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Confocal Paraboloids. By A. G. GREENHILL.

[Bead December 8th, 1887.]

The geometrical and analytical theory of confocal central quad vies
has received considerable attention from its important applications to
problems in Hydrodynamics, Electricity, Magnetism, and Attractions ;
but except for § 154, Chapter x., Vol. I., of Maxwell's Electricity, the
corresponding theorems and applications of confocal paraboloids have
not received special treatment ;* and it is the object of this article to
develop this mathematical treatment from an independent stand-
point.

It will be found analytically interesting and instructive to carry
this out, as the elliptic functions required in the general case of con-
focal central" quadrics degenerate in the special case of confocal para-
boloids into the ordinary circular and hyperbolic functions; and con-
sequently the problems discussed do not require a knowledge of
anything more than the properties of the functions employed in
elementary mathematics.

1. Taking the ordinary system of three rectangular axes Ox, Oy,
Oz in space, and two points 8, 8' on the axis of x, each at a distance
a from the origin 0, then the two foci 8 and S', and the two coordi-
nate planes zOx, xOy are sufficient to define a system of confocal
paraboloids.

Any point A being taken in the axis of x as the vertex of a para-
boloid, the two principal sections of tho surface made by the coordi-
nate planes zOx and xOy will be the parabolas in these planes, having
a common vertex &tA and foci 8 and 8' respectively ; these parabolas
may conveniently be called the principal or directing parabolas of the
paraboloid.

If A is taken anywhere between the foci S and 8\ the paraboloid
will be hyperbolic; but if A is taken anywhere beyond 8 or S' on
either side, the paraboloid will be elliptic.

• [ I have just received Parabolisehc Eoordinaten, von Dr. Karl Baer, Frankfurt
a /0 , 1888. A. G. G., 19th April, 1888.]
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2. Suppose a vertex Ax taken beyond 8 on the positive side of the

axis of x at a distance from 0, which we shall denote by a cosh a ; then

8AX = a (cosh a —1) = 2a sinh2 \a,

S'A^ — a (cosh a -f- 1) = 2a cosh2 £a ;

and the equations of the directing* parabolas in the coordinate planes
of zOx and xOy, with common vertex at Al and foci 8 and S\ are

y = 0, s2 = 8a sinh*|a (a cosh a— x)t

z = 0, ?/2 = 8a cosh2 £a (a cosh a—x);

aud therefore the equation of the corresponding elliptic paraboloid is

+ . * = 8a (a cosh a—a) (1).
cosh2 \a

For, putting y = 0 and z = 0 alternately in equation (1), the equa-
tions of the corresponding directing parabolas are obtained.

3. Next suppose a vertex A2 taken between S and 8', at a distance
from the origin 0, "which we shall denote by «cos/3; then

A3S= a (1—cos/3) = 2asin2 £/3,

8'A.2 = a (1 + cos /3) = 2a coss £/3.

The equations of the directing parabolas being now

y = 0, s3 = 8a sin8 \(i (&—a cos /3),

z = 0, 7/2 = 8a cos21/3 (a cos /3—x) ;

tho equation of the corresponding hyperbolic paraboloid will be

—•-.— . " _ = 8a (a cos/3—JB) (2).
cos21/3 sin2£/3 v v

These hyperbolic paraboloids will have generating lines, parallel to
tho asymptotic planes

cos* «i/3 sin* 5/3

4. Lastly, suppose a vertex A3 taken beyond 8', at a distance
a cosh y from the origin O ; then

A.2S = a (cosh y +• 1) = 2a cosh2 £y,

4̂3*Si'= a (cosh y~-l) = 2a sinh2 £y ;

and tho equations of the directing pai*abolas being

y = 0, a* = 8a cosh2 £y (a cosh y + ,-B),

a = 0, 7/3 = 8a sinh2 5 y (a cosh y +a;),
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the equation of the corresponding elliptic paraboloid will be

v% z%

. .% , H 7TT- — &a («coshy + x) (3).
sinh8 \y cosh* £y

These equations (1), (2), and (3) represent a system of orthogonal
confocal paraboloids in their simplest canonical form; and the para-
meters a, ft, y are the equivalents of Lame's thermometric parameters
for confocal ellipsoids and hyperboloids.

5. Solving these equations (1), (2), (3) for x, y, z in terms of
a, ft, y, we find

x = a (cosh a + cos ft — cosh y) '

y = 4a cosh | a cos $ft sinh £y (4);

z = 4a sinh \a sin \ft cosh \y ,
so that to agree with the corresponding expressions given by
Maxwell, Electricity and Magnetism, Vol. I., p. 190, we must invert
the positive direction of the axis of x, and interchange y aud z.

The whole series of surfaces and of .,
values of x, y, z is obtained by making a
range from oo to 0, ft from 0 to TT, and y
from 0 to oo .

Since cos ft = cosh ift,

cosh y =— cosh (tV-f-y), 0 Ax a

we may take a period parallelogram of infftiite length, open at one
end and bounded by the lines

y = 0, x = 0, and y = ir;

and then the vector of a point moving round the perimeter of the
period parallelogram will give the series of confocal paraboloids; the
vector being a anywhere on Ax0, ift on 0A%B, and iV f y on BAS; so
that now, writing a', ft', y for a, ift and tV + y, we shall obtain the
symmetrical expressions for x, ;/, z in terms of a', j8', y,

x = a (cosh a + cosh ft' + cosh y)

y = — 4ia cosh |a ' cosh \ft' cosh £y'

z — —4a sinh |a ' sinh£/3' sinh £y'
so that

y+iz = - 4ia {exp \ (o'+j3'+y') + exp £ (a'-ft'-y')

+ exp \ (—a'+(¥—y)
K2
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6. The generating lines of the paraboloids are real only on the
hyperbolic paraboloids given by equation (2) ; and their equations
are of the form

V 1 -i. z
= 4aA

•(6),
cos \ft sin \ft

y g _ 2 (acos/3—%)
cos A/3 sin ±/3 ~ \

so that the projections of the generating lines on the plane yOz are
two sets of parallel lines inclined at an angle ft.

This is well seen in the cardboard model of this surface made by
Brill, of Darmstadt, which exhibits the series of different forms of
confocal hyperbolic paraboloids made by the deformation of the
model and its generating lines, when the angle ft between the two
sets of parallel planes of cardboard is altered ; the focal parabolas
being obtained in the two positions in which the model is flattened out.

With the values of x, y, z given in (4),

\ = cosh %a sinh \y db sinh \a cosh \y — sinh \ (y =k a) ;

so that, keeping ft constant, then, along a generating line of the

corresponding hyperbolic paraboloid, y ± a is constant.

7. Employing Maxwell's notation, in Chapter x., Electricity and
Magnetism, let us denote by dsu ds2, rfs8 the elements of the normal to
the surfaces o, ft, y; then

dal \da) + Wa

a v
= sinh8 a + i (cosha- 1 )(1 +cos j3) (cosh y—1)

+ A (cosh a + l)(l— cos/3)(cosh y + 1)

= sinh2 a + 1 — cos fl cosh y + cosh y cosh a — cosh a cos /3

= (cosh a —cos /3)(cosh a + cosh y) ;

and, similarly,

~T I (~7n I — (c°sh n—cos ft) (cos ft + cosh y),a \d(ij

— ( j*) = (cosh u + cosh y)(cos/3 +cosh y).
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Denoting by ll} mx, nx the direction-cosines of the normal to the.
surface a, then

1 dx dx I dsx sinh a
dsx da I da J £ (cosh d—cosft) (cosh a + cosh y) ] '

2 sinh \a cos \ft sinh \y
w, =

n, =

•v/ { (cosh a — cos ft) (cosh a -f cosh y) ]

2 cosh -|a sin ±ft cosh -̂ y
v/ [ (cosh a — cos ft) (cosh a + cosh y) ]

Writing B\ for cos /3 + cosh y, Dg for cosh a + cosh y, D!J for
cosh a—cos fi, by analogy with Maxwell's notation, then Z2, ma, w2 and
Zs, ms, w3 denoting the direction-cosines of the normals to the surfaces
(3 and y, a similar investigation proves that

, _ sin/3 _ 2 cosh-^a sin ±ft sinh ^y

_ 2 8mh -j-a cos -|-/3 cosh \y
n*~ AA ;

; _^_ sinh y _ 2 cosh ̂ a cos ^ft cosh ^y
s~ A^7' ms~ . AA

_ 2 sinh -|a sin -|j8 sinh ^y

Thus y 8 + w2w8+n2w3 = 0

^ î + WsW,-!-^^ = 0,

llli-\-mlm2-\-nlni = 0 ;

verifying that the surfaces a, ft, y form a triply orthogonal system.

8. Laplace's equation with a, ft, y for variables now becomes
(Maxwell, § 148)

dV d?V
or V27 = (cos ft + cosh y) —- + (cosh y + cosh a) -r-~

+ (cosh a — cos ft) —5- = 0 ,
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Supposing F = ABF, where A is a function of a only, B of /3, and
F of y, then Laplace's equation is equivalent to

three degenei'ate forms of Lame's equation.

Laplace's equation is also satisfied if V is a linear function of
<*> P> V-

As an Electrostatic example, suppose two elliptic paraboloids,
denoted by a, and a2, are electrified to potentials Vx and F2 respectively;
then the electric potential in the interspace will be

V = £n?». V + ai~a V ;
n l —a2 °l~a2

and the electrification <ru at any point of the surface o,, will be given by

with a similar expression for the electrification <r., at any point of the
surface o2.

When two surfaces ft and /32 or y, and ya are electrified to potentials
F, and F2, similar expressions to the above hold for the potential in
the interspace, and for the electrification on either surface.

With regard to the geometrical interpretation of D,, D3, and Ds, we
notice that, if Au A%, As denote the vertices of the paraboloids a, /3, y,

J)\ = a, A%A%, Di
i = a.AiAu D\ = a.A-^A^.

With confocal central quadrics, Da and Ds are the semi-axes of the
central section of a which is conjugate to the diameter through the
point of intersection of the surfaces a, /3, y, and these are parallel to
<foa and dss.

But with paraboloids the centre has gone off to an infinite distance
and a different geometrical interpretation must be devised.

9. As a Hydrodynamical application, consider the disturbance in
the motion of infinite liquid flowing in the direction xO with uniform
velocity U, due to the presence of a fixed obstacle in the shape of the
elliptic paraboloid a,; then we must seek to determine a velocity
function <f> satisfying Laplace's equation and also the conditions that
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4 = - l7 , 4 = 0, ^ = 0 , when a = oo,
ax dy dz

and _? = 0, when o = a,.

dsx

This can be effected by supposing the velocity function of the form

<P=U (Aa-x),
obviously satisfying Laplace's equation as the equation of continuity,
and then determining A so as to satisfy the boundary conditions.

Now d±^U(A^-~l) = u(A.ll^
dx \ dx I \ dsx

A sinh a

which when a = oo becomes — U, since sinha/DjDg is then ulti-
mately zero; and similarly

4=0, 4 - 0 , when'a = oo.
d dzdy

Next, when a = a

ds
so that A = Z, —- = a sinh n,;

aa

and therefore the expression for the velocity function is

<p = JJ (aa sinh ax — x).
Similar investigations for a fixed obstacle in the shape of the hyper-

bolic paraboloid /3lt will show that the velocity function
<p = JJ (a/3 s i n (3X — x) ;

while the velocity function when the fixed obstacle is the elliptic
paraboloid y, is

<p = XJ (x—ay sinh y^ ,

the liquid being now supposed originally flowing uniformly with
velocity U in the direction Ox, in order to flow over the outer convex
surface of the paraboloid yv

A paraboloid receiving the stream of liquid on the concave side
would stop the stream, instead of merely deflecting it, as the convex
side does, and the preceding investigations are no longer applicable.
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10. Next suppose the infinite stream of liquid oi'iginally flowing
parallel to the axis of y with uniform velocity V, and disturbed by
the presence of a fixed obstacle in the shape of the elliptic paraboloid
a1; to investigate the form of the velocity function <p.

We shall fiud that the required conditions can be satisfied by
supposing <p to be composed of two terms, one term being

Vy = 4a V cosh $a cos \ft sinh ^y,

and the other term being of the form

AVainh. | a cos \ft sinh iy.

For the first term Vy satisfies Laplace's equation, and so also does
the second ; so that now, putting

<p = V(A sinh | a cos ±ft sinh |y—y),

we must seek to determine A from the boundary conditions.

As before, & = 0, ^ = - F, ^ = 0, when a = oo ;
ax ay dz

also *±=VUA cosh £a, cos \ft sinh \y ^ - w,) = 0,
dst \ as1 I

when a = <ij, so that A = 4<a tanh £a,; and therefore

<p = V (4a tanh \ax sinh \a cos i/3 sinh \y—y)

= 4aFcos i)3 sinh | y (tanh | a , sinh |a—cosh \a)

— 4aTrsech|ai cosh | (ai—a) cos -}/3 sinh | y .
If the stream was originally parallel to the axis of z, and the same

fixed obstacle ax was introduced, then we should find, as before,
f = W (4a coth £a, cosh Ja sin |/3 cosh \y—z)

— 4aTTcosech fa cosh % (a—a^) sin -|/3 cosh £y.

The corresponding expressions for the velocity function 0 when the
fixed obstacle is the hyperbolic paraboloid @u or the elliptic paraboloid
y,, are now easily written down ; for instance, we shall find, for the
surface /3,,

<p — — 4aF sec |/3j cos \ (ft —Pi) cosh \a sinh f y,

or 0 = 4aT7cosec|/3j cos £ (fi—fii) sinh | a cosh |y ,

according as the liquid was originally streaming parallel to the axis of
y or z; while the corresponding expressions for the surface y, are

<p — 4aFcosech |y , cosh \a. cos \ft cosh \ (y—y,),

and 0 = — 4a W sech \yx sinh | a sin |/3 cosh f (y—y,).
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11. Suppose the interspace between a, and a2 filled with liquid, and
now suppose the surface a, to be moved with velocity ETj, and a, with
velocity Z/3, parallel to Ox; to determine the velocity function <f> of
the initial motion of the liquid filling the interspace.

This is obtained by putting

<p = Aa + Bx,

thus satisfying Laplace's equation of continuity; and then A and B
are determined from the conditions that

~r = #1^1' when a = a,;

-^- = [72Z,, when a = a^.
ds

Now

and

so that dividing out

da
dst

*,,

# da

dx _ 7

Z7, = — cosech a, + B,
a

U3 = — cosech a8 + B,
a

whence A and B are determined. Then

C (f7j—J72) asinh a! sinli os ")
_ ( — (J7, sinh a, — /72 sinh a2) (cosh a -f cos /5 — cosh y) )

sinh at — sinh a8

Supposing a, > a2, then, for the infinite liquid outside the surface
au the motion due to the velocity JJX of al is given by the velocity

function <f> = aJJx a s i n h aA •

while, for the liquid filling the interior of the surface oa, the velocity

function is simply <p = U^x.

If the surfaces a! and a2 had been started with velocities F, and F2

parallel to Oy, then we should have to put

<p = (-4 sinh £a + B cosh |a) cos £jS sinh ^y,

satisfying the equation of continuity; and then the boundary
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conditions -£• = V1mu when a = a,,
dsl

Y- = F2m,, when a = a2,as,

lead to the equations

A cosh Act, + ^ s i n n \a\ ^ ^a

.4 cosh | a , + B sinh £a2 = 4a F9 sinh £a2,

for the determination of A and 2?; so that

<p = 4a cosech £ (ax—a2)

X [F,sinhft^sinh^ (a—a9) + Fa sinh^a3sinh|(ai—a)}cosf/3 sinh^y.

When the surfaces a, and a4 have initial velocities TF, and W%

respectively parallel to Os, then we must put the velocity function of
the liquid in the interspace

<j> — (A sinh £a + B cosh | a ) sin |/3 cos

and determine A and B from the boundary conditions

-£ = TF,n,, when a = a,,
as,

-r^ = Waiiu when a = o«;
as,

thus leading to the equations

A cosh |a,-H? sinh ^a, = 4a IF, cosh ^a,,

A cosh £a9-f-jB sinh ^a2 = 4aTFj cosh |a3,

for A and 5 ; and finally giving

0 = 4a cosech | (al — a2')

Similar expressions can easily be written down for the motion of
the liquid in the interspace between the two surfaces /3, and /32 or y,
and ys, due to arbitrary velocities F, and F3 parallel to Oy, or TF, and
TF3 parallel to Oz, imparted to the surfaces.

12. As another example, suppose liquid filling the interspace of the
surfaces /3, and ($% to be set in motion by communicating an angular
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velocity px to the surface ft, and an angular velocity p% to the surface
ft, each about the axis of x; to determine <f>} the velocity function of
the initial motion of the liquid.

We must make <f> satisfy the conditions

Vf = 0,

, d<f> __ ( normal component of the velocity of the *)
a n <fĉ  ~~ C surface ft due to the angular velocity px )

a—«»»,), when /3 = /3,

sinh a sinh

The proper form to assume for the velocity function is

^ = (A cos (i + B sin /3) sinh a sinh y,

and then, when /3 = /3lt

= ffi- sinh a sinh y,

so that the variable factors sinh a sinh y and DSD, cancel, and then

-A sin & + 5 cos ft = 2as
 JJ,,

and similarly — ̂ 4 sin /3,+JB cos /3, = 2o9p2,

whence J t̂ nd B can be determined ; and then

<f> = 2a8cosec(ft—ft) (jjacos (ft—/3) — p,cos(/3—ft) j sinh a sinh y.

If the interspace had been bounded by the surfaces a! and a8, then
we should have had

$ = (A cosh a + B sinh a) sin /3 sinh y,

and ^ and B determined by the equations

A sinh «j +• J5 cosh «, = 2a8p,,

A sinh a2 + J5 cosh â  =
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and then

<f> = 2ascosech (a, — a3) {pt cosh (a — ai)—pi cosh (a,—a)]sin ft sinh y.

If pl = 0, and a, = oo, then

and A = —J? = — 2alj?9e",

so that <j> = — 2a9_p2e"*+*i sin ft sinh y,

the velocity function due to the rotation of the surface a, about the
axis of x with angular velocity^, in infinite liquid surrounding this
elliptic paraboloid on the outside.

But, if as == 0, then v

<j> = 2as cosech ĉ  { pi c o sh ""JPsc o s^ (ai"~a)} sin ft sinh y ;

and, if #<, = 0 also, then

0 = 2aspl cosech at cosh a sin ft sinh y,

the velocity function of liquid inside the elliptic paraboloid at; but
as pointed out by one of the referees of this paper, this state of
motion implies that the focal parabola for which a = 0, and therefore
0 = 0,

y% = 8a (a-x),

must be looked upon as a fixed boundary.

When this boundary is removed, the motion of the liquid inside the
elliptic paraboloid au due to a rotation pl about Ox, will be given by a
velocity function of the form

<p = Ayz

= 2a? A sinh a sin ft sinh y,

and then we shall find, as before,

A = pl sech a,;

so that .. 0 = pi yz sech a,.

When the hyperbolic paraboloid /3, is rotated about Ox with angular
velocity pu then the motion of infinite liquid, on either side of the
surface, is given by the velocity function

<p = pl yz sec ftv
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13. When the surfaces ax and aa are made to rotate with angular
velocities qy and q% about the axis Oy, the velocity function of the
initial motion in the interspace is more complicated, the boundary
conditions being now

- i . = Oj (zij—aw,), when u = a,,
dsl

or -£ = ag, (zi^—xnj DaD8

aa

= 2aJg, {2sinh^asiuha — (cosh a-f-cos/3 —coshy)cosh|a} sin |/3 cosh £y

= 2aiql (cosh a—cos/3 + cosh y —2) cosh ^a sin /̂3 cosh -|y,

when a = a,; and
- 2 = flfj (zlx— am,), when a = u2,
dsx

for all values of /3 and y.

The form of the velocity function must be inferred by analogy from
the corresponding expressions for confocal central quadrics.

Inside the surface a2, the velocity function of the liquid motion
would be of the form

<p = Gxz

= 4(7a9 (cosh a + cos /3 — cosh y) sinh | a sin |/3 cosh | y ;

and, noticing that the terms a and cosh ^a sin |/3 cosh ^y give the
motion of the liquid due to translations parallel to Ox and Oy, we are
led to infer that the required velocity function must be built up
partly of terms of the form

(cosh a + cos /3—cosh y) cosh £a sin £/3 cosh \y

and a sinh | a sin |/3 cosh \y.

But, substituted in Laplace's equation of continuity of § 8, we find

V* (cosh a + cos /3 — cosh y) cosh | a sin /̂3 cosh ^y

= — 2 (cos/3+coshy) cosh £a sin£/3 cosh \yt

V* a sinh fa sin ||3 cosh | y = (cos /3 + cosh y) cosh £a sin |/3 cosh \y ;

so that these two terms must be combined in the form

|(cosh a + cos/?—cosh y) cosh \a + 2a sinh ^a] sin |/3 cosh \y,

in order that the equation of continuity may be satisfied.
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To these terms may be added the terms

(cosh a+cos /3 — cosh y) sinh fa sin f/3 cosh \y

and (P cosh \a+Q sinh |o) sin £/3 cosh | y ,

obviously satisfying the equation of continuity; so that now in the
general case we may put

$ = { (cosh a + cos ,8—cosh y) (A cosh f a + B sinh fa)

+ 2 4a sinh fa + P cosh f a-f Q sinh fa) sin f/3 cosh f y,

and now we have sufficient disposable constants A, B, P, Q to satisfy
the boundary conditions when a = ĉ  and a = a,.

Similar expressions can be constructed for the surfaces fa and /3,,
or yt and yv

14. The velocity function

fp =-xyz

= 2a8 (cosh a+cos /3—cosh y) sinh a sin j3 sinh y

satisfies the equation of continuity, and gives the motion of the liquid
inside a surface due to a torsional strain imparted to the surface
about a principal axis.

The velocity function of the motion of the liquid in the interspace
between two surfaces, due to arbitrary torsional strains of the sur-
faces, may then be constructed by analogy with the solution of the
corresponding problem for confocal central quadrics, being built up
of terms of the form

a sinh a sin /3 sinh y,

' ( o o s i a + 0 o 8 / 3 -

in addition to the terms employed in the previous solutions.

Similar investigations will enable us to determine the induced
magnetism in sheets of soft iron, bounded by two confocal paraboloids
of the same kind, due to a magnetic field of potential

Az + By + Gz+Pyz + Qzx + Bxy + Sxyz.
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