) is constant. Thus (P) = const, necessitates that p' as
well as p be constant. The circle, then, which is the locus of points
passing round the area (P), is concentric with that giving (.4). The
various locus circles are therefore concentric.

Again, if (S) be the area passed round by 8, we obtain at once, by
applying (6) or (8) to a bisected arc through S,

(A) = (8) cos p+4n7rBssinl-|- (9) ;

or, as it is perhaps more conveniently written,

(A)—2nirBi

thus giving the radius of the circle which is the locus for any assigned
area. We are shewn, too, that the least and greatest areas which can
be passed ronnd by any point of the sphere, are the one (S) and the
other 4n7TJRl—(/S), which are passed round by the centre of the locus
circles and the diametrically opposite point respectively. The mean

£ 2
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area 2nirB'> is passed round by points on the polar great circle of these
singular points.

The theorem of this article is the analogue of one as to plane kine-
matics, given by Mr. Kempe* as the interpretation of a result by
Mr. Lendesdorf. The direct analogue of Mr. Leudosdurf's theorem
follows in the next.

Since obtaining all the results above (and those which follow as far
as Art. 8 inclusive), my attention has been called to a comprehensive
paper by M. Darboux, in the " Bulletin des Sciences Mathematiques et
Astronomi/pies," for August, 1878, of which a section is devoted to ob-
ta ning tho locus theorem of the present article. M. Darboux's result,
however, is but special, being for the case of n = 2, and obtaining, in-
stead of (10), the form 4 T E ~ ( ^ = constant, which it takes for that

cosp
case. It is easy, however, to make his proof and result general. He
follows the method of roulettes on the sphere, and bases his conclusion
cm the statement that the sum of an area on a nnit sphere, and the
integral change of direction in passing round its perimeter, is 2*. NOW,
use instead the general form of this special
fact, namely, that the sum is 2Jcv, where k is
either Zero or some integer, and the theorem
follows as above, with pcrfeot generality. As
instances of cases where k has other values
than unity, take spherical areas such as
those in the two figures adjoining. In the
first, where the area is the difference of the
two loops, k = 0 ; and in the second, where
it is their sum, k = 2.

7. We can readily connect the areas (A), (B), (0), (P) passed round
on the sphere by four points, the position of one of.which P is given
with reference to the spherical triangle ABO of which the other three
are vertices. Thus, let AP, BP, GP meet BG> OA, AB respectively in

* For the general CASO when » is not zero, Mr. Kompe's locus theorem, expressed
by (A) =» (S) + n*(fl, follows at once by proceeding to the limit with the part of the
sphore near the centre of the locos circles on it. The special case of no revolution
(n *• 0) is, however, exceptional. For this caso the theorem on the sphere becomes

(A) = (S)cosp « (S)Binp,
whore p, tho complement of p, is the distance from tho great circle of the system of
locus circles, each point of which now passes round a zoro area. Proceeding then
to tho limit with the part of the sphero about a point of this great circle, it becomes
a straight line, and the area (A), passed round by a point in what becomes the plane
of motion, is seen to vary asp, the distance from that straight line. Thus Mr. Kempe's
special theorem, that in the case of a non-revolutional complete motion in a plane,
the loci for equal areas aro straight lines ins toad of circles, is not, as might at first
appear, inconsistent with the result above obtained on a sphere.
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A', B, C. Write down, by (6), a relation connecting (A), (-4'), and
(JP)i and another connecting (JB), (0), and (A'). From these, by elimi-
nation of (J.')i a result is found easily reducible to

l

y

of which the part within the bracket must of course be capable of
being brought by direct work to a symmetrical form.

To follow another method, which will at once obtain the result in a
convenient shape, will, however, be interesting.

Take 0 the centre of a sphere, and let the tetrahedral coordinates of
P with regard to the tetrahedron ABGO be x, y, z, to, so that, P being

., , sin PA' sin VB sin PO' ,
on the sphere, a? = -:——-7, y — . „ 2 = . , ta = 1 -a>—y-~z.

. sin AA * sin BB sin GO
Take also 8 the centre of the locus circles found in the last artiole.
We have the vector equality

SP = xSA+ySB+zSO+vSd,
squaring each side of which, equating^ scalar parts and reducing, we
get the relation in squares of straight lines

SP1 = x8At+ySBi+z8Ci+u>8O*-z<0OAi-yuOEl-zuOO*
—yzBff-zzCA*—xyAB\

Now, let plt p,, p8, p be the lengths of the arcs 8A, SB, SO, SP;
then, dividing this by IP, we get

in*-£- = 4 (x sin'-fij.+ysin'-^+sjrin1-^ +w (l-x-y-t)
a \ it a at

— 4 (yz sin*-|-+»a5 sin1 —

N ow, l , y (9 ) , B i n ^

and similarly for sin*-^-, sin1-^-, siri*-^-. Therefore, inserting,
£ £ Z

= 2 (fif) { 2a»-w '+4 (r/zsin1 | - + 2a5 sin1 ^+xy sin9

w* — 4 Uz sin1 -|-+235 sin* — + ay sin* - |- j 14»irR*.

But, by the equation of the sphere, the coefficient of (S) in this
equation vanishes, and that of 4njrii2 reduces to 2w. We have, there-
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fore, (P)=x(A)+y(B)+*(0)+».2n*& (11),

the relation required. It may be written in various forms symmetrical
as to A, B, and 0. Thus, for instance, at once

Or, again, let r be the angular radius of the small circle oircumscribing
ABO, and / the distance of P from its centre; then

u = ratio (with proper sign) of distances of P and 0 from
the plane ABO,

__ cos /— cos r __ __ 2 sin | (r-fY) sin $ (r—/)
cos r cos r

= _ 2cosj(r+/)Cosf(r-/) ten^
cosr

.cosr+cosr' . t r
— T • tan —,

cosr 2
r being the real or imaginary tangent arc from P to the circumscribing
circle. Thus, inserting,

i ft TJI cos r+cosr , «r /-lov
+ 2nwJB1 tan1— (13);

cosr 2
•which, by proceeding to the limit when B is infinite, includes Mr.
Leudesdorfs theorem.

8. It is, of course, easy now to state all the above results as to areas
passed round by points on the sphere as relations between the solid
angles of the cones passed round by the different lines through a fixed
point of a solid, which moves through a closed cycle of positions about
that point; or, again, taking these lines as of finite lengths, either the
same or different, between the sectorial volumes cut by these cones
from the spheres which are the loci of the lines' extremities.

9. It occurs now, from facts as to these cones, to determine correlative
ones as to the reciprocal cones; in other words, to pass from the points
whose motion upon the sphere we have been considering, to the great
circles of which they are the poles, and so determine properties of the
curves which great circles of the moving spherical surface envelope,
correlative to those already found for the curves which are the loci of
its points.
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We know that an intersection of two arcs of great circle is pole to
the connector of their poles, and so that the relation between two
spherical curves, of which the one is obtained as the envelope of great
circles to which the points of the other are poles, is entirely reciprocal.
Thus, while a point A moves, as in either of the cases above, round a
spherical area {A), its polar great circle moves round and envelopes a
curve whose point of contact with it in any position is pole of the tan-
gent great circle at the corresponding position of A. We know also
that the angle between two great circle arcs is equal to the angular
distance between their poles. It follows that the angle between two
consecutive tangents to the perimeter of {A) is equal to the angular
length of the corresponding element of arc of the reciprocal envelope.
Hence, summing for a complete motion, we obtain that the entire
change of direction in passing all round the closed perimeter of (A) is
equal to the entire angular length of the perimeter of the, of course
closed, reciprocal curve which is the envelope of the polar great circle
of A. Thus the actual length of the perimeter,

8, = B X change of direction in passing round (A)

(^) . (U) ,

where ft equals zero, or an integer, and is the algebraic number of loops
of which (A) consists, i.e., the excess of the numbor passed round in
the positive sense over that in the negative.

Hence, at once, the closed motion being snob that ft is constant for
the poles of all great circles of the sphere that are considered, 8m is
constant whenever (.4) is. The result of Art. 6, then, at once recipro-
cates into,—" If a spherical surface closely fitting a fixed one move on it
through a closed cycle of positions, the envelope on the moving surface
of great circles whose envelopes on the fixed one are of constant peri-
meter 8a is ft circle For different .values of 8a the different envelope
circles are concontric. And, if 80 be the perimeter of the envelope of
the great circle of which their common centre is pole, the radius p of
any one of them is given by

2 (ft—n)vR—8*
: =

where ft—n is the excess of the algebraic number of loops in the curve
which is the locus of the pole of the circle which envelopes 8,, over
the number of times which in the complete motion the moving sphere
has made complete revolutions round the axis for which that number
is greatest." Great circles, in particular, which pass through the com-
mon centre of the envelope circles, envelope a constant perimeter
2(k—n)nB, depending solely on ft, n and the dimensions of the
sphere.
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, In the most usual motions k — n, so that (15) takes the simple
form 8a = 80 sin p. Of other possible motions the most important
seem to be those where A; = » + l , to which the simple one of
Art. 8 belongs (w = 0, h = 1). The equivalent of the theorem of the
present article has been obtained for the case n?s2, fc=3, by M, Darbouy
in the paper already referred to.

10. Still considering h to be constant for the poles of all the great
circles dealt with, we can at once write down the correlative of result
(6) above, by writing in it from (14) for (.4), and similarly for (J5)
and (0). The conclusion is, that if two great circles making an angle
a 4-/3 with each other envelope curves of perimeters 8nt S* respectively
in a complete cyclic motion, then the great circle which divides the
angle between them into two parts a, /3, shall envelope a perimeter 8,,
given by an equation that is readily reduced to

* sin | a sin \0
S ' - sin(a+/3)

It is seen then that the common case for which h — n, which includes
that contemplated in result (5) above, is, as far as lengths of envelopes
go, one of exceptional simplicity, the motion giving the simplest result
as to loci of points, (h = 1, n == 0) that of (2), being as to envelopes
more complicated.

11. Again, we may now write down the correlative of the result of
Art. 7, (11), .(12), or (13). Letting ABO be the polar triangle of the
one considered in that article, and letting the polar great circle of P
meet its sides respectively in A', &, O\ we have, that the a of that

» ,. , BmAA'B' sin or,Article s= -•—. . , p = -: ' ;sin AA B siu pt

and, similarly, y = s l" "*, z = S?T1 ^ , plt pt, pa being the perpendicular
sin PJ sin pj

arcs from the vertices A, B, O on the opposite sides of the triangle, and
Wi, «Tj, «r, the perpendicular arcs from those vertices upon A'B'CT.
Thus we may state,—1' If in a closed motion of a spherical figure npon
its sphere the three sides of a spherical triangle npon it envelope curves
of perimeters Sa, 8b, 8, respectively, the great circle on which the per-
pendiculars from the vertices are «?» Wj» «r«> shall envelope one of
perimeter 8, given by
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the correlative of (12), or again by

« o sin ta*! , o sin tsr, , o sin tsr5Up = Oa -r l + O> —: + Ot — ?
sinp1 sinj?, sinps

+ 2 (*-n) 7 rJB 8 l n r ^ R i n / t an» 1 (19),
sinr 2

where r is the angular radins of the circle inscribed in ABO, r the
angular distance of the great circle considered from the centre of that
circle, and t the angle at which that great circle cuts it." The last
form of result is derived from the first, just as (13) from (12).

12. The theorem of plane kinematics obtained by taking that of the
last article in the limiting case when the sphere becomes a plane, is new
to me. The class of cases &=n alone seems to have meaning in the limit,
for in a plane the points whose motion determine h are infinitely dis-
tant ones. Now, for this class of cases, the remainder on the right of
(19) vanishes, so that we may enunciate,—" In any closed motion of a.
plane figure in its plane, if /§!„, 8^ Sp.be the perimeters of the curves en-
veloped by the sides of a plane triangle ABO in it, that enveloped by a
straight line of it, on which the perpendiculars from the vertices are
p, q, r respectively, shall be of perimeter Spi given by

2A/Sfp = pa8a+qbSb+rc8e (20),

where a, b, c are the sides, and 4 the area of the triangle AB0.ft

The plane theorems which are the limits of Arts, 9 and 10 have been
previously obtained by M. Darboux by direct process in a plane, as
also has been the remarkable relation

0z=a8a+b8b+c8et

obtained by givingp, qf r, in (20), infinite equal values.
It may perhaps be allowed me to make another remark on M. Dar-

boux's paper in the "Bulletin," which has been so suggestive to me in
the latter part of this one; viz., that his extension of Holditch's
theorem to sectorial areas is one included in my earlier extension of it
("Messenger of Mathematics," Feb. 1878), which removed the restriction
that the moving line be necessarily of constant length; and in like
manner, that his final result on volumes, given as an extended analogue
of one of mine iu the samo paper in the u Messenger," is, on the other
hand, included in my theorem.


