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Confocal Paraboloids. By A.G. GREENHILL.
[Read December 8th, 1887.]

The geometrical and analytical theory of confocal central quadrics
has received considerable attention from its important applications to
problems in Hydrodynamics, Electricity, Magnetism, and Attractions;
but except for § 154, Chapter x., Vol. I, of Maxwell’s Electricity, the
corresponding theorems and applications of confucal paraboloids have
not received special treatment ;¥ and it is the object of this article to
develop this miathematical treatment from an independent stand-
point.

It will be found analytically interesting and instructive to carry
this out, as the elliptic functions required in the general case of con-
focal central quadrics degenerate in the special case of confocal para-
boloids into the ordinary circular and hyperbolic functions; and con-
sequently the problems discussed do not require a knowledge of
anything more than the properties of the functions employed in
elementary mathematics.

1. Taking the ordinary system of three rectangular axes Oz, Oy,
Oz in space, and two points S, S’ on the axis of 2, each at a distance
a from the origin O, then the two foci § and &, and the two coordi-
nate planes 70w, ®Oy are sufticient to define a systemm of confocal
paraboloids.

Any point 4 being taken in the axis of @ as the vertex of a para-
boloid, the two principal sections of the surface made by the coordi-
nate planes z0x and 2Oy will be the purabolas in these planes, having
a common vertex at 4 and foci S and 8 respectively ; .these parabolas
may conveniently be called the principal or directing parabolas of the
paraboloid.

If A is taken anywhere between the foci S and S, the paraboloid
will be hyperbolic; but if 4 is taken anywhere beyond S or S on
either side, the paraboloid-will be elliptic.

® [T have just received Parabolische Koordinaten, von Dr. Karl Baer, Frankfurt
a/0, 1888. A. G. G., 19th April, 1888.]
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2. Suppose a vertex 4, taken beyond S on the positive side of the
axig of » at a distance from O, which we shall denote by a cosh « ; then

84, = a (cosh a—1) = 2a sinh® }a,
8’4, = a(cosh a+1) = 2a cosh® }a;

and the equations of the directing parabolas in the coordinate planes
of z0x and 0y, with common vertex at 4, and foci S and S, are

y=0, 2= 8asinh®la (acosha—=z),
z =0, y’ = 8a cosh® {a (acosh a—z);

and therefore the equation of the corresponding elliptic paraboloid is

2 2
Y 4 = 8a(acosha—2a)....ccvvuv.e. 1).
cosh? 1a t 1 ( R

For, putting y = 0 and z = 0 alternately in equation (1), the equa-
tions of the corresponding directing parabolas are obtained.

3. Next suppose a vertex A, taken between S and &', at a distance
from the origin O, which we shall denote by «cos3; then
A8 = a (1—cos 3) = 2asin® §5,
N'4,=a (1+cos ) = 2acos®§
The equations of the directing parabolas being now
y =0, 2= 8asin’ 5/3 (z—a cos f3),
=0, 3"=8acos’if (acosf—2);

tho equation of the corresponding hyperbolic paraboloid will be

"u -2 __3 — 2
o I3 sm’%—/;_ a(@cos B—2) .cocovuninnnnnnn (2).

These hyperbolic paraboloids will have generating lines, parallel to
the asymptotic planes

H ~

"’ .= =10
1.0 ind 1 :

COS ~,[J s 3

4. Lastly, suppose o vertex A; taken beyond &', at a distance
«cosh y from the origin O; then

4;8 = a (coshy +1) = 2a cosh? 1y,
4,8 = a (cosh y~1) = 2asinh’ }y;
and the equations of the directing parabolas being
y=0, 2= 8acosh’}y (a¢coshy+z),
2 =0, »'=8asinh’'}y (acoshy+tz),
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the equation of the corresponding elliptic puraboloid will be
yl + Z,
sinh® §y * cosh’iy

=8a(acoshy+a@)..c.vvvnnnnn. 3).

These equations (1), (2), and (3) represent a system of orthogonal

confocal paraboloids in their simplest canonical form; and the para-

" meters a, 3, vy are the equivalents of Lamé’s thermometric parameters
for confocal ellipsoids and hyperboloids.

5. Solving these equations (1), (2), (3) for @, y, # in terms of
a, 3, v, we find
2 = a (cosh a+cos 3 —cosh v)
y = 4acoshfacosiBsinhdy + ... “4);

z = 4a sinh }a sin 43 cosh }y

so that to agree with the corresponding expressions given by
Maxwell, Electricity and Magnetism, Vol. I., p. 190, we must invert
the positive direction of the axis of #, and interchange v and 2.

The whole series of surfaces and of

values of z, y, z is obtained by making « = 4 v
range from oo to 0, 3 from 0 to =, and y
from 0 to .
. 4,
Since cos 3 = cosh i3,
cosh y = — cosh (ir+7v), 0 4, a

we may take a period parallelogram of infinite length, open at one
end and bounded by the lines

y=0, =0, and y=r;

and then the vector of a point moving round the perimeter of the
period parallelogram will give the series of confocal paraboloids; the
vector being a anywhere on 4,0, 73 on OA4,;B, and ir +y on BA;; so
that now, writing o', 3, y" for «, 43 and iw+vy, we shall obtain the
symmetrical expressions for #, y, z in terms of «’, 8, v,

z = a (cosh a’ +cosh /3’ + cosh y")
y = — 44a cosh La’ cosh 33 cosh 4y’ | S .(9),

2z = —4aq sinh %a’sinh 1/} sinh §y’
go that :

y+iz = — dda {exp § (' +6'+7) +exp 3 (¢ —F'—7)

+exp § (—a'+F'—v)+exp (—a'—F+7)}.
K2
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6. The generating lines of the paraboloids are real only on the
hyperbolic paraboloids given by equation (2); and their equations
are of the form

I 42 _ = 4ar
cos1fl* sindf “

i 2 _ 2(acosfB—a)
cosiff ' sinif A

so that the projections of the generating lines on the plane y0z are
two sets of parallel lincs inclined at an angle 8.

This is well seen in the cardboard model of this surface made by
Brill, of Darmstadt, which exhibits the series of different forms of
confocal hyperbolic paraboloids made by the deformation of the
model and its generating lines, when the angle 3 between the two
sets of pavallel planes of cardboard is altered ; the focal parabolas
being obtained in the two positions in which the model is flattened out.

With the values of «, y, z given in (4),
A = cosh }a sinh 4y &+ sinh Ja cosh 4y = sinh } (y £ a);

so that, keeping 3 constant, then, along a generating line of the
corresponding hyperbolic paraboloid, y & a is constant.

7. Employing Maxwell’s notation, in Chapter x., FElectricity and
Magnetism, let us denote by ds,, ds,, ds, the elements of the normal to
the surfaces a, 3, y; then

(3)=(2)+ (@) (%),
—1; (tis_,)’= sinh®a+ 4sinh®1a cos?} 3 sinh? 4 + 4 cosh?La sin?1f3 cosh’}y
= ginh’ a+4 (cosh « = 1)(1 +cos 3)(cosh y—1)
+ 2 (cosh a+1)(1—cos 8) (cosh y+;l)
= sinh® a+1—cos 3 cosh y +cosh y cosh a—cosh a cos 3
= (cosh a—cos 3)(cosh a+coshy) ;
and, similarly,

1 rdsy_ (cosh a—cos f3)(cos 3+ cosh v)
o' \dp ’

1 /ds,\_ . .
- (— = (cosh a +cosh y)(cos B + cosh y).

o \dy
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Denoting by I,, m,, 5, the direction-cosines of the normal to the
surface a, then

_dx _ dx Jds, _ sinh a

1= ——= —fJ —

ds,  dal da — J{(cosha—cosﬁ)(cosha+cosh'y)}'

2 ginh La cos 16 sinh 1y
/ {(cosh a —cos ) (cosh a + cosh v) }

m =

2 cosh a sin 1f3 cosh 1y
v/ {(cosh « —cos 3)(cosh a + cosh ) }

nm =

Writing D} for cosfB+coshy, D. for cosha+coshy, D} for
cosh a—cos 3, by analogy with Maxwell’s notation, then 1, m, #, and
1y, my, n; denoting the direction-cosines of the normals to the surfaces
$ and v, a similar investigation proves that

L= _sing ___2coshasin 1B sinh 1y
: D,D,’ s D, D, ’
. = 28inh ja cos 1 cosh 1y
! D,D, !
Lo=— sinh y — 2 cosh 2a cos 13 cosh iy
T 'Dl 'Di ’ ? Dl D2 ’
" = 2 sinh la sin 3 sinh 1
v = D, D,
Thus Lls+ mymg+nymg = 0

Isly+ mymy +nymy = 0,
Ll+mmytnn, =0;
verifying that the surfaces a, 3, y form a triply orthogonal system.

8. Laplace’s equation with a, 3, y for variables now becomes
(Maxwell, § 148)

2 'V
ldz

+Dzd”V

VvV =D 2d{3’

+0 &V o,
dy*

or V¥V = (cos 3+ cosh 'y) + (cosh y +cosh a) dﬁ’

+ (cosh a—cos /3) d—r? =

?
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Supposing ¥V = ABI', where 4 is a fanction of a only, B of 3, and
T of y, then Laplace’s equation is equivalent to

144 1 d'B
Taw = gcosha+h, T ar = —gcos B—h,
2
—Il; g——;: =—gcoshy+h,

three degenerate forms of Lamé’s equation.

Laplace’s equation is also satisfied if ¥ is a linear function of
a, B,y

As an Electrostatic example, suppose two elliptic paraboloids,
denoted by a, and a,, are electrified to potentials ¥, and ¥V, respectively ;
then the electric potential in the interspace will be

V="""y 4 “3 V,,

a,—a, a—

and the electrification #,, at any point of the surface a;, will be given by

with a similar expression for the electrification o, at any point of the
surface a,.

When two surfaces 3, and 8, or y, and y, are electrified to potentials
V, and V,, similar expressions to the above hold for the potential in
the interspace, and for the electrification on either surface.

With regard to the geometrical interpretation of D,, ID;, and D,, we
notice that, if 4,, 4,, 4, denote the vertices of the paraboloids a, 3, v,

Di=a.44, Dy=a.4;4,, Di=a.4,4,.

With confocal central quadrics, D; and D; are the semi-axes of the
central section of a which is conjugate to the diameter through the
point of intersection of the surfaces a, 3, v, and these are parallel to
ds, and ds;. '

But with paraboloids the centre has gone oﬁ to an infinite distance
and a different geometrical interpretation must be devised.

9. As a Hydrodynamical application, consider the disturbance in
the motion of infinite liquid flowing in the direction 20 with uniform
velocity U, due to the presence of a fixed obstacle in the shape of the
elliptic paraboloid «,; then we must seek to determine a velocity
function ¢ satisfying Liaplace’s equation and also the conditions that
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i@-_:_U, %:0, @=0,'Whena=00,

da dz
and ti? =0, when a = a,.
ds,
This can be effected by supposing the velocity function of the form
¢ = U (da—2),

obviously satisfying Laplace’s equation as the equation of continuity,
and then determining 4 so as to satisfy the boundary conditions.

Now %:U(A%;1)=U(A.l,“;—:—l)
=U(—A— sinba_l)
o D;D; '

which when « = o becomes — U, since sinh a/D:D: is then ulti-
mately zero; and similarly

do _ o, 9 =
ay =% dz—O’ when a=o,

Next, when a = q,,

do _ da ;1\ =
=g h) =0
so that A=l,‘-z‘ﬁ=asinhnl;
" da

and therefore the expression for the velocity function is
¢ = U (aasinh a;—2z).

Similar investigations for a fixed obstacle in the shape of the hyper-
bolic paraboloid $3,, will show that the velocity function

¢ = U (aB sin B, —2);
while the velocity function when the fixed obstacle is the elliptic

paraboloid v, is
¢ = U (x—aysinh y,),

the liquid being now supposed originally flowing uniformly with
velocity U in the direction Ou, in order to flow over the outer convex
surface of the paraboloid ¥,.

A paraboloid receiving the stream of liquid on the concave side
would stop the stream, instead of merely deflecting it, as the convex
side does, and the preceding investigations are no longer applicable,
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10. Next suppose the infinite stream of liquid originally flowing
parallel to the axis of y with uniform velocity V, and disturbed by
the presence of a fixed ohstacle in the shape of the elliptic paraboloid
a,; to investigate the form of the velocity function ¢.

We shall fiud that the required conditions can be satisfied by
supposing ¢ to be composed of two terms, one term being

Vy = 4aV cosh a cos 8 sinh 1y,
and the other term being of the form
AV sinh la cos 4f sinh Ly.
For the first term Vy satisfies Laplace’s equation, and so also does
the second ; so that now, putting
¢ = V (4 sinh La cos 18 sinh }y—y),
we must seek to determine 4 from the boundary conditions.

As before, 5;-5:0, %:—V, %:0, when a=m;

also g-;fl =V (;—A cosh }q, cos 33 sinh -‘fy-%_ul

when a = aq,, 50 that 4 = 4q tanh la,; and therefore

_ml) =0,

¢ = V (4a tanh }a, sinh }a cos 13 sinh y—y)
= 4a¥ cos 4 sinh 1y (tanh }a, sinh a—cosh 1a)
= 4aV sech }a, cosh } (a,—a) cos 3/3 sinh 3y.
If the stream was originally parallel to the axis of 2, and the same
fixed obstacle @, was introduced, then we should find, as before,
¢ = W (4a coth }a, cosh a sin 18 cosh {y—2)
= 4a W cosech 1q, cosh % (a—a,) sin 10 cosh }v.

The corresponding expressions for the velocity function ¢ when the
fixed obstacle is the hyperbolic paraboloid 8, or the elliptic paraboloid
7, are now easily written down ; for instance, we shall find, for the
sarface 3,,

¢ =—4aV sec 10, cos 1 (B8—p,) cosh ia sinh 1y,
or ¢ = 4aW cosec 13, cos 1 (8—0,) sinh }a cosh iy,

according as theliquid was originally streaming parallel to the axis of
g or z; while the corresponding expressions for the surface vy, are
¢ = 4aVcosech v, cosh }a cos 38 cosh 3 (y—7,),

and ¢ = —4aW sech }y, sinh ja sin 38 cosh § (v—vy).
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11. Suppose the interspace between a, and a, filled with liquid, and
now suppose the surface a, to be moved with velocity U, and a; with
velocity U, parvallel to Oz; to determine the velocity function ¢ of
the initial motion of the liquid filling the interspace.

This is obtained by putting
¢ = Aa+ Bz,

thus satisfying Lar;la,ce’s eqna,iion of continnity; and then 4 and B
are determined from the conditions that

e _ U,l,, when a=aq,;

ds,
do
cﬁ, = U,l, when a =a,.
da de .
N da _ / de _
ow s, L o 1,/ asinha,
dx
d = =1,
an 2, X

so that dividing out I,,
U, = ‘;-l cosech a, + B,

U= 4 cosech a,+ D,
a

whence A and B are determined. Then

{ (U,—U,) asinh a, sinh ag
— (U, sinh a,— ], sinh a;) (cosh a+cos 3—cosh y)

sinh a,—sinh a4

p=a
Supposing «, > a,, then, for the infinite liquid ountside the surface
a,, the motion due to the velocity U, of a, is given by the velocity
function ¢ = alU,asinha,;
while, for the liquid filling the interior of the surface a,, the velocity
function is simply ¢ = U,z.

If the surfaces a, and a, had been started with velocities V, and ¥,
parallel to Uy, then we should have to put

¢ = (4 sinh }a+ B cosh 3a) cos 10 sinh 1y,
satisfying the equation of continuity; and then the boundary
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g d
conditions % = V,m, when a=a,

ds,

g‘z = V,m,, when a = a,,
1

lead to the equations
A cosh la,+ Bsinh }a, = 4a V; sinh }a,,
A cosh }a;+ B ginh $a;, = 4a V, sinh }a,,
for the determination of 4 and B; so that
¢ = 4a cosech $ (a,—ay)
X {7, sinh a,sinh } (a—a,) + V; sinh }a, sinh } (¢,— a) } cos 13 sinh 1y.

When the surfaces , and a, have initial velocities W, and W,
respectively parallel to Oz, then we must put the velocity function of
the liquid in the interspace

¢ = (4 sinh }a+ B cosh }a) sin 30 cosh }y ;

and determine 4 and B from the boundary conditions

d
Zl%, = W,n,, when a=a,,

d
-tfl = Wyn,, when a = ay;

thas leading to the equations
A cosh }a,+ Bsinh }a, = 4aW, cosh 1a,,
A cosh $a;4 B sinh 4a, = 4a W, cosh La,,
for 4 and B; and finally giving
¢ = 4acosech § (a;,—ay)
X { W, cosh 4a,coshi (a—a;) — W,cosh 1a,cosh } (¢, —«) } sin}ficoshiy.

Similar expressions can easily be written down for the motion of
the liquid in the interspace between the two surfaces 8, and G, or 7,
and v,, due to arbitrary velocities V; and V; parallel to Oy, or 1V, and
W, parallel to Oz, imparted to the surfaces.

12. As another example, suppose liquid filling the interspace of the
surfaces B, and ; to be set in motion by communicating an angular
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velocity p, to the surface 5,, and an angular velocity p, to the surface
f3;, each about the axis of z; to determine ¢, the velocity function of
“the initial motion of the liquid.

We must make ¢ satisfy the conditions
Vig =0,

and de _ {normal component of the velocity of the}

ds,  (surface 3, due to the angular velocity p,
= —p 2+ piyny
= p, (yny—2my), when §=p,

d—¢=p, (yng—2zm;), when 8 =g,

ds,

sinh a sinh Y
D,D,

The proper form to assume for the velocity function is

= 2ap,

¢ = (4 cos S+ Bsin ) sinh a sinh v,

and then, when 8 =3,

dp _ —Asinf,+Bcosf,

Pt aD. D sinh asinh y

211%1 sinh a sinh y,

8o that the variable factors sinh « sinh y and Dy D, cancel, and then
» —AsinB,+Bcos P, =2a’p,
and similarly — 4 sin B+ B cos f3, = 2a’p,,
whence 4 gnd B can be determined ; and then
¢ = 2a*cosec (B, — ;) { pycos (B,— B) —p,cos (B—f;) } sinhasinh y.

If the interspace ‘bad been bounded by the surfaces a, and aqy, then
we should bave had

¢ = (4 cosh a+ Bsinh a) sin sinh y,
and 4 and B determined by the equations
A sinh «, + Beosh «, = 2a°p,,
A sinh a;+ Bcosh a, = 2a’p, ; .
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and then

¢ = 2a*cosech (a;—a;) {p, cosh (a—a,)— p, cosh (a,—a)}sin Bsinh v,
If =0, and a =, then

A+B =0,
and A= —B = —2ap,e",
8o that ¢ = —2a’p,6~***sin B sinh y,

the velocity function due to the rotation of the surface a, about the
axis of # with angular velocity p,, in infinite liquid surrounding this
elliptic paraboloid on the outside.

But, if a, = 0, then
¢ = 2a* cosech a, { p, cosh a—p;, cosh (a,—a)} sin Bsinh v ;
and, if p, = 0 also, then
¢ = 24’ p, cosech a, cosh a sin Bsinh v,

the velocity function of liguid inside the elliptic paraboloid a,; but
as pointed out by one of the referees of this paper, this state of
motion implies that the focal parabola for which « = 0, and therefore
z2=0

’ y' = 8a (a—2),

must be looked apon as a fixed Boundary.

When this boundary is removed, the motion of the liquid inside the
elliptic paraboloid a,, due to a rotation p, about Oz, will be given by a
velocity function of the form

¢ = Ayz
= 2a° A sinh a sin B sinh y,
and then we shall find, as before,
A = p, secha;
so that ¢ = p,yz sech a,.

When the hyperbolic paraboloid /3, is rotated about Oz with angular
velocity p,, then the motion of infinite liquid, on either side of the
surface, is given by the velocity function

¢ = p, yssec P,
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13. When the surfaces a, and a, are made to rotate with angular
velocities g, and ¢, about the axis Oy, the velocity function of the
initial motion in the interspace is more complicated, the boundary
conditions being now

q, (#l,—amn,), when « = a,,

d¢ _
ds,
or 3—2 = aq, (zl,—2n,) D, D,
=24’ ¢, {2sinhlasinha—(cosh a+cos3—coshy)coshia}sinifBcoshiy
= 2a’q, (cosh a—cos 8+ cosh y—2) cosh }a sin 38 cosh }y,

when a = a,; and

o _ g, (2l,—an,), when a = a,,

ds,
for all values of 3 and .

The form of the velocity function must be inferred by analogy from
the corresponding expressions for confocal central quadrics.

Inside the surface a;, the velocity function of the liquid motion
would be of the form

¢ = Czz
=40d (cosh a+cos 3 —cosh y) sinh esiniB cosh iy;

and, noticing that the terms « and cosh jasiniBcoshiy give the
motion of the liquid due to translations parallel to Oz and Oy, we are
led to infer that the required velocity function must be built up
partly of terms of the form .-

(cosh a+ cos 3—cosh y) cosh }a sin 183 cosh 1y
and a sinh asin 38 cosh 3y
But, substituted in Laplace’s equation of continuity of § 8, we find
V? (cosh a+cos 8 —cosh ) cosh fasin 383 cosh 1y
= —2 (cos B+cosh y) cosh 1a sin 15 cosh 1y,
V'a sinh jasin 3B cosh §y = (cos 3 +cosh y) cosh ja sin B3cosh §v ;
g0 that these two terms must be combined in the form
{ (cosh a+cos B—cosh ) cosh ja+ 2asinh 3u} sin §8 cosh 3y,

in order that the equation of continuity may be satisfied.
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To these terms may be added the terms
(cosh a+cos 8 —cosh y) sinh 2asin 18 cosh 3y
and (P cosh La+ @ sinh 1a) sin 18 cosh 37,

obviously satisfying the equation of continuity; so that now in the
general case we may put

¢ = {(cosh a+cos 83— cosh y) (4 cosh a+ B sinh }a)
+24a sinh }a + P cosh 3a+ Q sinh }a} sin 4 cosh v,
and now we have sufficient disposable constants 4, B, P, Q to satisfy
the boundary conditions when a = a, and a = a,.

Similar expressions can be constructed for the surfaces 3, and 8,
or y, and v,

14. The velocity function

¢ = Y2
= 24" (cosh a +cos 3—cosh y) sinh a sin 3 sinh y

satisfies the equation of continuity, and gives the motion of the liqud
inside a surface due to a torsional strain imparted to the surface
about a principal axis.

The velocity function of the motion of the liquid in the interspace
between two surfaces, due to arbitrary torsional strains of the sur-
faces, may then be constructed by analogy with the solution of the
corresponding problem for confocal central quadrics, being built up
of terms of the form

a sinh a sin 8 sinh v,

. cosh cos , cosh
(cosh a+cos 3—cosh y) ginh @ gin f sinh 7?
in addition to the terms employed in the previous solutions.

Similar investigations will enable us to determine the induced
magnetism in sheets of soft iron, bounded by two confocal paraboloids
of the same kind, due to a magnetic field of potential

Az+ By + Oz + Pyz+ Q2w+ Bay + Szyz.
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