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THE mathematical theory of the electromagnetic field is 
usually developed in terms of electric anct magnetic intensities 
in space, and the equations are almost unintelligible to the elec- 
trical engineer, who is in the habit of expressing everything in 
terms of voltage and current. Everyone who understands 
electromagnetic theory, however, knows that voltage is a gen- 
eralized parameter which completely represents the electric field 
distribution, and that current is a generalized parameter which 
completely represents the magnetic field distribution when the 
form of the circuit is given. Therefore it is possible, for any 
given shape of circuit, so to transform x the electromagnetic 
equations that voltage and current may replace electric and mag- 
netic field intensities. When this is done the unfamiliar electro- 
magnetic equations reduce to the extremely simple and uni- 
versally familiar voltage and current equations of the electrical 
engineer. It is the object of this paper to reduce the usual ex- 
pression of Poynting's Theorem and the usual equations of 
electromagnetic wave motion to familiar expressions involving 
voltage and current. This reduction is rather difficult if car- 
ried out strictly and in detail, and therefore a general statement 
of the nature of the transformations is given instead of the 
algebraic transformations themselves. 

POYNTING'S THEORE1V[. 

The rate at which energy streams past a point on a transmis- 
sion line is equal to El ,  where E is the voltage across the line at 
the point and I is the line current at the point (outgoing current 
in one wire and returning current in the other wire) .  

x It is always easiest to think of an algebraic transformation as a new 
type of space measurement, as explained below. 
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To say that this is Poynting's Theorem is more or less 
ridiculous, because this relation was known before Poynting's 
Theorem was ever thought of, but it is Poynting's Theorem all 
the same, as can be shown most easily in the case of a " trans- 
mission line " which consists of two broad, flat parallel metal 
ribbons. In this case the electric field is uniform, as represented 
by the fine vertical lines in Fig. I, and the magnetic field is uni- 
form (the dots in Fig. I represent an end view of the lines of 
force of the magnetic field). Let E be the voltage between the 
ribbons, then E / d  is the intensity of the electric field, where d is 
the distance of the ribbons apart. Let I be the current, then 
4 re I / w  is the intensity of the magnetic field. 2 The total 
energy stream is E1 ergs per second from left to right, or EI/~ud 
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ergs per second per square centimetre. Substituting electric 
field intensity f = E / d  and magnetic field intensity H = 4 
I / w ,  the expression for the energy stream in ergs per second 

per square centimetre becomes x . f H,  which is the u~uaI 
4 n 

form in which Poynting's Theorem is expressed. 
The following is a general statement of the transformation 

which would be necessary to reduce the usual expression for 
Poynting's Theorem to the familiar form involving voltage and 
current for the case of a transmission line consisting of two 
parallel cylindrical wires. 

The two Sets of curved lines e e e and m m m, Fig. 2, repre- 
sent electric equipotential surfaces and magnetic equipotential 
surfaces in the region surrounding two parallel cylindrical wires 
with a certain voltage between the wires and a certain current 

* C . g . s .  e l e c t r o m a g n e t i c  u n i t s  a r e  u s e d  t h r o u g h o u t .  



POYNTING'S THEOREM. ~I  

flowing in them in opposite directions. Imagine measurements 
in space to be so altered that the distance between equipotential 
surfaces is everywhere considered unity. Then the electric 
potential at any point is proportional to the distance (so meas- 
ured) of the point from the surface of the wire A, and the mag- 
netic potential at any point is proportional to the distance (so 
measured) of the point from, say, the plane through A and B. 
But when potentials are proportional to measured distances, 
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potential gradients are uniform; and therefore Fig. 2 represents 
in ordinary space what would be a uniform field distribution like 
Fig. 3 in space as above measured. 

Let E be the voltage between the wires in Fig. 2, and let I 
be the current in the wires (4 7r I is the magnetic potential- 
drop along any curve encircling one of the wires). Also let d 
be the distance between the wires measured as above explained, 
and let ~ be the length of any one of the curves e e e in Fig. 2 
(they are all of the same length when measured as above ex- 
plained). Then E/d  is the electric field intensity everywhere, 
and 4 7r I / w  is the magnetic field intensity everywhere. The 
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total energy stream is El, the entire sectional area of the energy 
stream is dw, and the ergs per second per unit sectional area 

is EI/dw, and this is equal to ~ .  f tt, exactly as in the above 
4re 

argument as applied to two broad, flat parallel ribbons. 
The alteration of space measurement which makes Fig. 2 

appear like Fig. 3 is the exact geometrical equivalent of the alge- 
braic transformation which reduces the equations of the electric 
and magnetic fields around two parallel wires to the forms which 
express the electric and magnetic fields between two broad, flat 
metal ribbons. One who appreciates the significance of such 
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transformations as' this, all electromagnetic field distributions 
look alike to him! everything is straight and square and uni- 
form, it is no longer necessary to talk about anything but sim- 
plest cases, and the familiar equation of the electrical engineer, 
namely, voltage >( current equals delivered pozver, is all there 
is left to Poynting's Theorem. 

EQUATIONS OF ELECTROMAGNETIC ACTION. 

The general equations of the electromagnetic field 8 are tre- 
mendously simplified by considering the case of a transmission 
line and using the generalized parameters E and I; and the 

*The familiar equations of the electromagnetic field expressing time 
rates in terms of curl--for the simplest case, of course--are discussed on 
pages 6o, 6i, and 62 and in Chapter VI of Franklin's "Electric Waves." 
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integrals of these equations (the equations of the electromag- 
netic wave) assume a form, which for simplicity are equal to the 
formula for Ohm's Law. 

The general equations are: 
c d E  d I  (I) 

and 
L .  d I  d E  (2) 

where C is the capacity of the line per unit of length (the gen- 
eralized ~ inductivity of the medium between the wires), and L 
is the inductance of the line per unit length (the generalized 
permeability of the medium between the wires). These two 
equations are easily derived by considering an element of the 
transmission line. The current which enters the dement  is 
greater than the current which flows out of the element by the 

dI 
amount dx" A x, and this is equal to the rate at which charge 

( is accumulating on the element of the line = 6". ZX x × --~ • 

The voltage across one end of the element .exceeds the voltage 
dE 

across the other end by the amount ~ .  Ax, and this difference 

is the net voltage which is causing the current in the element to 

( decrease = L . A x × ~ /  . 

The general integral of equations ( I )  and (2) involves un- 
F ~  

determined functions of (x 4- Vt), where g = ~/L~ ; but 

the simplest form of this integral may be established by imagin- 
ing a current distribution over the line which travels at velocity 
g,  and a voltage distribution which travels at velocity V, be- 
cause the idea of travel is precisely equivalent to the use of the 
double variable (x 4- Vt), as is well understood by everyone 
familiar with the equations of wave motion. 

• It is assumed that the reader is familiar with the idea of generalized 
co-ordinates. If he is not, he cannot hope to understand much about voltage, 
current, capacity, and inductance. 
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Imagine a current distribution over a transmission line the 
value of the current at a given point being [. The magnetic 
flux between the wires of unit length of the line is LI. If the 
distribution is travelling at velocity U, then the flux L[ moves 
unit distance forwards in I / V  second, the rate at which this flux 
sweeps across a line drawn from wire to wire is LI-+- I / V ,  and 
this is therefore the voltage E which must exist at the given 
point of the line so that 

E = L I V  (3) 

Imagine a voltage distribution over the transmission line, 
the value of the voltage at a given point being E. The charge 
on unit length of one of the wires is CE. If  the voltage distri- 
bution is travelling at velocity V, then the charge CE moves 
forwards into the next unit length of the line in z / V  of a second, 
and therefore the current in the wire is equal to C E - + - I / V .  
Therefore the current which must exist at the given point of 
the line on account of the moving voltage distribution is 

I = CEV (4) 

Now if the I in (4) which is due to the moving voltage dis- 
tribution is the same I that produces the voltage distribution 
according to equation (3) ,  and if the E which is produced by 
the moving I in equation (3) is the same E that produces the I 
according to equation (4),  that is if E and I in (3) and (4) 
mutually sustain each other, as it were, then (3) and (4) are 
simultaneous equations, and by combining them we find 

and 

V=4L e (5) 
½LI'=½CE' (6) 

Now an unchanging distribution of E and I travelling along 
a line as here described constitutes a distortionless wave or a 
pure wave. Equation (5) gives the velocity of such a wave, 
and equation (6) shows that the electric energy in such a wave 
is always and everywhere equal to the magnetic energy. 


