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ABSTRACT 

Buildings are responsible for about 40% of the global energy consumption, where heating, 

ventilation and air conditioning (HVAC) systems account for the most part of it. Continuous 

increase in use of the HVAC systems and required power may cause overload in the electric 

power grid, and may result in power outages, as well as increased utility bills to the building 

dwellers. Therefore, in order to help the grid operations, and to mitigate such adverse situations, 

efficient use of HVAC equipment is of utmost importance. 

 

In this paper, an optimal control framework utilizing HVAC system efficiently to reduce both 

energy consumption and peak load demand is developed. To achieve this, a mathematical model 

that describes the zone transient thermal dynamics is obtained using real measurement data. 

Next, a model predictive control algorithm that takes into account building dynamic models 

and actual operational data to regulate building thermal comfort are developed in MATLAB. 

The generated algorithm looks ahead for a 24-hour period with a time step of 10-minute 

intervals. Thus, the controller considers the changes in the outside dry-bulb air temperature, 

electricity price, required energy amount and comfort conditions simultaneously in order to find 

the proper optimal zone temperatures guaranteeing user comfort in terms of the First-Law of 

Thermodynamics. The new controller was tested using data from a real building, and 

preliminary results indicate that significant reduction in peak electrical power demand can be 

achieved by the proposed approach depending upon operating conditions. 
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1. INTRODUCTION 

The renewable energy penetration targets set by EU and US [1]-[2] necessitate a radical change 

in the way the electric power grid is operated. Conventional power grids were designed around 

dispatchable central power plants at a transmission level providing services down to industrial, 

commercial and residential end-users at a distribution level. Increased penetration of the 

intermittent and uncertain renewable energy sources effectively implies additional loads, which 

require generation flexibility at multiple time-scales to ensure safe and stable operation of the 

electric power grid. Since conventional generation is increasingly displaced by renewables, this 

additional flexibility can no longer be sourced solely from conventional plants. It needs to be 

managed also from the demand side (demand-side management). 
 

According to the International Energy Agency [3], buildings are responsible for about 40% of 

the global energy consumption, and about 50% of the energy used in a typical building is 

accounted for the space heating, ventilation, and air conditioning (HVAC) system. The 

European Directive on the energy performance of buildings (EPBD) encourages the European 
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Union member states to approve energy policies that promote the implementation of very low 

and even close to zero energy buildings [4].  

Improving operational efficiency of HVAC systems will result in large savings in the energy 

consumption. In addition, high thermal capacity of large commercial buildings allows real-time 

control of their HVAC systems to regulate electricity demand as required for grid stability, 

without effecting the quality of service in the building significantly. Therefore, buildings 

represent an opportunity as flexible loads that can be controlled to provide ancillary services to 

the electric power grid, and thus enable high penetration of renewables.   

Traditionally, ancillary services in the power grid have been provided by fast ramping 

generation assets, which are costly to operate, and depend on fossil fuels. Recent advancements 

in communication and control capabilities of the power grid enabled demand side to provide 

high-quality ancillary services at various time scales [5]. Several approaches [6]-[8] for 

managing flexible loads depend on priority-based scheduling of loads modelled as a stochastic 

battery. Both Europe [9] and the US [10] are putting significant effort for large scale adaptation 

of building flexible loads as reliable contributors in the ancillary services market.  

 

There are many flexible load types that can be tapped into for ancillary services, such as 

building HVAC, building and municipal lighting; electric vehicles; data centres (cooling); 

agricultural, residential (pool) and waste-water pumping; refrigerated warehouses, etc. In this 

paper, however, only the building HVAC loads are considered. This is a reasonable choice 

because HVAC corresponds to a very large share of the load in today’s grid. 

 

Building energy controls is a very active research area [11]. Simple on-off or logic-based 

control designs [5] fall short of extracting the full benefits provided by more sophisticated 

controls. Recently, several EU and US researchers reported advanced models of predictive 

control (MPC) techniques for building heating and cooling management [12]-[16]. In [12], 

authors propose a centralized stochastic control approach, where the controller accounts for the 

uncertainties in the ambient temperature. In another study [13], a distributed control architecture 

that computes optimal supply air temperature and flow rate is proposed. These advanced 

approaches, however, do not scale well as the number of zones in the building increases, and/or 

require a large investment in new control hardware for implementation. This poses a significant 

barrier for adoption of these methods by small and medium commercial buildings, because they 

usually lack the sophisticated control equipment, and more importantly financial incentive for 

upgrades due to long and uncertain return on investment. Therefore, a wider adoption of 

advanced building thermal control techniques can be achieved by developing solutions that are 

implementable on simple or already existing equipment. Another improvement opportunity as 

compared to [12] and [13], is the fact that they consider only controlling building zone 

temperatures within pre-determined bounds, without explicit consideration of the occupant 

comfort. 

 

This paper introduces a new model of predictive controller (MPC) that (i) minimizes peak 

heating/cooling load on the HVAC equipment (ii) while achieving a satisfactory thermal 

comfort inside the building, and (iii) is capable of handling large-scale systems with uncertain 

dynamics (e.g. ambient air-temperature, internal heat gains, etc.). The key difference of our 

approach compared to previous approaches that utilize MPC is that in our approach the HVAC 

units are not controlled directly. Instead, the system is controlled indirectly by sending control 

inputs to the zone thermostats and thus requires minimal hardware changes. This renders our 

approach suitable for implementation in low-cost embedded platforms used in most of the 

HVAC control equipment.  
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The rest of the paper is organized as follows. In Section 2 the thermal model development 

process is described, followed by the controller formulation in Section 3. Application of the 

proposed study to a real building is presented in Section 4. Concluding remarks and future work 

are presented in Section 5.  

2. MODEL DEVELOPMENT 

In this section, the details of the mathematical model of the zone thermal dynamics and human 

comfort model as they apply to our controller design are described. 

 

2.1 Zone Thermal Model 
The thermal dynamics of an individual zone is modeled by a lumped resistance-capacitance 

circuit as shown in Hata! Başvuru kaynağı bulunamadı.. The model parameters are physics-

based, and exact calculation of these parameters requires comprehensive details of the zones 

(construction material, insulation, etc.). To circumvent this, parameters are estimated from 

sensor measurements using system identification methods. These thermal models are then 

employed to predict the zone temperatures, power consumption, and thermal comfort in the 

building in response to thermostat set-point changes. Unlike previous studies where human 

comfort is mapped to a fixed temperature constraint, our optimization algorithm considers the 

human comfort model and, in effect, opens up the operating space of the HVAC system for 

more efficient operation.  
 

 
 

Figure 1. Lumped resistance-capacitance model of a thermal zone 

 

Each zone is modelled as a two-mass system where the room air temperature acts as a fast-

dynamic mass and solid parts (walls, furniture, etc.) as the slow-dynamic mass. The continuous 

time, linear, thermal dynamic model of a zone can be stated by the following set of differential 

equations: 
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where, 𝑇1
𝑗
 and T2

𝑗
 zone air and wall temperatures,  𝐶1

𝑗
 and 𝐶2

𝑗
 thermal capacitance, �̇�𝑗 supply 

air mass flow rate and 𝐶𝑝
𝑗
 specific heat, 𝑇𝑠𝑎

𝑗
 supply air temperature, 𝑅1

𝑗
 thermal resistance 

between zone air and wall, 𝑅𝑖𝑗 thermal resistance between adjacent zones, 𝑁𝑗 the set of zones 

adjacent to zone 𝑗,  P𝑑
𝑗
 the total internal disturbance heat gain (lighting, occupancy, solar gains, 

etc.), and 𝑇𝑜𝑎 the outside air temperature. It must be noted that Eq. (1) is related to the zone air 

temperature acting as a fast-dynamic mass, whereas Eq. (2) is related with the zone wall 

temperature as slow dynamic mass. 

Buildings are typically comprised of multiple thermal zones as in Figure 2. In this case, for each 

zone 𝑗 a suitable zone thermal model is developed, where the interaction between zones 𝑖 and 𝑗 

are captured by the resistance term 𝑅𝑖𝑗. Then, collection of these models (𝑗 = 1, … , 𝑛𝑧) are used 

to describe the overall thermal dynamics of the building. 

 

 
 

Figure 2. Multiple zone thermal model and its adjacency graph  

 

The lumped parameters R and C are dependent on the building zone physics (construction 

material, window-to-wall ratio, equipment type, orientation, etc.) and calculation of their exact 

values requires significant amount of effort, and sometimes may be impossible for older retrofit 

buildings due to missing information. Thus, to enable a wider implementation of our approach, 

the values of R and C are identified using data collected from the zone. To achieve this, an 

unconstrained multivariable nonlinear optimization problem is solved such that the error 

between the measured zone air temperature and its estimated value from the model is 

minimized. For this purpose, the following optimization problem is formulated: 

 

min
𝑃 = {𝑅, 𝐶}   

1

𝑁
∑ ∑ (𝑇1

𝑗,𝑚
− 𝑇1

𝑗,𝑒(𝑃, 𝑈))

𝑛𝑧

𝑗=1

𝑁

𝑘=1

                                                                                     (3) 

 

subject to Eqs. (1) and (2), 

 

where P denotes the unknown parameter vector, k time step, N number of samples, 𝑛𝑧 number 

of thermal zones, 𝑇1
𝑗,𝑚

 measured zone air temperature and 𝑇1
𝑗,𝑒(𝑃, 𝑈) estimated zone air 

temperature from model, and 𝑈 the heating/cooling input vector (due to supply air, ambient 

temperature and internal gains). It must be noted that the wall temperature is not included in the 

objective function, because most of the buildings would not be equipped with wall temperature 

sensors, and thus the data would not be available in retrofit applications. 
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2.2 Human Comfort Model 
 

The fundamental goal of any HVAC control system is to achieve human comfort. In this paper, 

one of the earliest and widely accepted human comfort models attributed to Fanger [17] is used. 

Here, a brief description of the human comfort model as used in our controller design is 

provided. For a detailed discussion, the reader is referred to [18] and references therein. In 

Fanger’s model, predicted mean vote is an empirical thermal sensation scale taking integer 

values ranging from -3 (cold) to 0 (neutral) to 3 (hot). The average value of predicted mean 

vote depends on the difference between metabolic rate M, external work W (0-0.2 M, [18]), and 

total heat loss L from Fanger’s model [17], according to the empirical formula: 

 

𝛼 = (0.303 𝑒−0.036𝑀 + 0.02) (𝑀 − 𝑊 − 𝐿)                                                                           (4) 

 

Predicted percent of dissatisfied occupants, denoted by 𝛾, is related to 𝛼 through another 

empirical relation: 

 

𝛾 = 100 − 95𝑒−0.03353𝛼4−0.2179𝛼2
,                                                                                          (5) 

 

where the minimum value of 𝛾 is 5%, attained at 𝛼 = 0 (neutral). In our MPC formulation, 𝛾 is 

used as one of the objective terms, in addition to heating/cooling load, to be minimized. In other 

words, we use the combined model described by Eqs. (1), (2) and (4) to predict the thermal 

behavior of the zones and occupant comfort. Thus, it is an essential piece of the model 

predictive controller described in the next section. The thermal comfort model used in this paper 

depends on the dry-bulb air temperature. However, it is reported in the literature that in low-

energy and low-exergy buildings, considering operative temperature better captures thermal 

comfort characteristics [19]-[20]. In [19], it is mentioned that operative temperature is a 

function of both dry-air bulb and mean radiant temperatures. They highlight that low exergy 

systems can provide desired level of thermal comfort within a safe and economic way. In [20], 

it is emphasized that exergetic analysis provides consistent predictions of human response to 

the thermal environment. Thus, it shows that energy consumption is coupled to environmental 

conditions, and there is a certain relation between exergy consumption and thermal comfort. In 

general, exergy analysis can give more information about the environment’s impact on human 

thermal and comfort characteristics. In many studies, dry-air bulb temperature alone can be a 

reasonable indicator of thermal comfort since dry-air bulb and mean radiant temperature can be 

close to each other with low air velocity. In some other cases, however, dry-air bulb and mean 

radiant temperature can be significantly different when heated or cooled surfaces, thermal mass 

or solar radiation effects are present. Thus, in such circumstances, it can be reasonable to take 

account of mean radiant temperature according to thermal comfort consideration, but this would 

complicate the model as used in the controls algorithm. Additionally, measuring mean radiant 

temperature requires installing globe thermometers [21], which may be costly to implement in 

some low-budget retrofit solutions. Therefore, a trade-off between model accuracy and budget 

should be considered depending on the application. 

 

3. CONTROLLER FORMULATION 

The high-level block diagram of the overall proposed building thermostatic control architecture 

with weather forecast and pricing is shown in Hata! Başvuru kaynağı bulunamadı.3. Instead 

of controlling HVAC units directly, it is proposed to control the system indirectly by sending 

temperature set point values to the zone thermostats. This approach requires minimal hardware 
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changes and thus allows implementation in low-cost embedded platforms used in most of the 

HVAC control equipment. 

 

In the most general form of MPC, a finite horizon optimal control problem based on a dynamic 

model of the process to be controlled is repeatedly solved online. In our application, the 

objective of the MPC controller is to find the optimal zone thermostat set points so as to reduce 

peak load demand in the building by exploiting the thermal dependency of building zones. To 

achieve this, VRF units are coordinated through virtual costs so that they do not come online at 

the same time. This approach is implemented by allocating lower cost time slots to each VRF 

unit in a rotating manner, and higher cost elsewhere. This cost will be embedded in the objective 

function presented in Eq. (8) below through the penalty term 𝑍(𝑘). 
 

 
 

Figure 3. Building thermostatic control architecture 

 

For controls purposes, and to make the model linear, the thermal model of the zones in Eqs. (1) 

and (2) is slightly modified by replacing the term  �̇�𝒋𝑪𝒑
𝒋

(𝑻𝒔𝒂
𝒋

− 𝑻𝟏
𝒋

) in Eq. (1) with lumped 

heating/cooling load 𝑸 ≜ �̇�𝒋𝑪𝒑
𝒋

(𝑻𝒔𝒂
𝒋

− 𝑻𝟏
𝒋

) and is treated as the main control input. Then, our 

new zone thermal model becomes: 
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                                                                                                        (𝟕) 

At every control step, zone air and wall temperature measurements are taken from sensors (or 

from state estimation algorithms) to understand the most current status of the system dynamics. 

A system model similar to Eqs. (5) – (7) is then called repeatedly to predict the dynamics and 

constraints within a time window of several minutes. In parallel, a constrained optimization 
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problem in Eq. (8) is solved to obtain the optimal thermostat set points that minimize peak load 

and is compliant with the operating constraints within the prediction window. Then, the first set 

of the optimal set-point values is sent as a reference to the actuators. Finally, a new set of 

measurements is acquired and the whole process is repeated for the subsequent control steps. 

 

The quadratic constrained optimization problem to compute the new thermostat set points by 

MPC controller is as follows: 

 

min
𝑄

𝐽 =  ∑{𝑄(𝑘)𝑇𝑍(𝑘)𝑄(𝑘) + Δ𝑄(𝑘)𝑇𝑍Δ(𝑘)Δ𝑄(𝑘) + Λ(𝑘)𝛾(𝑘) }                                       (8)

𝑁𝑝

𝑘=1

 

                                                                        

subject to 

𝑸𝒎𝒊𝒏  ≤ 𝑸(𝒌) ≤ 𝑸𝒎𝒂𝒙  

𝑻𝟏
𝒋,𝒎𝒊𝒏

 ≤  𝑻𝟏
𝒋,𝒌

 ≤   𝑻𝟏
𝒋,𝒎𝒂𝒙

 

 and Eqs. (5) – (7) are satisfied ∀𝐤 

where  

𝑵𝒑 is the prediction horizon, 𝑱 is the zone number, 𝒌 is the time step, 𝑸(𝒌) = [𝑸𝒌
𝟏, 𝑸𝒌

𝟐, … , 𝑸𝒌
𝒏𝒛] 

is the set of heating/cooling loads, 𝚫𝑸(𝒌) = [𝚫𝑸𝒌
𝟏, 𝚫𝑸𝒌

𝟐, … , 𝚫𝑸𝒌
𝒏𝒛]  is the rate of change in 

heating/cooling loads, 𝑻𝟏
𝒋,𝒌

 is the air temperature of zone 𝐣 at time step 𝒌, 𝑻𝟏
𝒋,𝒎𝒊𝒏

 and 𝑻𝟏
𝒋,𝒎𝒂𝒙

 are 

the minimum and maximum air temperature constraint for zone 𝒋, 𝒁(𝒌) is the penalty matrix 

on heating/cooling at time step 𝒌, 𝒁(𝒌) ∈ 𝑹𝒏𝒛 × 𝑹𝒏𝒛, 𝒁𝚫 is the penalty on the rate of change in 

heating/cooling at time step k, is the penalty matrix on heating/cooling at time step 𝒌, 𝚲(𝐤) is 

the penalty on predicted percentage dissatisfied 𝜸(𝒌) at time step 𝒌. 

It is worthwhile to note that our MPC controller solves for optimal thermostat set-points of all 

zones, thus is performing a multizone optimization. This approach is capable of exploiting the 

thermal dynamics between different zones concurrently, and thus is more advantageous and 

efficient compared to standard decentralized operation where each zone is treated separately 

without explicit consideration of the inter-zonal dynamics. This multizone feature of our 

controller approaches the building HVAC optimization in a unified framework. 

 

4. APPLICATION AND SIMULATION RESULTS 

 

This section demonstrates the performance of the system identification and MPC formulation 

on MATLAB/Simulink simulations with data from a real building. In Section 4.1, the demo 

building and its HVAC system is described. Data collection and model identification is detailed 

in Section 4.2, while the performance of the MPC controller under different tuning weights are 

presented in Section 4.3. 

 

4.1 Demo Building 

To test our model development and controller design, a mixed-use, office and classroom 

building (Building T) at Yaşar University campus in İzmir was chosen. In Building T, 3 

classrooms (Zones 1,3,4) and a hallway (Zone 2) from 2nd floor was considered as highlighted 
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in Figure 4.  Building T uses a variable refrigerant flow (VRF) central heating and cooling 

system. The details of the thermal zones are summarized in Table 1. 

 

 

Table 1. Details of zone 1-4 in building T 

 Usage 
Area  

(m2) 

Height  

(m) 
Face 

Heating Capacity 

(kW) 

Cooling Capacity 

(kW) 

Zone 1 Classroom 57.62 3.8 North-east  20 18 

Zone 2 Hall 108.96 3.8 North-west 18 16.2 

Zone 3 Classroom 60.84 3.8 South-west 25 22.4 

Zone 4 Classroom 103.93 3.8 South-west 48 42 

 

 

 
 

Figure 4. Building T Floor 2 layout 

 

4.2. Thermal Model Identification 

 

To identify the zone lumped parameter R and C values for thermal model, supply air, zone air 

and wall temperatures at each zone were recorded with the instrumentation setup shown in 

Figure 5. Measurements were collected using the TESTO Saveris-2 H1 and T3 wireless data 

loggers, and they are sent directly to the cloud (online data storage) via the WLAN. The data 

was transferred through the cloud with 1-minute intervals, which is fast enough for our slow 

varying thermal system.  Outside dry-bulb air temperature (Toa) was also measured by external 

sensors at the same sampling rate. 
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Figure 5. Instrumentation setup for zone data collection 

 

After collecting one-day long data, the parameter identification problem in Eq. (5) was run 

using the input data shown in Figure 6 and the measured zone air temperature (blue) in Figure 

7. The resulting R and C values are presented in Table 2, and the zone air temperatures estimated 

by the model are shown in Figure 7 (red).  

 

Table 2. Parameter identification results for Zones 1-4 of Building T 

 

Parameter Value Parameter Value 

C11 1760.26 Roa1 3.4272 

C21 18794.17 R22 0.3294 

C12 7473.97 R23 0.1714 

C22 467457.60 R24 13.5480 

C13 3315.02 Roa2 10.7485 

C23 84627.16 R33 0.4404 

C14 2217.39 R34 20.6000 

C24 7126.61 Roa3 3.9676 

R11 0.9756 R44 0.5387 

R12 1.0065 Roa4 5.6419 

 

As seen in Figure 7, our identified model can accurately predict the zone temperatures. Next, 

this model was used to design our model predictive controller, which computes optimal zone 

air temperature set-points. 

 

 



10 

 

 
Figure 6. Ambient temperature and heating loads in zones 1-4 

 

4.3. MPC Simulation Results 

 

The quadratic constrained optimization problem in Eq. (8) was solved to compute optimal 

thermostat set-points. Two sets of simulations with different penalty weights in the objective 

function were performed, as summarized in Table 3. 

 

 
Figure 7. Room air temperature, measured and estimated 
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Table 3. MPC design parameters 

  Case 1 Case 2 

Np 24 steps 24 steps 

∆T 5 minutes 5 minutes 

Z I4x4 I4x4 

Z∆ 0.1 x I4x4 0.1 x I4x4 

Λ 10 x I4x4 100 x I4x4 

Qmax [20, 18, 25, 48] kW [20, 18, 25, 48] kW 

Qmin  [18, 16.2, 22.4, 42] kW [18, 16.2, 22.4, 42] kW 

𝑇1
𝑗,𝑚𝑖𝑛

 [18, 18, 18, 18] oC [18, 18, 18, 18] oC 

𝑇1
𝑗,𝑚𝑎𝑥

 [24, 24, 24, 24] oC [24, 24, 24, 24] oC 

 

In Case 1, thermal comfort (and implicitly zone air temperature) bounds are enforced relatively 

weakly compared to Case 2, as suggested by the value of the penalty term Λ in Table 3. The 

results of Case 1 in Figures 8-10 show a smoother heating response compared to the results of 

Case 2 in Figures 11-13. However, in Case 1, there exists more steady state error than Case 2 

response after averaging, and higher initial overshoot in predicted percentage dissatisfied 

comfort measure. The qualitative behaviour of Case 1 may be preferable in some applications 

while prohibitive in some others. Therefore, proper tuning of MPC parameters is of paramount 

importance to achieve the desired closed loop system response. In both cases, however, the 

MPC controller reduces the peak load demand Q, as a quick comparison with the baseline case 

in Figure 6 would reveal. Thus, it can be concluded that the resulting MPC controller would 

bring additional peak load reduction and energy savings, thanks to its forward-looking 

prediction capability, which is a lacking feature in conventional HVAC controllers. 

 

 

 
 

Figure 8. Ambient temperature and heating loads - Case 1 
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Figure 9. Room air temperature – Case 1 

 

 
Figure 10. Predicted percentage dissatisfied comfort measure - Case 1 

 

 
Figure 11. Ambient temperature and heating loads – Case 2 
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Figure 12. Room air temperature – Case 2 

 

 
Figure 13. Predicted percentage dissatisfied comfort measure - Case 2 

 

5. CONCLUSIONS 

 

In this paper, a novel approach has been presented for reducing building peak load demand in 

order to enable demand response participation. The flexibility provided by the advanced 

controller proposed can be exploited by the building operators to offer ancillary services to the 

electric power grid. The technical approach includes developing a zone thermal model through 

system identification using real building data and model predictive control that computes 

optimal thermostat set-points. The developed solution can be implemented on simple or already 

existing equipment, therefore encouraging wider adoption of advanced building thermal control 

techniques. The initial simulation results show that the MPC controller achieves a smoother and 

a reduced heating requirement as compared to the baseline. Next steps of this research shall 

include tuning the MPC controller further, and implementing and testing the controller 

performance on the Building T at Yasar University. Another future research direction is to 

include, in our optimization framework, operative temperature (OT)-based thermal comfort 

models that are more accurate in low-energy and low-exergy buildings and addresses exergy 
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balance of the human body in thermal comfort with the surroundings. The additional energy 

savings potential of OT-based comfort will be investigated, along with energy storage 

capabilities of OT-based HVAC equipment like radiant panels.  
 

NOMENCLATURE 

T1
𝑗
 air temperature of jth zone 

T2
𝑗
 wall temperature of jth zone 

𝐶1
𝑗
 thermal capacitance of air in jth zone 

𝐶2
𝑗
 thermal capacitance of wall in jth zone 

�̇�𝑗 supply air mass flow rate of jth zone 

𝐶𝑝
𝑗

 specific heat of air in jth zone 

𝑇𝑠𝑎
𝑗

 supply air temperature of jth zone 

𝑅1
𝑗
 thermal resistance between air and wall in jth zone of jth zone 

𝑅𝑖𝑗 thermal resistance between jth zone wall and adjacent ith zone air 

𝑅𝑜𝑎
𝑗

 thermal resistance between outside air and jth zone  

𝑁𝑗 set of adjacents of jth zone 

P𝑑
𝑗
 total internal disturbance heat gain  

𝑇𝑜𝑎 outside dry-bulb air temperature 

𝑗 index of zone j 

𝑖 index of adjacent zones 

𝑛𝑧 number of thermal zones 

𝑃 unknown parameter vector 

𝑅 thermal resistance 

𝐶 thermal capacitance 

𝑁𝑠 number of samples 

𝑘 time step 

𝑇1
𝑗,𝑚

 measured zone air temperature of jth zone 

𝑇1
𝑗,𝑒

 estimated zone air temperature of jth zone from model 

𝑈 heating/cooling input vector 

M metabolic rate 

𝐿 total heat loss 

𝑊 external work 

𝛼 predicted mean vote  

𝛾 predicted percentage dissatisfied occupants 

𝑁𝑝 prediction horizon 

Δ𝑡 sampling period 

𝐽 zone number 

𝑄 heating/cooling load 

Δ𝑄       the rate of change in heating/cooling loads 

𝑄𝑚𝑎𝑥 maximum heating load 

𝑄𝑚𝑖𝑛 maximum cooling load  

𝑍 penalty matrix on heating/cooling 

ΔZ  penalty on the rate of change in heating/cooling 

𝛬 penalty on predicted percentage dissatisfied 

𝑇1
𝑗,𝑘

 dry-bulb air temperature of zone j  
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𝑇1
𝑗,𝑚𝑎𝑥

maximum dry-bulb air temperature for zone j 

𝑇1
𝑗,𝑚𝑖𝑛

 minimum dry-bulb air temperature for zone j 
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