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Notes on a Ternary Cubic. By H. W. LLOYD TANNER, M.A.

Received and read January 9 th, 1896.

In the general ternary cubic

(a, b, c ; /, g, h; *, j , k; l)(x, y, s)s

+ 3ftfz + 3gsrx + 37wfy + 3iyzi + 3jzx*

we assume a = 1, h = 0, and that the form is the product of three
factors linear in x, y, z. Denoting this by F (x, y, s), we have

F(x, y, z) —

where the 0, (ft are to be determined. For this purpose write y = — 1,
z = 0, and it is seen that the three 0 are roots of the equation

F(0, - 1 , 0) = (1, 0, *, 6)(0, - I ) 8 = 0.

From a comparison of the coefficients of x"z, xyz, and y*z in the two
expressions for F (x, y, z), we find

= A& + B0 + O,

where A - 2kf-2bl-2k*j (•*-), B = bf+Wl-kbj (-r-),

the common denominator being = 62 + 4fc8 = A.

The 0, ^ represent any one of the pairs 6, <p ; 6U <px; 03, »̂2.

In this way the first factor of F {x, y, z) becomes

x+yd+zd^x+Cz+ty + Bz) ti + Az.O2

= x + y'6 + z'd2, say,

which is in the standard form of a complex integer, if x', y', z' are
integral. And then

F(x, y,z) = N(x+yd+z'd2).
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When the norm is developed and the symmetric functions of 0, 0,, 0,
are replaced by their values in terms of k, &, we get

Nix'+yd+zW) = (1, 6, ft2; 0, Sk\ 0 ; kb, -2k, k; ~ib)(x\ y\ z'f

— * (x, y, z).

It is this form $ which is considered in the present communication.
Obviously it has the important property that the coordinates of a
complex property x+y'6+z'd2 of any real integer w give a repre-
sentation of m by the form $.

In general the forms F, $ are not equivalent, since the transforma-
tions are not integral.

When k = 0, the discriminant of (1, 0; k, 6), namely, 62-f 4/c8, is
positive, and two of the factors of F (or <D) are imaginary. This
case has been discussed in the Proceedings* by Professor Mathews,
who gives references to several memoirs. The case in which all the
factors are real will be here considered, and it will be assumed
that 6, k are integers, such that 62 + 4&8 is negative, and that
(I, 0, k, b)(8, - I ) 8 is irreducible.

Units and Automorjphs.

Let u, v, to be a representation of 1 by the form $, so that

* («, v, w) = 1 = N(u+vd + w&),

and let x+yd+zG1, H+TjO+Cff* be two integers, such that

Hence * (as, y, z) = N (x + yd+z(

Also x+yO+z(P

6s+
Reducing this by means of the equation

• Vol.,xxi., pp. 280-287.
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we obtain x+yO+zO2

and hence, on account of the irreducibility of the equation for 6,

x = uli + bwri + bvC,

y = vt+ (u-3kw) v4- (bw—3kv) £,

z = w%+ VTJ + (u~3kw) £.

These equations may be written

x, V,z = v (*> »?, Oi

whei'e v = ( u , hw, bv ),

v, u—Skw, bw—Skv

10, v, u—Skw

and, since * (#, y,z)—^ (I,»;, 0>

it follows that v is an automorph of $, and, as is seen from its genesis,
a pi'oper automorph.

Th*ere is plainly a correspondence between the proper automorphR,
v, of the form <J>, and the complex units u + vd+wP ( = U say), the
coordinates of the unit being the terms of the first column of the
corresponding automorph. And it is easily proved that the product
v,Vj of two proper automorphs corresponds to the product TJJJ^ of the
tw.o corresponding units.

For, if (x, y, z) = u, (a, y\ z") and (x\ y, z) = v3 (x",y", z"),

then, for the corresponding units,

(a-+yd + z6P) = TJX (x'+yd+z'^), (a;' + yd+z'62) = TJ% (x"+y"6+z'62).

But, from the matrical equations,

(x, y, z) = vt (x. y\ z) — Vlva (x\ y", z"\

and from the unit equations,

x+y 6+zdi = Ux Ua {x"+y"0+z"6%),

which shows that î Vg and TJlUi correspond ; and further proves that
the sequence of factors in a product of proper automorphs is in-
different, assuming—what will presently appear—that to every unit
corresponds only one proper automorph. The results extend to any
number of factors, which need not all be different.
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The coordinates of a complex unit give the elements of the first
column of the corresponding proper automorph ; and this first column
determines the whole of the automorph. For the second column is
formed from the first, and the third from the second by the matrix

( • . b ) (0),

1 . -Bk

. 1

acting on the three elements of the preceding column. Thus the
scheme v includes circulants as a particular case. And, again, re-
calling the properties of circulants, the development of a determinant
formed by this rule from the first column x, y, z is the form
S> (x, y, z).

There are some curious relations (which may be useful) arising
from the nature of the matrix (i. For instance,

* • /3 (x, y, «) = h . $ (a;, y, z),

so that, if (a:, y, z) is a representation of ra, then we have a represen-
tation also of br.m, viz., fir(x,y,z). The inverse matrix j3~' may
also be used to derive a representation of m from a known repre-
sentation (6a;, y, z) of mb, in which the first element is a multiple
of b. We have, in fact,

* . /3"1 (bx, y, z) - * (3kx+y, z, a),

and $. p-1 (bx, y,z) = — $(bx, y, z).
b

Fundamental Improper Automorphs.

If 0, 0], Q% be the three roots of the equation

we have 6X = 2kq+pd + qd\

where q = ± k </—3/A, 2p + 1 = bq/k*

Assigning one of these values to q, the other value of q and the

• If * = 0, q = 0, and pi+p+ 1 = 0.
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corresponding value of p are — q, —p—1. Therefore

191

0]= 2k(p~l)-kqd+p6%.

These relations are merely a particular form of the well-known
homographic relation between the roots of a cubic, but it is more
easy to obtain them by writing coefficients for 0°, 0, $*, which are
determined by the results of the next paragraph.

The selection of one value for q determines the sequence of 8, 0U 0S,
but it in no wise identifies 0, which may be any one of the three-
roots.

From the above formulas,

2k

= x+2kqy-2k(p+z)z+(py+.kqz)0+[qy-(p + l) z]

if

kq

Similarly, if x+yd2+z^ = f+r{6+CP,

—p—

P

Now the equation x +1/0,+zd\ — £+ij8 + £09

is tantamount to x+yd + s8a = x+ij 9S + ^ , .

But we have £'+1/'0 + {'0s = x+yd%+zB\.

Hence the first matrix of this article, which changes (a*, y, z) to
(it V, 0> ig *n e inverse of the second, which changes (x, y, z) to
(f> *)•, O- ^n a similar way it is found that each matrix is the
square of the other, and that each is a cube root of unity. Accord-
ingly they will be represented by the symbols y, y9. The results
just found enable us to write down the formulas of the last article.
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The matrices y; ys are automorphs of $, for, since

= $y (a, y, z).

[Jan. 9,

their norms are equal, that is to say,

* (a, y, z) = $ (£, i?,

Since they change the 6 in the complex factor x-\-ydx-\-z^v they are
improper automorphs.

It is sometimes convenient to write the automorphs y, y* in another
way, which displays the irrational elements (if any). Writing
A = — Sr2, the symbol r is real but in general irrational. In the
numerical example (p. 195) it is rational, and this is probably the
case in most of the cubics that occur in connexion with cyclotomy.
All the elements of y, ys can now be expressed in terms of k, b, r,
and the result is

- 1 ,
- 1

2k*, -kb )

6, 2k*

2k, -b

Associated Automorphs.

Let w be a proper automorph whose first column consists of the
coordinates of the complex unit u+vd + toO2, and let x + yd+zd* be any
complex integer. Then, as on p. 186, the coordinates of the product
(u + vd+wd^fa+yd+zd*) are v (x, y, z).

Again (p. 191), if

= (*, v,

we have

y (*, y,

1+nO+tfP— x+y$i+ zd\.

Henpe the complex integer in 0 whose coordinates are y (a;, y, z)
may be written x-\-ydl-\-z(F1.

Hence it follows that vy (#, y, z) are the coordinates of the complex
number (u-\-vd-{-w^)(x-\-^jdx-\-zd\); while yu (#, y, z) are the coordi-
nates of (tt+vtf1 + itf^)(aj + 2/51+^). In the first case, y increases
the subscript of d, and the unit multiplication is then effected; in
the second case, the action of w coiTesponds to multiplying x+y6 + z(P
by the complex unit, and the subsequent action of y increases by 1
the subscript of every 6.
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The automorphs most nearly related to v may be shown in a
diagram:—

v vy vy*

yvy1 yv yuy

y'vy y'vy* y'v

and the preceding explanations will make it easy to see that the first
column contains the proper automorphs, the second contains improper
automorphs of the y-kind, and the third improper automorphs of the
y*-kind. The automorphs of the first, second, and third rows corre-
spond to the complex units « + vd + wP, u + v$l + w(fi

v and u + vdt + w$l,
respectively. I t follows that no two of the nine automorphs can be
equivalent.

The automorphs v, y satisfy the identity

uyvyvy = tiy'wy'vy* = 1,

which differs from the similar identity for the elliptic modular
function group only by containing a periodic automorph of the third
instead of the second order. The proof of the identity comes from
the observation that vyvyvy (ar, y, z) are the coordinates of

(w+v$+w&) (u+1'0, + wfy 0* + vdt+

that is, of x+yO+zffl,

SO that vyuywy (a;, y, z) = (x, y, z) ;

and so for wy'wy'wy8.
The identity shows that the cube of every improper automorph

is 1; this is visible on writing out the cube, say ywy yuy yuy. • I t
proves that the product of two proper automorphs is independent of
the sequence of the factors. This comes by multiplying the equation

yttyuy = y3r/yfvy ( = w"1)

by the multipliers indicated below, on the left, and then changing
the association of the factoi-s as is allowable.

1 ... yy* • y*uy = y'vy . yuy',
% . . . y v . yuy3 = yuy* . v,

... y s y 'wy8 . v = w . y9wy8.

But any other pair of automorphs in tho scheme are not commuta-
tive. If we denote by w any one of the automorphs, then any pair of

VOL. XXVII.—NO. 547 . O
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automorphs in the table (extended if need be) are consecutive auto-
morphs (i.) in a horizontal line, as w, toy ; or (ii.) in a dexter line, as
to, 7<i>; or (iii.) in a sinister line (w, y*toys) ; or (iv.) in a vertical
line (o>, y*wy). I t will therefore suffice to prove that each of these
four pairs gives different products when the sequence of the factors
is altered.

Since yw, <oy are two automorphs in the scheme, they are different.
Hence, if we multiply, as indicated on the left, and then reassociate
the factors suitably, the inequation

toy :£ y«,

we obtain « ... u>. &>y :jfc o»y. o> (i.),

...w o). yw gfc yw . w (ii-)>

to"1... to"1 yto"1 =jfe w ^ y .

But since w"1 = y'toy'toy8,

the last equation gives w.ysa>y* gfc y'wy*.u> (iii.),

For automorphs in the same column it is necessary to take the
column separately. For the second column the inequation

y*w y^y8 =jfc v*

gives T* ... yw. y'vy* =£ yVy2. yv,

y . . .y vy .yv zfc. yw.vy,

... y8 y'w^.vy =£ vy.y2vy2,

and similar results follow for the third column by using the
inequation , .

yvyvy =p v .
There is an interesting speculation concerning the three proper

automorphs w, ywy2, y2wy (or, say, for shortness v, v, w) which is
connected with these results. We know that the powers of any
proper automorph are commutative in a product; and the question is
whether v, v, w can be represented as powers of one of them. Now,
if v = v*, we have also w = >>* and v = wA, so that h* = 1. But h
obviously cannot be 1, and therefore the only values for this
exponent are the imaginary cube roots of 1, viz., y, y*. If we agree
to define the symbol i»T by the equation vy = v, then any product
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and, supposing v to be a fundamental automorph, every proper auto-
morph of the form, is a power of a fundamental automorph whose
exponent is a cubic integer. There is thus a doubly infinite series.
For the forms in which two factors are imaginaiy the exponent is a
real integer and there is a singly infinite series of automorphs.

The units u+vO+w6%
t u + vdl+to0v u + vOi-rwd^ are connected in

the same way. In Eisenstein's great memoir on cubic forms much
use is made of the "regulator," viz., the expression log.4—y logB;
where A, B are two conjugate factors of the form, and log A, log 2?
mean the logarithm of the absolute values of A, B. As the use of a
complex exponent has been fruitful, it seemed worth while to notice
the extension to matrices.

There is one point to which reference may be made. In the
numerical example following, the automorphs include fractional
elements. It will be found, however, that in no product of the
automorphs does the common denominator exceed 9, and this fact
leads to Eisenstein's proof of the existence of units (and therefore
automorphs) with integral elements. There ax*e two reasons for
using the automorphs with fractional elements (with the property
that the common denominator in all powers and products has a
superior limit). In the first place, the integral elements are liable to
be inconveniently large, or the first automorph with integi'al elements
is a power of the fractional automorph, and the exponent may be
any integer less than 3", where n is the common divisor. In the
second place, the number ra of which a representation is sought
generally' contains extraneous factors, especially in cyclotomic
problems (for example, a,**—5y* = 4p, and the form that follows)
which are also the factors of the common denominators of the
fractional elements of the automorphs. So far from being a
hindrance, the presence of fractions with such denominators is a real
help to the calculator.

Numerical Example.

In the determination of a 7-ic complex prime, a factor of
p ( = 14/1 + 1), the following equation is to be solved:—

F(x, y, z) = a;8 + 7y8— 189s8 + 189ytz-6Szix-6y£—2lxy% = 216p.

The equation for 6 is 0s-218—7 = 0,
fc = _ 7 , 6 = 7, 68+4&8, = A, = - 2 7 . 4 9 , r = 21.

The equation for ^ is 3p = - 28 - 6 + 2d\
giving 3a;'=3x-28z, 3y '=3y-«, 3z'=2z.

o 2
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These give integral values for x, y, z, only if z is a multiple of 3
(which is actually the case in the present problem). The transformed
form is

4>(.r, y, z) = z8 + 7y* + 7V +21 s . Jx-Wyz*+4>2zzi-2lxy*-21xyz.

Automorphs y = £ ( 3, 14, 56) , y2 = | ( 3, 14, 70)

%

1, 0, 7 ) ,

1, I, 21

0, 1, I

, 7, 14),

2~, 4, 35

1, 2, 4

, ?, 7),
I, 10, 58
I, 1,10

1
I

1,

1,

•

2,

1,

11

1

I

1),

7,

3,

I,

70,

5,

2,

,49,

, 2,

, 2,

or \

21),

14

2

329),

35

22

224]

14

13

• 1, 7
. r, 2

(-2, 1),

1,

•

w=*CI7,

1,

11,
T,

r,

•?,
2,

•

57,
1,
4«

56,

8,

•*•>

28),
7

3

371),
T4

16

245).

28
19

Geometrical Theory.

A point P whose rectangular coordinates (x, y, z) satisfy the

$ (a;, y, z) = 1equation

is upon a cubic surface ; and every point on this surface with integral
coordinates (x, y, z) corresjjonds to a unit x + yO+zd2 and vice versa.
The surface has three real asymptotic planus

where 6, 0u 0., n:u real irrational roots of

It is clear that, of the three units corresponding to any point P, all
or only one must be positive. The surface consists of four sheets for
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which the three units have the signs + + + ; 4" , — + —, K
respectively. The first may be distinguished as tlie ." positive"
sheet. Of the eight compartments into which space is divided by
the asymptote planes, that one which contains the axis of x also
contains the positive sheet, which it meets at the " vertex" A,
coordinates 1, 0, 0. This compartment is separated from each of the
other occupied compartments by an edge. The tangent plane at the
vertex (1, 0, 0) is given by the equation

Consider now the section of the surface by a plane

x~ 2ita= m.

This plane not being parallel to any of the asymptote planes, the
section will always have three asymptotes that in general form a
triangle. When m is greater than 1 the plane cuts the positive
sheet, and the curve consists of an oval inside the triangle with three
infinite branches (from the three negative sheets) in the outward
angles of the triangle. The curve has three diameter's, the medians
of the asymptote triangle, which meet at the point where the axis of
x pierces the plane. If the plane moves till m = 1, the oval in the
curve shrinks up to an acnode, at the vertex A of the surface. These
sections are two of the species added by Stirling to Newton's
Enunieratio. When m is between 0 and 1, the triangle is empty and
the infinite branches remain (Newton's 22nd species); when m = 0,
the asymptotes are concurrent (Newton's 32nd species); and when m
becomes negative, the triangle is empty and the infinite branches are
separated from the triangle by its sides (Newton's 23rd species).

Consider now a point P, (x, y, z) on the unit surface, and its con-
jugate points whose coordinates are

y2 (a, y, z) = the same with —r for r.

It is then seen that x— 2kz

has the same value for the three conjugate points P, yP, y*P, so that
these points lie upon a plane parallel to the tangent plane at the
vertex, viz., the plane

x—2kz = const.

A second relation common to the three points can also be found by
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direct suhstitution or by determining the volume of tetrahedron
0, P, yP, y'P, namely,

This volume is the same for each of the three points, and one of its
factors is also constant. Hence the three points lie upon the cylinder
whose axis is the axis of x,

— %9 + byz+&V = const.,

which can be written (2hy— 5z)a+3rV = const.,

and is seen to be elliptic.

The geometric construction of the two points yP, y2P conjugate
with a given point P now becomes very simple. Let ABO be the
asymptote triangle on.the plane through P, parallel to the tangent
at the vertex. Then P will be a point inside or outside the triangle
according as it is on the positive sheet or one of the negative sheets.
Through P draw lines parallel to the sides of the triangle, upon
which mark points P', Q', B\ respectively, so that the middle points
of PP\ QQ\ BB' are the middle points of the segments intercepted
by the triangle. A similar construction at P', or Q', or B', or all of
them, will give two new points Q, 12. Then P, Q, B are conjugate
points, and so likewise are P \ Q\ B'.

The proof comes out thus. The six points are on the cubic curve
because the intercepts between the cubic and two asymptotes on a
line parallel to the third are equal. Hence, P being on the curve,
P7, Q, P'J and therefore also Q, B, are on the curve.

Similarly for the conic, observing that the medians of the triangle
ABO are diameters of the conic conjugate to the sides they bisect, it
is seen that the six points are on the conic.

The medians AF, BG, Oil divide the triangle into six parts with a
common vertex at 0', the centroid. The effect of y is to transpose
the asymptote planes cyclically. Hence A becomes B, B becomes (7, 0
becomes A, while 0' is unchanged. Hence the triangles O'BF, O'CG>
O'AH are conjugate, and any point in O'BF has one conjugate in
O'CG and the other O'AH. But this is equivalent to the mode of
distributing the six points into conjugate sets, as is seen at once
from a figure.

As another application, consider a point U, coordinates (w, v, w);
P, as before, the point (x, y, z), and examine the effect of v, the
proper automorph with u, v, w for its first column. This automorph
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determines a homogeneous strain in space; and, since it is proper,
the three edges of the asymptote system remain unchanged. The
point A (1, 0, 0) comes to U; the plane containing P, yP, y'P,
which was parallel to the tangent plane at A, when transformed, con-
tains the points vP, vyP, uy2P, and is parallel to the tangent plane
at Z7, the new position of A. In the same way, using the automorph
yv, we find that the plane of the points yvP, yuyP, yvy2P is parallel
to the tangent plane at y U.

It may he noted that the fundamental nnits must be represented
by points on the negative sheets, unless indeed there are no points
with integral coordinates upon these sheets. For, if (u, u, w) is on
the positive sheet, the three conjugate units are positive. Hence
every power has three positive conjugates, and cannot lie on a negative
sheet because units on a negative sheet have two of the conjugates
negative.

Examples illustrating Lord Rayleigh's Theory of the Stability or

Instability of certain Fluid Motions. By A. B. H. LOVE.

Head January 9th, 1896.

In papers published in the Proceedings, Vols. xi. and xix., Lord
Rayleigh has discussed the oscillations possible in a stream of fluid
flowing between two fixed planes, which arise from difference of spin
(or molecular rotation) in different parts. He has especially attended
to cases where the spin changes discontinuously at certain planes
between the boundaries. A difficulty occurs in these solutions
through the fact that the places where the stream-velocity is equal
to the wave-velocity are singularities of the integrals of the differ-
ential equation on which the small varied motion depends. This
difficulty Lord Rayleigh has sought to evade in a recent paper (Proc,
Nov., 1895). It was felt, however, that, in the case of continuously
varying spin, the complete discussion of the problem for a particular
law of velocity would be desirable. The present paper contains such
a discussion as appears possible (without solving the differential
equation) of a case where there are two separated singular places
of the integral. The general conclusion seems to be that wave-


