PT AU BA BE GP AF BF CA TI SO SE BS LA DT CT CY CL SP HO DE ID AB C1 C3 RP EM RI OI FU FP FX CR NR TC Z9 U1 U2 PU PI PA SN EI BN J9 JI PD PY VL IS PN SU SI MA BP EP AR DI DL D2 EA PG WC WE SC GA PM OA HC HP DA UT J Palmer, A; Spirling, A Palmer, Alexis; Spirling, Arthur Large Language Models Can Argue in Convincing Ways About Politics, But Humans Dislike AI Authors: implications for Governance POLITICAL SCIENCE English Article artificial intelligence; rhetoric; large language models; political methodology; political debate All politics relies on rhetorical appeals, and the ability to make arguments is considered perhaps uniquely human. But as recent times have seen successful large language model (LLM) applications to similar endeavours, we explore whether these approaches can out-compete humans in making appeals for/against various positions in US politics. We curate responses from crowdsourced workers and an LLM and place them in competition with one another. Human (crowd) judges make decisions about the relative strength of their (human v machine) efforts. We have several empirical 'possibility' results. First, LLMs can produce novel arguments that convince independent judges at least on a par with human efforts. Yet when informed about an orator's true identity, judges show a preference for human over LLM arguments. This may suggest voters view such models as potentially dangerous; we think politicians should be aware of related 'liar's dividend' concerns. [Palmer, Alexis] NYU, Dept Polit, New York, NY 10012 USA; [Spirling, Arthur] Princeton Univ, Dept Polit, Princeton, NJ USA New York University; Princeton University Palmer, A (corresponding author), NYU, Dept Polit, New York, NY 10012 USA. ap6100@nyu.edu Allen J, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aay3539; [Anonymous], 1990, The clockwork muse: The predictability of artistic change; Chesney B, 2019, CALIF LAW REV, V107, P1753, DOI 10.15779/Z38RV0D15J; Coppock A, 2018, P NATL ACAD SCI USA, V115, P12441, DOI 10.1073/pnas.1808083115; Dai Yaoyao., 2023, SUMM POL METH M; Grumbach JM, 2018, PERSPECT POLIT, V16, P416, DOI 10.1017/S153759271700425X; Halterman Andrew., 2023, PREPRINT; Hu MQ, 2004, PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, P755; Jakesch M, 2023, P NATL ACAD SCI USA, V120, DOI 10.1073/pnas.2208839120; Lazer DMJ, 2018, SCIENCE, V359, P1094, DOI 10.1126/science.aao2998; Loewen PJ, 2012, ELECT STUD, V31, P212, DOI 10.1016/j.electstud.2011.07.003; Motoki F, 2024, PUBLIC CHOICE, V198, P3, DOI 10.1007/s11127-023-01097-2; Rapp Christof., 2009, COMPANION ARISTOTLE, P577; Rosenzweig Leah R., 2022, OPEN SCI FRAMEWORK; Schiff Kaylyn Jackson, 2022, LIARS DIVIDEND CAN P; Spirling A, 2023, NATURE, V616, P413, DOI 10.1038/d41586-023-01295-4; Stone P. J., 1966, The general inquirer: A computer approach to content analysis; Touvron H., 2023, CoRR abs/2302.13971 18 6 6 6 19 TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND 0032-3187 2041-0611 POLIT SCI Polit. Sci. SEP 2 2023 75 3 281 291 10.1080/00323187.2024.2335471 http://dx.doi.org/10.1080/00323187.2024.2335471 APR 2024 11 Political Science Social Science Citation Index (SSCI) Government & Law RG2V3 2025-08-15 WOS:001204599400001 J Jacobs, OL; Pazhoohi, F; Kingstone, A Jacobs, Oliver L.; Pazhoohi, Farid; Kingstone, Alan Large language models have divergent effects on self-perceptions of mind and the attributes considered uniquely human CONSCIOUSNESS AND COGNITION English Article INDIVIDUAL-DIFFERENCES; ELIZA The rise of powerful Large Language Models (LLMs) provides a compelling opportunity to investigate the consequences of anthropomorphism, particularly regarding how their exposure may influence the way individuals view themselves (self-perception) and other people (other-perception). Using a mind perception framework, we examined attributions of agency (the ability to do) and experience (the ability to feel). Participants evaluated their agentic and experiential capabilities and the extent to which these features are uniquely human before and after exposure to LLM responses. Post-exposure, participants increased evaluations of their agentic and experiential qualities while decreasing their perception that agency and experience are considered to be uniquely human. These results indicate that anthropomorphizing LLMs impacts attributions of mind for humans in fundamentally divergent ways: enhancing the perception of one's own mind while reducing its uniqueness for others. These results open up a range of future questions regarding how anthropomorphism can affect mind perception toward humans. [Jacobs, Oliver L.; Kingstone, Alan] Univ British Columbia, Dept Psychol, Vancouver, BC, Canada; [Pazhoohi, Farid] Univ Plymouth, Sch Psychol, Plymouth, England University of British Columbia; University of Plymouth Jacobs, OL (corresponding author), Univ British Columbia, Dept Psychol, Vancouver, BC, Canada. ojacobs@psych.ubc.ca Natural Sciences and Engineering Research Council of Canada [RGPIN-2022-03079] Natural Sciences and Engineering Research Council of Canada(Natural Sciences and Engineering Research Council of Canada (NSERC)CGIAR) The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Support for this work was provided by a Discovery Grant to AK from the Natural Sciences and Engineering Research Council of Canada (RGPIN-2022-03079) . [Anonymous], 2011, CHOICE, DOI DOI 10.5860/CHOICE.48-7239; Aust F., 2018, PAPAJA CREATE APA MA; Barker Ernest, 1995, ARISTOTLE POLITICS, p1270b6; Bartneck C, 2009, INT J SOC ROBOT, V1, P71, DOI 10.1007/s12369-008-0001-3; Binz M, 2023, P NATL ACAD SCI USA, V120, DOI 10.1073/pnas.2218523120; Brette R, 2022, FRONT ECOL EVOL, V10, DOI 10.3389/fevo.2022.878729; Cacioppo J., 2008, Nat. Neurosci., V11, P1119; Cairó O, 2011, FRONT HUM NEUROSCI, V5, DOI 10.3389/fnhum.2011.00108; Darwin C., 1859, The Different Forms of Flowers on Plants of the Same Species, VVolume 24; Epley N, 2008, SOC COGNITION, V26, P143, DOI 10.1521/soco.2008.26.2.143; Epley N, 2007, PSYCHOL REV, V114, P864, DOI 10.1037/0033-295X.114.4.864; Festinger L, 1954, HUM RELAT, V7, P117, DOI 10.1177/001872675400700202; Gazzaniga MichaelS., 2008, Human: The Science Behind What Makes Us Unique; Gerber JP, 2018, PSYCHOL BULL, V144, P177, DOI 10.1037/bul0000127; Gómez-Robles A, 2015, P NATL ACAD SCI USA, V112, P14799, DOI 10.1073/pnas.1512646112; Gray HM, 2007, SCIENCE, V315, P619, DOI 10.1126/science.1134475; Gray K, 2011, P NATL ACAD SCI USA, V108, P477, DOI 10.1073/pnas.1015493108; Jacobs O., 2023, arXiv; Jacobs OL, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0295515; Jacobs OL, 2022, INT J SOC ROBOT, V14, P529, DOI 10.1007/s12369-021-00807-4; Kiesler S, 2008, SOC COGNITION, V26, P169, DOI 10.1521/soco.2008.26.2.169; Kosinski M, 2024, Arxiv, DOI [arXiv:2302.02083, DOI 10.48550/ARXIV.2302.02083]; Li XG, 2021, COMPUT HUM BEHAV, V118, DOI 10.1016/j.chb.2021.106680; Liberman N., 2007, Social psychology: Handbook of basic principles, P353, DOI DOI 10.1037/E633942013-052; Molnar Z, 2019, J ANAT, V235, P432, DOI 10.1111/joa.13055; Raats M. M., 1992, Food Quality and Preference, V3, P89, DOI 10.1016/0950-3293(91)90028-D; ROSCH EH, 1973, COGNITIVE PSYCHOL, V4, P328, DOI 10.1016/0010-0285(73)90017-0; Shank DB, 2019, COMPUT HUM BEHAV, V98, P256, DOI 10.1016/j.chb.2019.04.001; Shiffrin R, 2023, P NATL ACAD SCI USA, V120, DOI 10.1073/pnas.2300963120; Shum HY, 2018, FRONT INFORM TECH EL, V19, P10, DOI 10.1631/FITEE.1700826; Suls J., 2013, Handbook of approach and avoidance motivation, P585; Tharp M, 2017, BASIC APPL SOC PSYCH, V39, P68, DOI 10.1080/01973533.2016.1256287; Waytz A, 2010, TRENDS COGN SCI, V14, P383, DOI 10.1016/j.tics.2010.05.006; Waytz A, 2010, PERSPECT PSYCHOL SCI, V5, P219, DOI 10.1177/1745691610369336; WEIZENBAUM J, 1966, COMMUN ACM, V9, P36, DOI 10.1145/357980.357991; Wickham H., 2019, J Open Source Softw, V4, P1686, DOI DOI 10.21105/JOSS.01686; Wiese E, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.01663; Will P, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2106640118 38 1 1 8 19 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1053-8100 1090-2376 CONSCIOUS COGN Conscious. Cogn. SEP 2024 124 103733 10.1016/j.concog.2024.103733 http://dx.doi.org/10.1016/j.concog.2024.103733 AUG 2024 6 Psychology, Experimental Social Science Citation Index (SSCI) Psychology C7H4U 39116598 hybrid 2025-08-15 WOS:001291042600001 J Burgess, P; Williams, I; Qu, LZ; Wang, WQ Burgess, Paul; Williams, Iwan; Qu, Lizhen; Wang, Weiqing Using Generative AI to Identify Arguments in Judges' Reasons: Accuracy and Benefits for Students LAW TECHNOLOGY AND HUMANS English Article generative AI; Large Language Models; arguments; education; judges' reasons ARTIFICIAL-INTELLIGENCE This study evaluates the effectiveness of generative artificial intelligence (GAI) in identifying and reconstructing legal arguments from judges' reasons in court cases, focusing on the practical implications for law students and legal educators. By examining the performance of two versions of popular Large Language Models - ChatGPT and Claude - across five recent High Court of Australia decisions, the study makes a preliminary assessment of the accuracy of LLM systems in replicating a skill essential for l awyers: identification of arguments and argument chains in judges' reasons. The methodology involves marking LLM-generated outputs with reference to both a sample answer and a detailed rubric. Key findings reveal a significant variance in the accuracy of different LLMs, with Claude 3.5 markedly outperforming all others, achieving average grades up to 90 per cent. In contrast, ChatGPT versions demonstrated lower accuracy, with average marks not exceeding 50 per cent. These results highlight the critical importance of selecting the right GAI system for legal applications, as well as the necessity for users to critically engage with AI outputs rather than relying solely on automated tools. The study concludes that while LLMs hold potential benefits for the legal profession, including increased efficiency and enhanced access to justice, for GAI use that may be carried out by a law student, the technology cannot yet replace the nuanced human skill of legal argument analysis. [Burgess, Paul; Williams, Iwan; Qu, Lizhen; Wang, Weiqing] Monash Univ, Monash, Australia Monash University Burgess, P (corresponding author), Monash Univ, Monash, Australia. Qu, Lizhen/0000-0002-7764-431X; Burgess, Paul/0000-0002-5674-1735; Williams, Iwan/0000-0003-0582-0983; Wang, Weiqing/0000-0002-9578-819X [Anonymous], 2019, Global insights on access to justice; [Anonymous], Declaration on equal access to justice for all by 2030, DOI DOI 10.1787/597F5B7F-EN; [Anonymous], 2019, Forty-two countries adopt new OECD Principles on Artificial Intelligence; Baidoo-Anu D., 2023, Journal of AI, V7, P52, DOI [DOI 10.61969/JAI.1337500, 10.2139/ssrn.4337484, DOI 10.2139/SSRN.4337484, 10.61969/jai.1337500]; Bongiovanni G., 2018, Handbook of Legal Reasoning and Argumentation, DOI [10.1007/978-90-481-9452-0, DOI 10.1007/978-90-481-9452-0]; Brewer S, 1996, HARVARD LAW REV, V109, P923, DOI 10.2307/1342258; Carlile W, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P621; Chen GZ, 2024, Arxiv, DOI arXiv:2311.09022; Corcoran Kieran, 2023, New York Times; DUTILH NOVAES C., 2021, STANFORD ENCY PHILOS; Feuerriegel S, 2024, BUS INFORM SYST ENG+, V66, P111, DOI 10.1007/s12599-023-00834-7; Frieder S., 2023, Advances in Neural Information Processing Systems, V36; Goel A, 2023, Arxiv, DOI [arXiv:2312.02296, DOI 10.48550/ARXIV.2312.02296]; Gold Michael Evan, 2018, A Primer on Legal Reasoning; Gray MA, 2024, PHILOS T R SOC A, V382, DOI 10.1098/rsta.2023.0155; Grossman Maura R, 2023, Duke Law & Technology Review, V23; Guha N, 2023, Arxiv, DOI [arXiv:2308.11462, 10.2139/ssrn.4583531, DOI 10.2139/SSRN.4583531]; Harshvardhan GM, 2020, COMPUT SCI REV, V38, DOI 10.1016/j.cosrev.2020.100285; Holland James A., 2013, Learning Legal Rules, V8th; Ji ZW, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3571730; Kang XX, 2023, Arxiv, DOI arXiv:2310.14880; Katz DM, 2024, PHILOS T R SOC A, V382, DOI 10.1098/rsta.2023.0254; Koplin J., 2023, Monash Lens; Korzynski P, 2023, ENTREPR BUS ECON REV, V11, P25, DOI 10.15678/EBER.2023.110302; Lamond Grant, 2010, The Harvard Review of Philosophy, V17, P16; Lawrence J, 2019, COMPUT LINGUIST, V45, P765, DOI [10.1162/COLI_a_00364, 10.1162/COLIa00364]; LexisNexis, 2017, Lawyers and Robots Whitepaper; MacCormick N, 2010, DOXA, V33, P65; Makridakis S, 2017, FUTURES, V90, P46, DOI 10.1016/j.futures.2017.03.006; McCarthy J, 2006, AI MAG, V27, P12; Mok Jisoo, P 2024 C N AM CHAPT, V6, P419; Moss AJ, 2012, NEW ENGL J MED, V367, P2275, DOI 10.1056/NEJMoa1211107; Park J., 2014, P 1 WORKSHOP ARGUMEN, P29, DOI DOI 10.3115/V1/W14-2105; Perry Stephen., 1987, OXFORD J LEGAL STUD, V7, P215; Prakken H, 1997, Logical tools for modelling legal argument: A study of defeasible argumentation in law; Raz Joseph., 1996, Ratio Juris, V9, P349, DOI [10.1111/j.1467-9337.1996.tb00251.x, DOI 10.1111/J.1467-9337.1996.TB00251.X]; Rescala P, 2024, Arxiv, DOI arXiv:2404.00750; Roumeliotis KI, 2023, FUTURE INTERNET, V15, DOI 10.3390/fi15060192; Savelka J, 2023, PROCEEDINGS OF THE 2023 CONFERENCE ON INNOVATION AND TECHNOLOGY IN COMPUTER SCIENCE EDUCATION, ITICSE 2023, VOL 1, P117, DOI 10.1145/3587102.3588792; Sejnowski TJ, 2018, DEEP LEARNING REVOLUTION, P1; SUMMERS RS, 1978, CORNELL LAW REV, V63, P707; Thomson Reuters, 2023, Thomson Reuters Law Blog; Tu S Sean, 2024, Minnesota Journal of Law, Science & Technology, V25; Velarde G, 2020, Arxiv, DOI arXiv:2011.03044; Villasenor J., 2024, MJLST, V25, P25; Walton Douglas, 2002, Informal Logic, V22, DOI [10.22329/il.v22i1.2571, DOI 10.22329/IL.V22I1.2571]; Wang BS, 2023, PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, P2717; Wang YX, 2023, Arxiv, DOI arXiv:2308.13387; Wei JS, 2022, ADV NEUR IN; Wiratunga N, 2024, Arxiv, DOI arXiv:2404.04302; Zhao WX, 2025, Arxiv, DOI [arXiv:2303.18223, DOI 10.48550/ARXIV.2303.18223] 51 2 2 3 4 QUEENSLAND UNIV TECHNOLOGY BRISBANE GPO BOX 2434, BRISBANE, QLD 4001, AUSTRALIA 2652-4074 LAW TECHNOL HUMANS Law Technol. Humans 2024 6 3 5 22 10.5204/lthj.3637 http://dx.doi.org/10.5204/lthj.3637 18 Law; Social Sciences, Interdisciplinary Emerging Sources Citation Index (ESCI) Government & Law; Social Sciences - Other Topics O0M0E gold 2025-08-15 WOS:001368158500001 J O'Halloran, K O'Halloran, Kieran Digital assemblages with AI for creative interpretation of short stories DIGITAL SCHOLARSHIP IN THE HUMANITIES English Article AI literacy; assemblage; corpus stylistics; creative interpretation of literature; diffractive reading; digital stylistics; distant reading; distant-diffractive reading; Edgar Allan Poe ('The Black Cat'); Large Language Model Generative AI; literary studies; short stories; stylistics POE I demonstrate an approach fostering inventive interpretation of short stories in Literary Studies and higher education generally. It involves constructing an 'assemblage'-at its simplest, an evolving network of unusual connections for creative outcome. The assemblage of this article combines freshly located research literature, directly and indirectly related to a story's themes, and/or the personality type of protagonists. Importantly, this assemblage also utilizes text analysis software revealing the relatively invisible (e.g. (in)frequent words, parts of speech, and topics) and Large Language Model (LLM) Generative AI to enrich the interpretation. The use of all these elements helps productively exceed initial intuitions about the story, facilitating creativity. I model the approach using Edgar Allan Poe's short story, The Black Cat, whose protagonist is a homicidal psychopath. Specifically, the assemblage here includes relevant software-based research (a corpus analysis of homicidal psychopathic language), non-software-based research (psychoanalytical literary criticism of The Black Cat using the empirically validated concept of transference), text analysis software (WMatrix and Datayze), and the LLM Generative AI, 'ChatGPT' (using the freely available LLM GPT-3.5). One use of this approach is as a pedagogy in Literary Studies employing text analysis software (e.g. on a digital stylistics course). Yet given creative adaptability is a key 21st-century skill, with digital literacy-including the use of Generative AI-an important contemporary competence, and with the short story genre universally known, I highlight too the utility of this approach as a university-wide pedagogy for enhancing creative thinking. [O'Halloran, Kieran] Kings Coll London, Sch Educ Commun & Soc, Waterloo Bridge Wing, London, England; [O'Halloran, Kieran] Kings Coll London, Sch Educ Commun & Soc, Waterloo Bridge Wing,Franklin Wilkins Bldg,150 Sta, London SE1 9NH, England University of London; King's College London; University of London; King's College London O'Halloran, K (corresponding author), Kings Coll London, Sch Educ Commun & Soc, Waterloo Bridge Wing,Franklin Wilkins Bldg,150 Sta, London SE1 9NH, England. kieran.o'halloran@kcl.ac.uk O'Halloran, Kieran/0000-0003-3424-994X Ajana B., 2018, SELF TRACKING; Barad K., 2007, Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning, DOI DOI 10.1086/597741; Bliss AV, 2009, EXPLICATOR, V67, P96, DOI 10.3200/EXPL.67.2.96-99; Buday M., 2014, ENGLISH MATTERS, P11; Cook Guy., 1994, Discourse and literature; Culpeper J, 2014, ROUTL ADV CORPUS LIN, V16, P9; Culpeper Jonathan., 2001, LANGUAGE CHARACTERIS; Davidson CathyN., 2017, NEW ED; DeLanda Manuel., 2016, Assemblage Theory; Deleuze G., 1994, What is Philosophy; Deleuze G., 1987, 1000 PLATEAUS CAPITA, P1980; Deleuze Gilles., 1987, DIALOGUES; Duff C, 2017, ORGANIZATION, V24, P418, DOI 10.1177/1350508416687765; Ellmann M., 2013, PSYCHOANALYTICAL LIT; Gregoriou C, 2011, ROUT STUD RHETORIC, P1; Hancock JT, 2013, LEGAL CRIMINOL PSYCH, V18, P102, DOI 10.1111/j.2044-8333.2011.02025.x; Harari Y. N., 2018, 21 lessons for the 21st century; Hare R.D., 1999, Without conscience: the disturbing world of the psychopaths among us; Harford T., 2016, Messy; Hester V, 2014, EDGAR ALLAN POE REV, V15, P175, DOI 10.5325/edgallpoerev.15.2.0175; Heuser R., 2024, EMOTIONS LONDON, V13; Hickey-Moody A, 2016, GENDER EDUC, V28, P213, DOI 10.1080/09540253.2016.1140723; Jockers ML, 2013, TOP DIGIT HUM, P1; Judkins R., 2013, CHANGE YOUR MIND 57; Judkins R., 2015, ART CREATIVE THINKIN; Kivunja C., 2014, International Journal of Higher Education, V3, P37, DOI [10.5430/ijhe.v3n4p37, DOI 10.5430/IJHE.V3N4P37]; Livesey Graham., 2010, The Deleuze Dictionary, P18; Lucas B., 2017, Teaching Creative Thinking: Developing learners who generate ideas and can think critically; Lupton D, 2018, BIG DATA SOC, V5, DOI 10.1177/2053951718786314; Mahlberg Michaela., 2013, Corpus Stylistics and Dicken's Fiction; MATHESON TJ, 1986, MOSAIC, V19, P69; Mazzei LA, 2014, QUAL INQ, V20, P742, DOI 10.1177/1077800414530257; McAvoy LizHerbert., 2010, Anchoritic Traditions of Medieval Europe; McIntyre D., 2019, CORPUS STYLISTICS; Moretti F., 2013, Distant Reading; Nail T, 2017, SUB-STANCE, V46, P21, DOI 10.3368/ss.46.1.21; O'Halloran K.A., 2006, ART ENGLISH LIT CREA, P94; O'Halloran K.A., 2022, ROUTLEDGE HDB CORPUS, P675, DOI DOI 10.4324/9780367076399-47; Penprase BE, 2018, High. Educ. Era Fourth Ind. Revolut, P207, DOI [10.1007/978-981-13-0194-0_9, DOI 10.1007/978-981-13-0194-0_9, 10.1007/978-981-13-0194-0]; Popper K., 1989, Conjectures and Refutations: The Growth of Scientific Knowledge; Pugh G., 2019, PSYCHOTHERAPY MEETS; Rayson P., 2008, International Journal of Corpus Linguistics, V13, P519, DOI [10.1075/ijcl.13.4.06ray, DOI 10.1075/IJCL.13.4.06RAY]; Robinson K., 2011, Out of our minds, V2; Roth M., 2019, PSYCHOANALYTIC PERSP; Schwab K., 2016, The Fourth Industrial Revolution; Sehgal M, 2014, PARALLAX, V20, P188, DOI 10.1080/13534645.2014.927625; Stockwell P., 2020, COGNITIVE POETICS; Taylor CA, 2018, INT J QUAL STUD EDUC, V31, P465, DOI 10.1080/09518398.2017.1422286; Trilling B., 2009, 21st century skills 49 2 2 16 78 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 2055-7671 2055-768X DIGIT SCHOLARSH HUM Digit. Scholarsh. Humanit. MAR 6 2024 39 2 657 689 10.1093/llc/fqad050 http://dx.doi.org/10.1093/llc/fqad050 MAR 2024 33 Humanities, Multidisciplinary; Linguistics Social Science Citation Index (SSCI); Arts & Humanities Citation Index (A&HCI) Arts & Humanities - Other Topics; Linguistics UN3Z8 hybrid 2025-08-15 WOS:001179470400001 J Weber, L Weber, Lauren Deep Reading as Resistance: Reading with ChatGPT and Battling SysEd through Reflexive Reading Pedagogy JOURNAL OF LANGUAGE LITERATURE AND CULTURE English Article Deep reading; ChatGPT; subject English; pedagogy; educational systems; reflexivity ENGLISH This paper serves as a theoretical reflection with a practical proposal. There are two core goals for my discussion: (1) to reflect on deep reading for the purposes of education and why it matters in the current context of the study of English; and (2) to support a nuanced approach to promoting deep reading in English by introducing the argument that deep reading may be a form of resistance to two major challenges in English classrooms. These challenges are Semler's articulation of 'SysEd' and the emergence of AI in the form of large language models (LLMs). My reflections on reading are mediated by a conversation with ChatGPT about its reading practice and how English may distinguish the teaching of deep reading as a human skill. Finally, I draw on Margaret Archer's theory of reflexivity to present a practical approach to facilitating deep reading as a form of resistance. [Weber, Lauren] Univ Wollongong, Sch Educ, Wollongong, Australia University of Wollongong Weber, L (corresponding author), Univ Wollongong, Sch Educ, Wollongong, Australia. lweber@uow.edu.au ; Weber, Lauren Alexandra/JAC-1507-2023 Weber, Lauren Alexandra/0000-0002-8297-4233; [Anonymous], Critical AI,; [Anonymous], 2008, Proust and the Squid: the Story and Science of the Reading Brain; Archer M., 2007, Making Our Way Through the World: Human Reflexivity and Social Mobility, DOI DOI 10.1192/BJP.112.483.211-A; Archer M. S., 2000, Being human: The problem of agency; Archer MargaretScotford., 2003, STRUCTURE AGENCY INT; Archer MS, 2012, REFLEXIVE IMPERATIVE IN LATE MODERNITY, P1, DOI 10.1017/CBO9781139108058; Australian Government Department of Education, 2022, National teacher workforce action plan; Australian Government Department of Education, 2023, Review to inform a better and fairer education system. Consultation activities; Australian Government Department of Education Teacher Education Expert Panel, 2023, Final report released; Baron N.S., 2015, WORDS ONSCREEN FATE; Carr N, 2020, The Shallows: What the Internet Is Doing to Our Brains; Davies L. M., 2023, Literary Knowing and the Making of English Teachers: The Role of Literature in Shaping English Teachers Professional Knowledge and Identities; Gibbons S, 2019, ENGL EDUC-UK, V53, P36, DOI 10.1080/04250494.2019.1568832; Goodlad Lauren M. E., 2023, Critical AI, V1, P1; Goodwyn A, 2016, ENGL TEACH-PRACT CRI, V15, P7, DOI 10.1108/ETPC-12-2015-0111; Gordon C, 2023, CONVERGENCE-US, V29, P28, DOI 10.1177/13548565221148105; Hayles NK, 2022, NEW LITERARY HIST, V53-54, P635, DOI 10.1353/nlh.2022.a898324; Hayles N.Katherine., 2010, ADE B, V150, P62, DOI [10.1632/ade.150.62, DOI 10.1632/ADE.150.62]; Herman Daniel, 2023, The Atlantic30 August; Herman Daniel, 2022, The Atlantic9 December; Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274; McKnight L, 2021, ENGL EDUC-UK, V55, P37, DOI 10.1080/04250494.2020.1768069; Netolicky D.M., 2018, Flip the system Australia: What matters in education; OpenAI, 2023, ChatGPT 3.5; Resch K, 2024, EUR J TEACH EDUC, V47, P564, DOI 10.1080/02619768.2022.2058928; Rutherford Leonie, 2024, Discovering a Good Read: Exploring Book Discovery and Reading for Pleasure Among Australian Teens, P11; Sahlberg P, 2023, INT J EDUC DEV, V98, DOI 10.1016/j.ijedudev.2023.102748; Semler LE, 2024, J LANG LIT CULT, V71, P41, DOI 10.1080/20512856.2024.2427574; Semler Liam E., 2017, METAPHOR, P8; Vaswani A., 2023, ARXIV; Wolf M., 2016, Tales of literacy for the 21st century; Wolf M., 2018, READER COME HOME REA; Yu H, 2023, FRONT PSYCHOL, V14, DOI 10.3389/fpsyg.2023.1181712 33 0 0 15 18 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 2051-2856 2051-2864 J LANG LIT CULT J. Lang. Lit. Cult. JAN 2 2024 71 1 SI 57 72 10.1080/20512856.2024.2427567 http://dx.doi.org/10.1080/20512856.2024.2427567 NOV 2024 16 Language & Linguistics; Literature Arts & Humanities Citation Index (A&HCI) Linguistics; Literature S3M5W 2025-08-15 WOS:001367006600001 J Riemer, K; Peter, S Riemer, Kai; Peter, Sandra Conceptualizing generative AI as style engines: Application archetypes and implications INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT English Article Generative AI; Large language models; Style engines; AI assistants; AI agents LARGE LANGUAGE MODELS; ARTIFICIAL-INTELLIGENCE The rise of generative AI has brought with it a surprising paradox: systems that excel at tasks once thought to be uniquely human, like fluent conversation or persuasive writing, while simultaneously failing to meet traditional expectations of computing, in terms of reliability, accuracy, and veracity (e.g., given the various issues with socalled 'hallucinations'). We argue that, when generative AI is seen through a traditional computing lens, its development focuses on optimizing for traditional computing traits that remain in principle unattainable. This risks backgrounding what is most novel and defining about it. As probabilistic technologies, generative AIs do not store, in any traditional sense, any data or content. Rather, essential features of training data become encoded in deep neural networks as patterns, that become practically available as styles. We discuss what happens when the distinction between objects and their appearance dissolves and all aspects of images or text become understood as styles, accessible for exploration and creative combination and generation. For example, defining visual qualities of entities like 'chair' or 'cat' become available as 'chair-ness' or 'cat-ness' for creative image generation. We argue that, when understood as style engines, unique generative AI capabilities become conceptualized as complementing traditional computing ones. This will aid both computing practitioners and information systems researchers in reconciling and integrating generative AI into the traditional IS landscape. Our conceptualization leads us to propose four archetypes of generative AI application and use, and to highlight future avenues for information systems research made visible by this conceptualization, as well as implications for practice and policymaking. [Riemer, Kai; Peter, Sandra] Univ Sydney, Business Sch, Abercrombie Business Sch Bldg H70, Darlington, NSW 2008, Australia University of Sydney Riemer, K (corresponding author), Univ Sydney, Business Sch, Abercrombie Business Sch Bldg H70, Darlington, NSW 2008, Australia. kai.riemer@sydney.edu.au; sandra.peter@sydney.edu.au Riemer, Kai/D-7523-2015 Abu-Rasheed H, 2024, Arxiv, DOI arXiv:2403.03008; Aher G, 2022, Arxiv, DOI [arXiv:2208.10264, DOI 10.48550/ARXIV.2208.10264, 10.3386/w30659, DOI 10.3386/W30659, 10.48550/arXiv.2208.10264]; Amankwah-Amoah J, 2024, INT J INFORM MANAGE, V79, DOI 10.1016/j.ijinfomgt.2024.102759; Anghel I., 2023, PwC introduces AI chatbot for 4000 lawyers to speed up work; [Anonymous], 2023, Harvard Business Review; Appel G, 2023, Harvard Business Review; Asperti A, 2023, NEURAL COMPUT APPL, V35, P3155, DOI 10.1007/s00521-022-07890-2; Ayers JW, 2023, JAMA INTERN MED, V183, P589, DOI 10.1001/jamainternmed.2023.1838; Baxter K, 2023, Harvard Business Review; Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50; Bianchi F, 2024, Arxiv, DOI arXiv:2402.05863; Biever C, 2023, NATURE, V619, P686, DOI 10.1038/d41586-023-02361-7; Bishop C., 2024, The AI Journal; Blain L, 2024, New Atlas; Boden Margaret A., 2010, Creativity and Art: Three Roads to Surprise; Bommasani R., 2021, arXiv, DOI DOI 10.48550/ARXIV.2108.07258; Breum SM, 2023, Arxiv, DOI [arXiv:2312.15523, DOI 10.48550/ARXIV.2312.15523]; Brown TB, 2020, ADV NEUR IN, V33; Brynjolfsson E, 2023, Working Paper 31161, DOI DOI 10.3386/W31161; Burton-Jones A, 2017, MIS QUART, V41, P1307; Caplan J., 2023, Fast Company; Castelvecchi D, 2016, NATURE, V538, P21, DOI 10.1038/538020a; Chayka Kyle, 2023, The New Yorker; Chui Michael, 2022, McKinsey; Cormen Thomas H., 2009, Introduction to Algorithms, V3rd; Demir S., 2024, ECIS 2024 Proceedings, V17; Dixit P., 2023, BUZZFEED NEWS; Doshi Anil R., 2023, Generative artificial intelligence enhances creativity but reduces the diversity of novel content, DOI DOI 10.2139/SSRN.4535536; Dourish P, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951716665128; Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642; Ea H., 2024, Law Society Journal; Edwards B., 2024, Ars Technica; Enarsson T, 2022, INF COMMUN TECHNOL L, V31, P123, DOI 10.1080/13600834.2021.1958860; Epstein Z, 2023, SCIENCE, V380, P1110, DOI 10.1126/science.adh4451; Esposito M., 2023, Can businesses help build trustworthy and accurate generative AI?; European Parliament News, 2024, Artificial intelligence act: MEPs adopt landmark law; Eve O., 2024, WonderShare; Extance A, 2023, NATURE, V623, P474, DOI 10.1038/d41586-023-03507-3; Fernie E.., 1995, Art history and its methods: a critical anthology; Ferrara E, 2024, J COMPUT SOC SCI, V7, P549, DOI 10.1007/s42001-024-00250-1; Feuerriegel S, 2024, BUS INFORM SYST ENG+, V66, P111, DOI 10.1007/s12599-023-00834-7; Gatys LA, 2016, PROC CVPR IEEE, P2414, DOI 10.1109/CVPR.2016.265; Gombrich E., 1968, International Encyclopedia of the Social Sciences, pxv; Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1; Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672; Gozalo-Brizuela R., 2023, arXiv, DOI [DOI 10.48550/ARXIV.2301.04655, DOI 10.4855/ARXIV.2301.04655]; Gronsund T, 2020, J STRATEGIC INF SYST, V29, DOI 10.1016/j.jsis.2020.101614; Gustavsson M., 2021, P 11 SCAND C INF SYS; Harding S, 2024, Ars Technica; Heaven W.D., 2023, MIT Technology ReviewAugust 30; Heidorn C., 2022, TokenizedHQ; HENDERSON JC, 1980, MANAGE SCI, V26, P371, DOI 10.1287/mnsc.26.4.371; Ho JAT, 2020, Arxiv, DOI [arXiv:2006.11239, 10.48550/arXiv.2006.11239, DOI 10.48550/ARXIV.2006.11239]; Hsu T., 2023, New York Times; Huang X, 2017, IEEE I CONF COMP VIS, P1510, DOI 10.1109/ICCV.2017.167; Hubert KF, 2024, SCI REP-UK, V14, DOI 10.1038/s41598-024-53303-w; Huschens M, 2023, Arxiv, DOI [arXiv:2309.02524, 10.48550/arXiv.2309.02524, DOI 10.48550/ARXIV.2309.02524]; Imani S, 2023, Arxiv, DOI arXiv:2303.05398; Irvine R, 2023, Arxiv, DOI arXiv:2303.06135; Ivanenko N., 2022, MEZHA MEDIA; Ivcevic Z., 2024, Journal of Creativity, V34, P100079, DOI [10.1016/j.yjoc.2024.100079, DOI 10.1016/J.YJOC.2024.100079, https://doi.org/10.1016/j.yjoc.2024.100079]; Jing Z, 2024, Arxiv, DOI [arXiv:2402.01763, DOI 10.48550/ARXIV.2402.01763]; Jöhnk J, 2021, BUS INFORM SYST ENG+, V63, P5, DOI 10.1007/s12599-020-00676-7; Karras T, 2019, PROC CVPR IEEE, P4396, DOI 10.1109/CVPR.2019.00453; Katz DM., 2023, GPT 4 PASSES BAR EXA; Kearns M, 2019, The ethical algorithm: The science of socially aware algorithm design; Knight W., 2024, WIRED; Koivisto M, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-40858-3; Kumar H., 2023, Mathematics education with large language models, DOI [10.2139/ssrn.4641653, DOI 10.2139/SSRN.4641653]; LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539; Li JR, 2024, Arxiv, DOI arXiv:2403.10446; Lieb A, 2024, EXTENDED ABSTRACTS OF THE 2024 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2024, DOI 10.1145/3613905.3647957; Mackrael K., 2024, The Wall Street Journal; Manning CD, 2022, DAEDALUS-US, V151, P127, DOI 10.1162/daed_a_01905; Maples Bethanie, 2024, Npj Ment Health Res, V3, P4, DOI 10.1038/s44184-023-00047-6; Marcus G., 2022, Scientific American; Mehdi Y., 2023, REINVENTING SEARCH N; Mei QZ, 2024, P NATL ACAD SCI USA, V121, DOI 10.1073/pnas.2313925121; Memon S. A., 2024, arXiv; Mirjalili S., 2023, The Conversation; Mitchell M, 2023, SCIENCE, V382, DOI 10.1126/science.adm8175; Möhlmannn M, 2023, J ASSOC INF SYST, V24, P35, DOI 10.17705/1jais.00774; Morris C., 2024, FAST CO.; Noy S, 2023, SCIENCE, V381, P187, DOI 10.1126/science.adh2586; OpenAI, 2024, Memory and new controls for ChatGPT; Osterwalder Alexander., 2013, Harvard Business Review; Kingma DP, 2014, Arxiv, DOI [arXiv:1312.6114, 10.48550/arXiv.1312.6114]; Parker SK, 2022, APPL PSYCHOL-INT REV, V71, P1171, DOI 10.1111/apps.12241; Peter S., 2023, 5 trends for the future: 2023, DOI [10.25910/g449-dj03, DOI 10.25910/G449-DJ03]; Phatak A, 2024, Arxiv, DOI arXiv:2403.07118; Qian C, 2024, Arxiv, DOI [arXiv:2307.07924, DOI 10.48550/ARXIV.2307.07924]; Radford A., 2018, OpenAI Technical Report; Radford A., 2021, arXiv, DOI DOI 10.48550/ARXIV.2103.00020; Radford A, 2016, Arxiv, DOI [arXiv:1511.06434, DOI 10.48550/ARXIV.1511.06434]; Ramesh A, 2021, Arxiv, DOI [arXiv:2102.12092, DOI 10.48550/ARXIV.2102.12092]; Raza MM, 2024, NPJ DIGIT MED, V7, DOI 10.1038/s41746-023-00988-4; Reisner A., 2024, The Atlantic; Ribeiro J, 2021, PROCEDIA COMPUT SCI, V181, P51, DOI 10.1016/j.procs.2021.01.104; Riemer K., 2023, ACIS 2023 Proceedings; Roberts A, 2020, Arxiv, DOI arXiv:2002.08910; Rombach R, 2022, PROC CVPR IEEE, P10674, DOI 10.1109/CVPR52688.2022.01042; Roose K., 2023, The New York Times; Sahlman W. A., 2024, Harvard Business School Case, V824, P059; Salvi F, 2024, Arxiv, DOI [arXiv:2403.14380, DOI 10.48550/ARXIV.2403.14380]; Samuelson P, 2023, SCIENCE, V381, P158, DOI 10.1126/science.adi0656; Scharth M., 2023, CONVERSATION; Seymour M., 2023, Harvard Business Review, P60; Seymour M, 2018, J ASSOC INF SYST, V19, P953, DOI 10.17705/1jais.00515; Sezgin E, 2024, J MED INTERNET RES, V26, DOI 10.2196/53225; Shanahan M, 2024, COMMUN ACM, V67, P68, DOI 10.1145/3624724; Shanahan M, 2023, NATURE, V623, P493, DOI 10.1038/s41586-023-06647-8; Sharma S., 2024, VentureBeat; Siggelkow N, 2023, Harvard Business Review; Singhal K, 2023, NATURE, V620, P172, DOI 10.1038/s41586-023-06291-2; Smith BC, 2019, PROMISE OF ARTIFICIAL INTELLIGENCE: RECKONING AND JUDGMENT, P1; Sohl-Dickstein J, 2015, Arxiv, DOI [arXiv:1503.03585, DOI 10.48550/ARXIV.1503.03585]; Stahl BC, 2024, INT J INFORM MANAGE, V74, DOI 10.1016/j.ijinfomgt.2023.102700; Strachan JWA, 2024, NAT HUM BEHAV, V8, DOI 10.1038/s41562-024-01882-z; Syed R, 2020, COMPUT IND, V115, DOI 10.1016/j.compind.2019.103162; Tao W, 2024, Arxiv, DOI arXiv:2403.17927; Tarafdar M, 2023, INFORM SYST J, V33, P232, DOI 10.1111/isj.12389; Teubner T, 2023, BUS INFORM SYST ENG+, V65, P95, DOI 10.1007/s12599-023-00795-x; Turney PD, 2010, J ARTIF INTELL RES, V37, P141, DOI 10.1613/jair.2934; Turri V., 2022, arXiv; van Giffen B, 2023, MIS Q EXEC, V22, DOI 10.17705/2msqe.00085; Vaswani A, 2017, ADV NEUR IN, V30; Vaughan P., 2024, The Conversation; Venturebeat, 2024, VentureBeat; WAND Y, 1995, INFORM SYST J, V5, P203, DOI 10.1111/j.1365-2575.1995.tb00108.x; Wang B. Y., 2023, ACIS 2023 Proceedings, V53; Webb T, 2023, NAT HUM BEHAV, V7, P1526, DOI 10.1038/s41562-023-01659-w; Yan R, 2022, FOUND TRENDS INF RET, V15, P417, DOI 10.1561/1500000083; Yang Zeyi., 2023, MIT Technology Review; Yu P, 2023, HEALTHCARE-BASEL, V11, DOI 10.3390/healthcare11202776; Zhang YD, 2024, Arxiv, DOI arXiv:2404.01230; Zou Z, 2024, SCI REP-UK, V14, DOI 10.1038/s41598-024-53255-1 136 10 10 39 109 ELSEVIER SCI LTD London 125 London Wall, London, ENGLAND 0268-4012 1873-4707 INT J INFORM MANAGE Int. J. Inf. Manage. DEC 2024 79 102824 10.1016/j.ijinfomgt.2024.102824 http://dx.doi.org/10.1016/j.ijinfomgt.2024.102824 JUL 2024 15 Information Science & Library Science Social Science Citation Index (SSCI) Information Science & Library Science ZI4E1 hybrid 2025-08-15 WOS:001274645300001 J Hubert, KF; Awa, KN; Zabelina, DL Hubert, Kent F.; Awa, Kim N.; Zabelina, Darya L. The current state of artificial intelligence generative language models is more creative than humans on divergent thinking tasks SCIENTIFIC REPORTS English Article The emergence of publicly accessible artificial intelligence (AI) large language models such as ChatGPT has given rise to global conversations on the implications of AI capabilities. Emergent research on AI has challenged the assumption that creative potential is a uniquely human trait thus, there seems to be a disconnect between human perception versus what AI is objectively capable of creating. Here, we aimed to assess the creative potential of humans in comparison to AI. In the present study, human participants (N = 151) and GPT-4 provided responses for the Alternative Uses Task, Consequences Task, and Divergent Associations Task. We found that AI was robustly more creative along each divergent thinking measurement in comparison to the human counterparts. Specifically, when controlling for fluency of responses, AI was more original and elaborate. The present findings suggest that the current state of AI language models demonstrate higher creative potential than human respondents. [Hubert, Kent F.; Awa, Kim N.; Zabelina, Darya L.] Univ Arkansas, Dept Psychol Sci, Fayetteville, AR 72701 USA University of Arkansas System; University of Arkansas Fayetteville Hubert, KF (corresponding author), Univ Arkansas, Dept Psychol Sci, Fayetteville, AR 72701 USA. khubert@uark.edu ; Zabelina, Darya/AAD-1985-2022 Hubert, Kent/0009-0009-7348-5102; Zabelina, Darya/0000-0002-0313-7358; Awa, Kim/0000-0002-4932-6277 Acar S, 2021, GIFTED CHILD QUART, DOI 10.1177/00169862211061874; Anantrasirichai N, 2022, ARTIF INTELL REV, V55, P589, DOI 10.1007/s10462-021-10039-7; Beaty RE, 2022, CREATIVITY RES J, V34, P245, DOI 10.1080/10400419.2022.2025720; Beaty RE, 2012, PSYCHOL AESTHET CREA, V6, P309, DOI 10.1037/a0029171; Bellaiche L, 2023, COGN RES, V8, DOI 10.1186/s41235-023-00499-6; Boden MA, 2009, AI MAG, V30, P23, DOI 10.1609/aimag.v30i3.2254; Cardoso A, 2009, AI MAG, V30, P15, DOI 10.1609/aimag.v30i3.2252; Carson SH, 2005, CREATIVITY RES J, V17, P37, DOI 10.1207/s15326934crj1701_4; Chamberlain R, 2018, PSYCHOL AESTHET CREA, V12, P177, DOI 10.1037/aca0000136; Chatterjee A, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.1024449; Chen LQ, 2023, J COMPUT INF SCI ENG, V23, DOI 10.1115/1.4062232; Chevalier A, 2015, COMPUT HUM BEHAV, V53, P305, DOI 10.1016/j.chb.2015.07.017; Chiarella SG, 2022, COMPUT HUM BEHAV, V137, DOI 10.1016/j.chb.2022.107406; Cropley A, 2006, CREATIVITY RES J, V18, P391, DOI 10.1207/s15326934crj1803_13; Cropley David., 2023, Learning Letters, V2, P13, DOI DOI 10.59453/LL.V2.13; Day B, 2012, J ENVIRON ECON MANAG, V63, P73, DOI 10.1016/j.jeem.2011.09.001; Dumas D, 2021, PSYCHOL AESTHET CREA, V15, P645, DOI 10.1037/aca0000319; Finke RA, 1996, CONSCIOUS COGN, V5, P381, DOI 10.1006/ccog.1996.0024; Fortuna P, 2021, J ART MANAG LAW SOC, V51, P188, DOI 10.1080/10632921.2021.1887032; Gao CA., 2023, bioRxiv, DOI [10.1016/j.patter.2023.100706, DOI 10.1016/J.PATTER.2023.100706]; Guilford J. P., 1967, NATURE HUMAN INTELLI; Guzik E. E., 2023, J. Creat, V33, DOI [DOI 10.1016/J.YJOC.2023.100065, 10.1016/j.yjoc.2023.100065]; Haase J, 2023, Arxiv, DOI [arXiv:2303.12003, 10.48550/arXiv.2303.12003, 10.1016/j.yjoc.2023.100066]; Hass RW, 2018, FRONT PSYCHOL, V9, DOI 10.3389/fpsyg.2018.02327; Hubert K. F., 2023, Diminishing Creative Returns: Predicting Optimal Creative Performance via Individual Differences in Executive Functioning; Igorov M, 2016, EUR PROC SOC BEHAV, V11, P286, DOI 10.15405/epsbs.2016.06.39; Jauk E., 2014, Pers. Individ. Diff, V60, pS45, DOI DOI 10.1016/J.PAID.2013.07.129; Kane SJ, 2023, CAMB HANDB PSYCHOL, P130; Khurana D, 2023, MULTIMED TOOLS APPL, V82, P3713, DOI 10.1007/s11042-022-13428-4; Koivisto M, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-40858-3; Kumar Y, 2022, J AMB INTEL HUM COMP, DOI 10.1007/s12652-021-03612-z; Lambert N., 2022, Hugging Face; Lee YH, 2023, LECT NOTES ARTIF INT, V14050, P575, DOI 10.1007/978-3-031-35891-3_36; Liu HM, 2023, Arxiv, DOI [arXiv:2304.03439, 10.48550/ARXIV.2304.03439, DOI 10.48550/ARXIV.2304.03439]; Liu YH, 2022, PROCEEDINGS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI' 22), DOI 10.1145/3491102.3517731; Maio S, 2020, CREATIVITY RES J, V32, P201, DOI 10.1080/10400419.2020.1818492; MEDNICK SA, 1962, PSYCHOL REV, V69, P220, DOI 10.1037/h0048850; Nusbaum EC, 2014, PSYCHOL AESTHET CREA, V8, P423, DOI 10.1037/a0036549; Olson JA, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2022340118; OpenAI, 2023, CHATGPT OPTIMIZING L; Pennington J., 2014, C EMP METH NAT LANG, DOI DOI 10.3115/V1/D14-1162; R Core Team, 2023, R: A language and environment for statistical computing; Rahaman M. S., 2023, J ENG EMERGING TECHN, V2, P1, DOI [10.52631/jeet.v2i1.188, DOI 10.52631/JEET.V2I1.188]; Runco MA, 2012, CREATIVITY RES J, V24, P92, DOI 10.1080/10400419.2012.650092; Runco MA, 2012, CREATIVITY RES J, V24, P66, DOI 10.1080/10400419.2012.652929; Runco Mark A., 2023, Journal of Creativity, V33, DOI DOI 10.1016/J.YJOC.2023.100063; Samo A, 2023, PSYCHOL AESTHET CREA, DOI 10.1037/aca0000570; Sarker Iqbal H, 2021, SN Comput Sci, V2, P420, DOI 10.1007/s42979-021-00815-1; Sawyer R. K., 2012, Explaining creativity: The science of human creativity, V2nd; Stevenson C, 2022, Arxiv, DOI [arXiv:2206.08932, 10.48550/arXiv.2206.08932, DOI 10.48550/ARXIV.2206.08932]; Torrance E. P., 1974, TORRANCE TESTS CREAT; Urban M, 2023, J CREATIVE BEHAV, V57, P6, DOI 10.1002/jocb.558; Vinchon F., 2023, Review; Wilson R.C., 1954, PSYCHOMETRIKA, V19, P297, DOI [10.1007/BF02289230, DOI 10.1007/BF02289230, 10.1007/bf02289230]; Yin ZY, 2023, MACH LEARN, V112, P1785, DOI 10.1007/s10994-023-06309-w; Zhou M, 2020, ENGINEERING-PRC, V6, P275, DOI 10.1016/j.eng.2019.12.014 56 52 52 43 170 NATURE PORTFOLIO BERLIN HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY 2045-2322 SCI REP-UK Sci Rep FEB 10 2024 14 1 3440 10.1038/s41598-024-53303-w http://dx.doi.org/10.1038/s41598-024-53303-w 10 Multidisciplinary Sciences Science Citation Index Expanded (SCI-EXPANDED) Science & Technology - Other Topics HN0P8 38341459 Green Published, gold 2025-08-15 WOS:001160069200016 J Adamcová, S Adamcova, Silvia Artificial Intelligence and its Impact on Teaching, Learning and Work MUTTERSPRACHE German Article Artificial Intelligence; future competencies; ChatGPT; Large Language Models; digital language learning In today's foreign language learning, a constant expansion of vocabulary is necessary in order to keep pace with developments in technology and science. This article looks at a current topic in German linguistics the language about artificial intelligence in relation to applications such as ChatGPT and chatbots. As the rapid development of modern technologies and their applications raises numerous linguistic issues, the new generation of university graduates must adapt to constant changes in the labour market. In addition to the development of new skills, this also involves the acquisition of specialised vocabulary from digital media such as Al. It is also being investigated whether artificial intelligence can help to promote and support language skills in the classroom. In a next step, specific requirements of foreign language teaching for teachers and students will be addressed with regard to future skills, which represent a particular challenge in the education sector in view of the high speed of the diverse developments. This study thus makes a contribution to the current debate on the role of artificial intelligence in higher education. Overall, this evaluation offers an insight into a highly topical subject of the application of artificial intelligence, which will have a significant influence on the linguistic and pedagogical practice of the future. [Adamcova, Silvia] Wirtschaftsuniv Bratislava, Lehrstuhl Linguist & Translatol, Fak Angew Sprachen, Bratislava, Slovakia Adamcová, S (corresponding author), Wirtschaftsuniv Bratislava, Lehrstuhl Linguist & Translatol, Fak Angew Sprachen, Bratislava, Slovakia. silvia.adamcova@euba.sk Adamcova Livia, 2018, Lingua et vita, V14, P9; Adamcova Silvia, 2023, Journal of Linguistics and Language Teaching, V14, P187; Alkaissi H, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35179; Bar M., 2019, Das Lehren und Lernen von Fremdund Zweitsprachen im digitalen Wandel, P12; Bender EM, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P610, DOI 10.1145/3442188.3445922; Beutel G, 2023, CRIT CARE, V27, DOI 10.1186/s13054-023-04425-6; Blossfeld Hans-Peter, 2018, Digitale Souvereinitat und Bildung; Brtihl Volker, 2023, Wirtschafisdienst, V8, P521; Hrdlickova Z, 2018, OVERCOMING THE CHALLENGES AND BARRIERS IN OPEN EDUCATION (DISCO 2018), P178; KI.NRW, 2023, KI-Schltisselbegriffe KI; Kugoth Jana., 2023, Vorstandin Stars ither Chancen neuer Technik: KI wird kiinftig bei VW eine noch grol3ere Rolle spielen; Lassebie J., 2022, OECD Social, Employment and Migration Working Papers, V282, DOI DOI 10.1787/646AAD77-EN; Marr B., 2023, Forbes; Middeke Annegret, 2021, Fachlich-Digital-Regional: Perspektiven auf das Sprachenlernen und -lehren, P169; Paiva R, 2020, LECT NOTES ARTIF INT, V12163, P448, DOI 10.1007/978-3-030-52237-7_36; Perrigo B., 2023, Time; Pokrivcakova S, 2019, J LANG CULT EDUC, V7, P135, DOI 10.2478/jolace-2019-0025; Salam E., 2022, GUARDIAN; Schmidt T., 2016, Der fremdsprachliche Unterricht Englisch, V144, P2; Schmidt T., 2022, Anglistik: International Journal of English Studies, V33, P165; Schmidt Torben, 2019, Das Lehren und Lernen von Fremdund Zweitsprachen im digitalen Wandel, P228; Schramm Karen, 2019, Das Lehren und Lernen von Fremdund Zweitsprachen im digitalen Wandel. Arbeitspapiere der 39. Friihjahreskonferenz zur Erforschung des Fremdsprachenunterrichts, P237; Thomas Martina, 2021, Jahrbuch der berufsund wirtschaftspadagogischen Forschung, P37 23 0 0 11 17 GESELLSCHAFT DEUTSCHE SPRACHE WIESBADEN SPIEGELGASSE 13, D-65183 WIESBADEN, GERMANY 0027-514X MUTTERSPRACHE Muttersprache SEP 2024 134 3 251 267 10.53371/61178 http://dx.doi.org/10.53371/61178 17 Language & Linguistics Arts & Humanities Citation Index (A&HCI) Linguistics J5I5Z 2025-08-15 WOS:001337400800004 J McGrath, SW; Russin, J; Pavlick, E; Feiman, R McGrath, Sam Whitman; Russin, Jacob; Pavlick, Ellie; Feiman, Roman How Can Deep Neural Networks Inform Theory in Psychological Science? CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE English Article deep learning; neural networks; large language models; interpretability; psycholinguistics; cognitive development; philosophy of cognitive science CONNECTIONISM; LANGUAGE; MODELS Over the last decade, deep neural networks (DNNs) have transformed the state of the art in artificial intelligence. In domains such as language production and reasoning, long considered uniquely human abilities, contemporary models have proven capable of strikingly human-like performance. However, in contrast to classical symbolic models, neural networks can be inscrutable even to their designers, making it unclear what significance, if any, they have for theories of human cognition. Two extreme reactions are common. Neural network enthusiasts argue that, because the inner workings of DNNs do not seem to resemble any of the traditional constructs of psychological or linguistic theory, their success renders these theories obsolete and motivates a radical paradigm shift. Neural network skeptics instead take this inability to interpret DNNs in psychological terms to mean that their success is irrelevant to psychological science. In this article, we review recent work that suggests that the internal mechanisms of DNNs can, in fact, be interpreted in the functional terms characteristic of psychological explanations. We argue that this undermines the shared assumption of both extremes and opens the door for DNNs to inform theories of cognition and its development. [McGrath, Sam Whitman] Brown Univ, Dept Philosophy, Providence, RI USA; [McGrath, Sam Whitman; Russin, Jacob; Feiman, Roman] Brown Univ, Dept Cognit & Psychol Sci, Providence, RI 02912 USA; [Russin, Jacob; Pavlick, Ellie] Brown Univ, Dept Comp Sci, Providence, RI USA; [Pavlick, Ellie; Feiman, Roman] Brown Univ, Program Linguist, Providence, RI 02912 USA Brown University; Brown University; Brown University; Brown University Feiman, R (corresponding author), Brown Univ, Dept Cognit & Psychol Sci, Providence, RI 02912 USA.; Feiman, R (corresponding author), Brown Univ, Program Linguist, Providence, RI 02912 USA. roman_feiman@brown.edu McGrath, Sam/0009-0000-5383-1885 Brown TB, 2020, Arxiv, DOI [arXiv:2005.14165, DOI 10.48550/ARXIV.2005.14165]; Bowers JS, 2022, BEHAV BRAIN SCI, V46, DOI 10.1017/S0140525X22002813; Buckner C, 2023, BRIT J PHILOS SCI, V74, P681, DOI 10.1086/714960; Chen A, 2025, Arxiv, DOI arXiv:2309.07311; Elhage N, 2021, Transformer Circuits Thread; Feiman R, 2022, COGNITIVE PSYCHOL, V135, DOI 10.1016/j.cogpsych.2022.101473; Firestone C, 2020, P NATL ACAD SCI USA, V117, P26562, DOI 10.1073/pnas.1905334117; FODOR JA, 1988, COGNITION, V28, P3, DOI 10.1016/0010-0277(88)90031-5; Geiger Atticus, 2021, Advances in Neural Information Processing Systems, V34; Gleitman L., 1990, Language acquisition, V1, P3, DOI [10.1207/s15327817la01012, DOI 10.1207/S15327817LA01012]; Golan T, 2020, P NATL ACAD SCI USA, V117, P29330, DOI 10.1073/pnas.1912334117; Hanna M, 2023, Arxiv, DOI arXiv:2305.00586; Kirov C, 2018, Transactions of the Association for Computational Linguistics, V6, P651, DOI [10.1162/tacl_a_00247, DOI 10.1162/TACLA00247]; Konkle T, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28091-4; Lake BM, 2023, NATURE, V623, P115, DOI 10.1038/s41586-023-06668-3; Linzen T, 2021, ANNU REV LINGUIST, V7, P195, DOI 10.1146/annurev-linguistics-032020-051035; Manning CD, 2020, P NATL ACAD SCI USA, V117, P30046, DOI 10.1073/pnas.1907367117; McClelland J.L., 1986, Parallel distributed processing: Explorations in the microstructure of cognition; Meng K, 2022, ADV NEUR IN; Merullo J, 2024, Arxiv, DOI arXiv:2310.08744; Misra K, 2024, Arxiv, DOI arXiv:2403.19827; Olsson Catherine, 2022, Transformer Circuits Thread; Piantadosi S., 2023, MODERN LANGUAGE MODE, DOI lingbuzz/007180; PINKER S, 1988, COGNITION, V28, P73, DOI 10.1016/0010-0277(88)90032-7; Quilty-Dunn J, 2022, BEHAV BRAIN SCI, V46, DOI 10.1017/S0140525X22002849; Schrimpf M, 2020, bioRxiv, DOI [10.1101/407007, 10.1101/407007v1, DOI 10.1101/407007, 10.1101/407007, DOI 10.1101/407007V1]; Seidenberg MS, 2014, COGNITIVE SCI, V38, P1190, DOI 10.1111/cogs.12147; SMOLENSKY P, 1988, BEHAV BRAIN SCI, V11, P1, DOI 10.1017/S0140525X00052432; Smolensky P., 2022, arXiv, DOI DOI 10.48550/ARXIV.2205.01128; Tenney I, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P4593; Traylor A., 2023, Can neural networks learn implicit logic from physical reasoning?; Tucker M, 2021, FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, P862; Vong WK, 2024, SCIENCE, V383, P504, DOI 10.1126/science.adi1374; Wang Kevin, 2022, arXiv; Warstadt A, 2024, Arxiv, DOI [arXiv:2208.07998, 10.48550/ARXIV.2208.07998, DOI 10.48550/ARXIV.2208.07998]; Whittington JCR, 2020, CELL, V183, P1249, DOI 10.1016/j.cell.2020.10.024; Wilcox Ethan Gotlieb., 2023, Linguistic Inquiry, P1, DOI [10.1162/linga00491, DOI 10.1162/LINGA00491]; Yamins DLK, 2014, P NATL ACAD SCI USA, V111, P8619, DOI 10.1073/pnas.1403112111 38 1 2 3 10 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0963-7214 1467-8721 CURR DIR PSYCHOL SCI Curr. Dir. Psychol. OCT 2024 33 5 325 333 10.1177/09637214241268098 http://dx.doi.org/10.1177/09637214241268098 SEP 2024 9 Psychology, Multidisciplinary Social Science Citation Index (SSCI) Psychology J1X7W 39949337 Green Submitted 2025-08-15 WOS:001313189700001 J Kalluri, B; Prasad, P; Sharma, P; Chippa, D Kalluri, Balaji; Prasad, Prajish; Sharma, Prakrati; Chippa, Divyaansh Developing Future Computational Thinking in Foundational CS Education: A Case Study From a Liberal Education University in India IEEE TRANSACTIONS ON EDUCATION English Article Education; Sustainable development; Computational modeling; Systems thinking; Programming profession; Software systems; Green products; 21st-century skills; computer science (CS); creative pedagogy; foundational education; future thinking Contribution: This article proposes a new theoretical model with a goal to develop future human computational thinking (CT) in foundational computer science (CS) education. The model blends six critical types of thinking, i.e., logical thinking, systems thinking, sustainable thinking, strategic thinking, creative thinking, and responsible thinking into the design of a first-year undergraduate programming course. The study describes a creative blended pedagogy that embeds the proposed model into the course plan. Background: The emergence of artificial intelligent systems such as large language models from a knowledge provider perspective, coupled with a gradual change in post-pandemic outlook of education challenge the relevance and raises concerns about the future of education. The 21st-century human CT requirements, viz., learning to code (skill) and thinking computationally (competency), will be inadequate in the future. Moreover, there is substantial evidence which shows that most introductory programming courses fail to integrate critical elements like ethics and responsibility as part of the course. Intended Outcomes: The authors anticipate experiential learning models such as this has immense potential to future-proof CS education, as well as make future software engineers responsible citizens. Application Design: The proposed model blends six types of thinking into the design and activities of the course. The underlying theoretical basis of these activities revolve around three key principles: 1) experiential learning; 2) self-reflection; and 3) peer learning. Findings: This case study from a liberal educational institution in India qualitatively shows evidence of students developing six critical elements of thinking that shapes their future CT ability. [Kalluri, Balaji; Prasad, Prajish; Sharma, Prakrati; Chippa, Divyaansh] FLAME Univ, Sch Comp & Data Sci, Pune 412115, Maharashtra, India Kalluri, B (corresponding author), FLAME Univ, Sch Comp & Data Sci, Pune 412115, Maharashtra, India. balaji.kalluri@flame.edu.in University, FLAME/HSG-7860-2023; Kalluri, Balaji/ABF-8321-2020; , FLAME University/HSG-7860-2023 Prasad, Prajish/0000-0001-7986-6277; , FLAME University/0009-0003-3435-6187; Kalluri, Balaji/0000-0002-0033-5463 Kalluri's Urban Design and Open-innovation Studio (KUDOS) at FLAME University Kalluri's Urban Design and Open-innovation Studio (KUDOS) at FLAME University This work was supported by the seed fund given to Kalluri's Urban Design and Open-innovation Studio (KUDOS) at FLAME University. Boden M.A., 2004, The Creative Mind: Myths and Mechanisms, V2nd; Cohen L, 2021, PROCEEDINGS OF THE 52ND ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE 2021, P858, DOI 10.1145/3408877.3432456; Dieleman H, 2006, J CLEAN PROD, V14, P837, DOI 10.1016/j.jclepro.2005.11.031; Ding Y., 2018, M.S. thesis; Easterbrook S, 2014, PROCEEDINGS OF THE 2014 CONFERENCE ICT FOR SUSTAINABILITY, P235; Fiesler C, 2021, PROCEEDINGS OF THE 52ND ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION, SIGCSE 2021, P1027, DOI 10.1145/3408877.3432510; FORRESTER JW, 1968, MANAGE SCI, V14, P398, DOI 10.1287/mnsc.14.7.398; Furber S., 2012, Shut down or restart? The way forward for computing in UK schools; Gautam A, 2024, Arxiv, DOI arXiv:2401.01285; Hemmendinger D., 2010, ACM Inroads, V1, P4, DOI DOI 10.1145/1805724.1805725; HIGGINS L, 1992, WRIT COMMUN, V9, P48, DOI 10.1177/0741088392009001002; Indo-Asian News Service, 2016, India TodayAug. 17; Kafai Y, 2019, ICER '19 - PROCEEDINGS OF THE 2019 ACM CONFERENCE ON INTERNATIONAL COMPUTING EDUCATION RESEARCH, P101, DOI 10.1145/3291279.3339400; Kolb D. A., 2014, Experiential Learning; Krogstie B, 2020, PROC FRONT EDUC CONF; Laszlo E., 1996, A systems view of the world: A holistic vision for our time; Leifler O, 2020, PROC FRONT EDUC CONF; Lewis L., 1994, New Directions for Adult and Continuing Education, V62, P5, DOI [10.1002/ace.36719946203, DOI 10.1002/ACE.36719946203]; Lin K, 2022, PROCEEDINGS OF THE 53RD ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION (SIGCSE 2022), VOL 1, P265, DOI 10.1145/3478431.3499291; Palm J, 2023, ENERGY SUSTAIN SOC, V13, DOI 10.1186/s13705-023-00393-5; Pargman Daniel, 2016, P 8 INT C ENG ED SUS, P302; Park W., 2021, Creativity Studies, V14, P160, DOI DOI 10.3846/CS.2021.13700; Peters AK, 2024, ACM T COMPUT EDUC, V24, DOI 10.1145/3639060; Pollock I, 2019, PROCEEDINGS OF THE WORKING GROUP REPORTS ON INNOVATION AND TECHNOLOGY IN COMPUTER SCIENCE EDUCATION (ITICSE-WGR '19), P1, DOI 10.1145/3344429.3372500; Romero M, 2017, INT J EDUC TECHNOL H, V14, DOI 10.1186/s41239-017-0080-z; Schon D., 1987, Educando o profissional reflexivo: um novo design para o ensino e a aprendizagem; Selby C., 2013, P 45 ACM TECHN S COM; Shute VJ, 2017, EDUC RES REV-NETH, V22, P142, DOI 10.1016/j.edurev.2017.09.003; Sternberg Robert J., 1999, Handbook of Creativity, V1; Thomas I, 2009, J TRANSFORM EDUC, V7, P245, DOI 10.1177/1541344610385753; Tilbury D., 2016, Education for Sustainable Development: An Expert Review of Processes and Learning, P42; Veenman K, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.956901; Weintrop D, 2016, J SCI EDUC TECHNOL, V25, P127, DOI 10.1007/s10956-015-9581-5; Wing J. M., 2014, 40th anniversary blog of social issues in computing, P26; Zainuddin Z, 2018, COMPUT EDUC, V126, P75, DOI 10.1016/j.compedu.2018.07.003 35 0 0 11 30 IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PISCATAWAY 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA 0018-9359 1557-9638 IEEE T EDUC IEEE Trans. Educ. DEC 2024 67 6 944 953 10.1109/TE.2024.3394060 http://dx.doi.org/10.1109/TE.2024.3394060 MAY 2024 10 Education, Scientific Disciplines; Engineering, Electrical & Electronic Science Citation Index Expanded (SCI-EXPANDED) Education & Educational Research; Engineering Q0L8V Green Submitted 2025-08-15 WOS:001226166900001 J Tiwari, A; Kumar, A; Jain, S; Dhull, KS; Sajjanar, A; Puthenkandathil, R; Paiwal, K; Singh, R Tiwari, Anushree; Kumar, Amit; Jain, Shailesh; Dhull, Kanika S.; Sajjanar, Arunkumar; Puthenkandathil, Rahul; Paiwal, Kapil; Singh, Ramanpal Implications of ChatGPT in Public Health Dentistry: A Systematic Review CUREUS JOURNAL OF MEDICAL SCIENCE English Article dentist; artificial intelligence; implications; public health dentistry; chatgpt An artificial intelligence (AI) program called ChatGPT that generates text in response to typed commands has proven to be highly popular, as evidenced by the fact that OpenAI makes it available online. The goal of the present investigation was to investigate ChatGPT's potential applications as an outstanding instance of large language models (LLMs) in the fields of public dental health schooling, writing for academic use, research in public dental health, and clinical practice in public dental health based on the available data. Importantly, the goals of the current review included locating any drawbacks and issues that might be connected to using ChatGPT in the previously mentioned contexts in healthcare settings. Using search practice in public health dentistry, education in public health dentistry, academic writing in public health dentistry, etc., a thorough search was carried out on the Pubmed database, the Embase database, the Ovid database, the Global Health database, PsycINFO, and the Web of Science. The dates of publication were not restricted. Systematic searches were carried out for all publications according to inclusion and exclusion criteria between March 31, 2018, and March 31, 2023. Eighty-four papers were obtained through a literature search using search terms. Sixteen similar and duplicate papers were excluded and 68 distinct articles were initially selected. Thirty-three articles were excluded after reviewing abstracts and titles. Thirty-five papers were selected, for which full text was managed. Four extra papers were found manually from references. Thirty-nine articles with full texts were eligible for the study. Eighteen inadequate articles are excluded from the final 21 studies that were finally selected for systemic review. According to previously published studies, ChatGPT has demonstrated its effectiveness in helping scholars with the authoring of scientific research and dental studies. If the right structures are created, ChatGPT can offer suitable responses and more time to concentrate on the phase of experimentation for scientists. Risks include prejudice in the training data, undervaluing human skills, the possibility of fraud in science, as well as legal and reproducibility concerns. It was concluded that practice considering ChatGPT's potential significance, the research's uniqueness, and the premise-the activity of the human brain-remains. While there is no question about the superiority of incorporating ChatGPT into the practice of public health dentistry, it does not, in any way, take the place of a dentist since clinical practice involves more than just making diagnoses; it also involves relating to clinical findings and providing individualized patient care. Even though AI can be useful in a number of ways, a dentist must ultimately make the decision because dentistry is a field that involves several disciplines. [Tiwari, Anushree] Amer Acad Orthopaed Surg, Clin Qual & Value, Rosemont, IL 60018 USA; [Kumar, Amit] All India Inst Med Sci, Dept Dent, Patna, India; [Jain, Shailesh] Sharda Univ, Sch Dent Sci, Dept Prosthodont & Crown & Bridge, Greater Noida, India; [Dhull, Kanika S.] KIIT Univ, Dept Pedodont & Prevent Dent, Kalinga Inst Dent Sci, Bhubaneswar, India; [Sajjanar, Arunkumar] Swargiya Dadasaheb Kalmegh Smruti Dent Coll & Hosp, Dept Pediat & Prevent Dent, Nagpur, India; [Puthenkandathil, Rahul] Nitte Univ, AB Shetty Mem Inst Dent Sci ABSMIDS, Dept Prosthodont & Crown & Bridge, Mangalore, India; [Paiwal, Kapil] Daswani Dent Coll & Res Ctr, Dept Oral & Maxillofacial Pathol, Kota, India; [Singh, Ramanpal] New Horizon Dent Coll & Res Inst, Oral Med & Radiol, Bilaspur, India All India Institute of Medical Sciences (AIIMS) Patna; Sharda University; Kalinga Institute of Industrial Technology (KIIT); NITTE (Deemed to be University) Tiwari, A (corresponding author), Amer Acad Orthopaed Surg, Clin Qual & Value, Rosemont, IL 60018 USA. tiwarianushree88@gmail.com makkad, Ramanpal/I-2353-2012; Paiwal, Kapil/AFV-2918-2022; Dhull, Kanika Singh/ABF-6978-2021 Paiwal, Kapil/0000-0002-6982-5612; Dhull, Kanika Singh/0000-0002-0002-8084; Agrawal P, 2022, CUREUS J MED SCIENCE, V14, DOI 10.7759/cureus.27405; Akhter HM, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.34752; Biswas S, 2023, RADIOLOGY, V307, DOI 10.1148/radiol.223312; Fatani B, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.37285; Giansanti D, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph191911907; Islam NM, 2022, J DENT EDUC, V86, P1545, DOI 10.1002/jdd.13010; Jungwirth David, 2023, Int J Environ Res Public Health, V20, DOI 10.3390/ijerph20054541; Kumar A. H., 2023, Biology, Engineering, Medicine and Science Reports, V9, P24, DOI [10.5530/bems.9.1.5, DOI 10.5530/BEMS.9.1.5]; Lin Zhicheng, 2023, PsyArXiv, DOI DOI 10.31234/OSF.IO/SDX3J; Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009; Mann DL, 2023, JACC-BASIC TRANSL SC, V8, P221, DOI 10.1016/j.jacbts.2023.01.001; Manohar N, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.34616; Rao ARY, 2023, medRxiv, DOI [10.1101/2023.02.02.23285399, 10.1101/2023.02.02.23285399, DOI 10.1101/2023.02.02.23285399]; Sanmarchi F, 2023, medRxiv, DOI [10.1101/2023.02.06.23285514, 10.1101/2023.02.06.23285514, DOI 10.1101/2023.02.06.23285514]; Schwendicke F, 2023, J DENT, V128, DOI 10.1016/j.jdent.2022.104363; Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z; Tariq S, 2021, INT HEAL RESJ, V5, P1, DOI [10.26440/IHRJ/0509.12489, DOI 10.26440/IHRJ/0509.12489]; Thurzo A, 2023, EDUC SCI, V13, DOI 10.3390/educsci13020150; Thurzo A, 2022, HEALTHCARE-BASEL, V10, DOI 10.3390/healthcare10071269; Wang S, 2023, Arxiv, DOI [arXiv:2302.03495, DOI 10.48550/ARXIV.2302.03495]; Zielinski C, 2023, NATL MED J INDIA, V36, P1, DOI 10.25259/NMJI_365_23 21 35 35 2 56 SPRINGERNATURE LONDON CAMPUS, 4 CRINAN ST, LONDON, N1 9XW, ENGLAND 2168-8184 CUREUS J MED SCIENCE Cureus J Med Sci JUN 13 2023 15 6 e40367 10.7759/cureus.40367 http://dx.doi.org/10.7759/cureus.40367 9 Medicine, General & Internal Emerging Sources Citation Index (ESCI) General & Internal Medicine M7OC7 37456464 gold, Green Published 2025-08-15 WOS:001032064700023 J Jung, DW; Suh, S Jung, Dawool; Suh, Sungeun Enhancing Soft Skills through Generative AI in Sustainable Fashion Textile Design Education SUSTAINABILITY English Article soft skill enhancement; Design Sprint; generative AI; AI-based fashion textile design education; sustainable fashion textile development COMPETENCE This study explores the significance of incorporating soft skill training in fashion design education through the use of artificial intelligence (AI) technology and examines various AI-based approaches for sustainable fashion textile design education employing a multifaceted methodology that encompasses empirical, quantitative, and qualitative methods. We investigate the aspects of Design Sprints, identify key soft skills that help students meet the complex demands of contemporary fashion design workplaces, propose a curriculum guide for AI textile design programs, and evaluate the soft skill training process. Participants included students who had completed basic fashion design courses over three to four semesters and had experience with the fashion design process. The findings confirmed that participants' soft skills improved across four areas-digital competence, sense of initiative and entrepreneurship, problem-solving and thinking skills, and communication-through the AI-based fashion textile design curriculum. This study validates the importance of integrating AI technology into educational programs to enhance essential soft skills in the digital fashion industry environment. Additionally, it emphasizes the necessity of developing AI technology-specialized design prompts while maintaining a balance between traditional design education and digital design education for sustainable fashion design education. [Jung, Dawool; Suh, Sungeun] Gachon Univ, Coll Social Sci, Dept Fash Design & Merchandising, Seongnam 13120, Gyeonggi Do, South Korea Gachon University Suh, S (corresponding author), Gachon Univ, Coll Social Sci, Dept Fash Design & Merchandising, Seongnam 13120, Gyeonggi Do, South Korea. dawooljung@gachon.ac.kr; sesuh@gachon.ac.kr Suh, Sungeun/GYV-6085-2022 Jung, Dawool/0000-0002-8424-5261 Gachon University; [GCU-202304740001] Gachon University; This work was supported by the Gachon University research fund of 2023 (GCU-202304740001). Arce E, 2022, THINK SKILLS CREAT, V44, DOI 10.1016/j.tsc.2022.101039; Atma M., 2013, Indonesian Mathematical Society Journal on Mathematics Education, V4, P194, DOI [10.22342/jme.4.2.554.194-203, DOI 10.22342/JME.4.2.554.194-203]; Banfield Richard., 2015, DESIGN SPRINT PRACTI; Bozkurt A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020800; Calamari S, 2015, FASH TEXT, V2, DOI 10.1186/s40691-015-0031-z; Choi KH, 2022, FASH TEXT, V9, DOI 10.1186/s40691-021-00286-1; Choi W, 2023, FASH TEXT, V10, DOI 10.1186/s40691-023-00360-w; Cimatti B, 2016, INT J QUAL RES, V10, P97, DOI 10.18421/IJQR10.01-05; Conlon J, 2024, INT J FASH DES TECHN, V17, P76, DOI 10.1080/17543266.2023.2247425; Crosbie R., 2005, IND COMMERICAL TRAIN, V67, P45, DOI [DOI 10.1108/00197850510576484, 10.1108/00197850510576484]; Deming DJ, 2017, Q J ECON, V132, P1593, DOI 10.1093/qje/qjx022; Ferreira VG, 2020, J AMB INTEL HUM COMP, V11, P1191, DOI 10.1007/s12652-019-01285-3; Gaziulusoy I, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133601; Gilyazova OS, 2021, REV UNIV SOC, V13, P241; Google Ventures, 2019, The Design Sprint; Haselberger D., 2012, Handbook of ModEs Project; Heckman JJ, 2012, LABOUR ECON, V19, P451, DOI 10.1016/j.labeco.2012.05.014; Huang LH, 2023, ACM T ASIAN LOW-RESO, V22, DOI 10.1145/3554735; Hutson J., 2023, Glob. J. Hum.-Soc. Sci., V23, P485; Ignacio GP, 2024, INT ENTREP MANAG J, V20, P2515, DOI 10.1007/s11365-023-00909-7; Jeon Y, 2021, CHI '21: PROCEEDINGS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3411764.3445093; Jones DE, 2015, AM J PUBLIC HEALTH, V105, P2283, DOI 10.2105/AJPH.2015.302630; Jung Da Wool, 2023, [Journal of the Korean Society of Clothing and Textiles, 한국의류학회지], V47, P1137; Kärnä-Behm J, 2022, INT J ART DES EDUC, V41, P577, DOI 10.1111/jade.12433; Kechagias K., 2011, Teaching and assessing soft skills; Khurana K, 2022, FASH TEXT, V9, DOI 10.1186/s40691-021-00267-4; Kim S, 2022, INT J FASH DES TECHN, V15, P331, DOI 10.1080/17543266.2022.2059577; Kwon E, 2023, DESIGN STUD, V88, DOI 10.1016/j.destud.2023.101202; Lee G, 2024, J RETAIL CONSUM SERV, V77, DOI 10.1016/j.jretconser.2023.103690; Liu V, 2023, DESIGNING INTERACTIVE SYSTEMS CONFERENCE, DIS 2023, P1955, DOI 10.1145/3563657.3596098; López-Caudana E, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14094931; Ma JJ, 2023, INT J FASH DES TECHN, V16, P164, DOI 10.1080/17543266.2022.2137249; Majid S., 2012, INT J CROSS DISCIPLI, V2, P1037, DOI [10.20533/ijcdse.2042.6364.2012.0147, DOI 10.20533/IJCDSE.2042.6364.2012.0147]; Modran HA, 2024, SUSTAINABILITY-BASEL, V16, DOI 10.3390/su16104068; Murray-Rust D, 2024, AI SOC, V39, P2891, DOI 10.1007/s00146-023-01794-y; Poláková M, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e18670; Prensky M., 2022, EMPOWERED!: Reframing Growing Up for a New Age; Richardson T, 2021, FASH THEORY, V25, P819, DOI 10.1080/1362704X.2019.1686245; Ritter BA, 2018, J MANAG EDUC, V42, P80, DOI 10.1177/1052562917703679; Schulz B., 2008, Journal of Language and Communication, P146, DOI 10.1016/0006-3207(93)90452-7; Schulz F. E., 2024, CIMODE 2023, advances in fashion and design research II, P302, DOI [10.1007/978-3-031-43937-727, DOI 10.1007/978-3-031-43937-727]; Shi Yang, 2023, Proceedings of the ACM on Human-Computer Interaction, DOI 10.1145/3610217; Snape P., 2017, Des. Technol. Educ, V22, pn3; Souleles N, 2017, DES J, V20, pS927, DOI 10.1080/14606925.2017.1353037; Succi C, 2020, STUD HIGH EDUC, V45, P1834, DOI 10.1080/03075079.2019.1585420; Sukacke V, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142113955; Sun L., 2018, Int. J. Fash. Des. Technol. Educ, V11, P362, DOI [DOI 10.1080/17543266.2018.1448462, 10.1080/17543266.2018.1448462]; Tepe J, 2023, INT J FASH DES TECHN, V16, P37, DOI 10.1080/17543266.2022.2103591; Teunissen J., 2021, P 23 ANN INT FDN FAS, P10; Torres-Coronas T, 2011, INT J INF COMMUN TEC, V7, P60, DOI 10.4018/jicte.2011010106; Tran T.M., 2023, International Journal of TESOL and Education, V3, P64, DOI [10.54855/ijte.23315, DOI 10.54855/IJTE.23315]; Wilkerson B, 2021, THINK SKILLS CREAT, V42, DOI 10.1016/j.tsc.2021.100932; Zhang C, 2022, PROCEEDINGS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI' 22), DOI 10.1145/3491102.3501914 53 5 5 63 127 MDPI BASEL ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND 2071-1050 SUSTAINABILITY-BASEL Sustainability AUG 2024 16 16 6973 10.3390/su16166973 http://dx.doi.org/10.3390/su16166973 22 Green & Sustainable Science & Technology; Environmental Sciences; Environmental Studies Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) Science & Technology - Other Topics; Environmental Sciences & Ecology E7I1V gold 2025-08-15 WOS:001304696800001 J González-Rico, P; Sintes, ML Gonzalez-Rico, Pablo; Sintes, Mireia Lluch Empowering Soft Skills through Artificial Intelligence and Personalised Mentoring EDUCATION SCIENCES English Article educational technology; personalised tutoring; soft skills; artificial intelligence; higher education At present, the integration of technology into education has generated a significant change in the way students access knowledge and develop skills. The availability of digital tools and online platforms has democratised access to information, allowing students to learn from anywhere and at any time. This article focuses on how the combination of artificial intelligence digital tools, such as ChatGPT, with one-to-one tutoring affects the development of soft skills in higher education students. A total of 182 university students participated in the study, divided into two groups. One group was required to construct an academic topic autonomously using only ChatGPT. The other group used the ChatGPT tool in conjunction with personal tutoring, with the teacher present to expand knowledge and enrich learning. The findings suggest that a combination of technology and meaningful human interactions is necessary to optimise the educational experience. While digital tools can be beneficial in accessing knowledge and developing skills, it is essential to acknowledge the value of individual connections with teachers in fostering authentic and deep learning. Furthermore, the study considers the potential necessity to modify and refocus both teaching participation and the student assessment system. This would entail a shift away from an emphasis on the memorisation of theoretical knowledge and towards the training and development of soft skills, competences, values and social implications. [Gonzalez-Rico, Pablo] Univ San Pablo CEU, Business Management Dept, Madrid 28040, Spain; [Sintes, Mireia Lluch] Univ Valencia, Social Psychol Dept, Valencia 46010, Spain San Pablo CEU University; University of Valencia González-Rico, P (corresponding author), Univ San Pablo CEU, Business Management Dept, Madrid 28040, Spain. pablo.gonzalezrico@ceu.es; lluchsin@alumni.uv.es Gonzalez Rico, Pablo/0000-0003-0498-0248 Agncia per a la Qualitat del Sistema Universitari de Catalunya, 2014, Empleabilidad y Competencias de Los Recin Titulados: La Opinin de Empresas e Instituciones; Anthonysamy L, 2021, EDUC INF TECHNOL, V26, P6881, DOI 10.1007/s10639-021-10518-y; Antonius F., 2023, International Journal of Humanities Education and Social Sciences, V3; Cardona M. A., 2023, Artificial Intelligence and the Future of Teaching and Learning: Insights and Recommendations; Crovetto A., 2023, Future Today, V4, P29, DOI [10.52749/fh.v4i1.6, DOI 10.52749/FH.V4I1.6]; Efendi M., 2023, J. Educ, V5, P16100, DOI [10.31004/joe.v5i4.2745, DOI 10.31004/JOE.V5I4.2745]; Elbanna S, 2024, Manag. Sustain. Arab Rev, V3, P16, DOI DOI 10.1108/MSAR-03-2023-0016; European Commission. Joint Research Centre, 2022, DigComp 2.2, The Digital Competence framework for citizens: with new examples of knowledge, skills and attitudes; Pascagaza EF, 2020, ACAD VIRTUALIDAD, V13, P103, DOI 10.18359/ravi.4724; Garbizo Flores Noraida, 2020, Rev. estud. exp. educ., V19, P151, DOI 10.21703/rexe.20201940garbizo8; Garcia M.R., 2017, RICSH Revista Iberoamericana de las Ciencias Sociales y Humanisticas, V6, DOI DOI 10.23913/RICSH.V6I12.135; Härkki T, 2021, TEACH TEACH EDUC, V97, DOI 10.1016/j.tate.2020.103188; Martnez A., 2021, Rev. Cubana Edu. Superior, V40; Musicco G., 2018, Rev. Univ. Eur, V29, P115; Naranjo A., 2020, Form. Educ. Poltica Altern. Interc. Soc, V9, P70, DOI [10.36260/rbr.v9i1.893, DOI 10.36260/RBR.V9I1.893]; Orero M., 2023, IX Congreso de Innovacin Educativa y Docencia en Red, DOI [10.4995/INRED2023.2023.16703, DOI 10.4995/INRED2023.2023.16703]; Prensky M., 2001, On the Horizon, V9, P3, DOI [DOI 10.1108/10748120110424816, 10.1108/10748120110424843, DOI 10.1108/10748120110424843]; Quiroz-Alban A. T., 2021, Polo del Conocimiento, V6, P156; Martínez AR, 2019, REV ESP ORIENTAC PSI, V30, P102, DOI 10.5944/REOP.VOL.30.NUM.3.2019.26275; Carrión VLR, 2022, REV GEST PERSONAS TE, V15, P20, DOI 10.35588/gpt.v15i43.5464; Ruiz-Velasco E., 2023, Artificial Intelligence for the Transformation of Education; Snchez O.M., 2018, Rev. Cientfica ECOCIENCIA, V5, P1, DOI [10.21855/ecociencia.50.144, DOI 10.21855/ECOCIENCIA.50.144]; Synekop O., 2024, International Journal of Interactive Mobile Technologies, V18, P129, DOI 10.3991/ijim.v18i03.45025; Troncoso M., 2023, Est. del Desar. Soc, V11; Tuomi I., 2018, IMPACT ARTIFICIAL IN, DOI [DOI 10.2760/12297URL:HTTPS://PUBLICATIONS.JRC.EC.EUROPA.EU/REPOSITORY/HANDLE/JRC113226, 10.2760/337593, 10.2760/12297, DOI 10.2760/12297]; Vargas Javier D., 2021, Form. Univ., V14, P77; Velasco Aragn I.J., 2023, CISA, V5, P116, DOI [10.58299/cisa.v5i5.58, DOI 10.58299/CISA.V5I5.58]; Yin JQ, 2021, J EDUC COMPUT RES, V59, P154, DOI 10.1177/0735633120952067; Yu H, 2023, FRONT PSYCHOL, V14, DOI 10.3389/fpsyg.2023.1181712; Briones MAZ, 2022, REV CONRADO, V18, P172 30 3 3 14 37 MDPI BASEL ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND 2227-7102 EDUC SCI Educ. Sci. JUL 2024 14 7 699 10.3390/educsci14070699 http://dx.doi.org/10.3390/educsci14070699 11 Education & Educational Research Emerging Sources Citation Index (ESCI) Education & Educational Research ZT3V5 gold 2025-08-15 WOS:001277511500001 J Brin, D; Sorin, V; Vaid, A; Soroush, A; Glicksberg, BS; Charney, AW; Nadkarni, G; Klang, E Brin, Dana; Sorin, Vera; Vaid, Akhil; Soroush, Ali; Glicksberg, Benjamin S.; Charney, Alexander W.; Nadkarni, Girish; Klang, Eyal Comparing ChatGPT and GPT-4 performance in USMLE soft skill assessments SCIENTIFIC REPORTS English Article The United States Medical Licensing Examination (USMLE) has been a subject of performance study for artificial intelligence (AI) models. However, their performance on questions involving USMLE soft skills remains unexplored. This study aimed to evaluate ChatGPT and GPT-4 on USMLE questions involving communication skills, ethics, empathy, and professionalism. We used 80 USMLE-style questions involving soft skills, taken from the USMLE website and the AMBOSS question bank. A follow-up query was used to assess the models' consistency. The performance of the AI models was compared to that of previous AMBOSS users. GPT-4 outperformed ChatGPT, correctly answering 90% compared to ChatGPT's 62.5%. GPT-4 showed more confidence, not revising any responses, while ChatGPT modified its original answers 82.5% of the time. The performance of GPT-4 was higher than that of AMBOSS's past users. Both AI models, notably GPT-4, showed capacity for empathy, indicating AI's potential to meet the complex interpersonal, ethical, and professional demands intrinsic to the practice of medicine. [Brin, Dana; Sorin, Vera; Klang, Eyal] Chaim Sheba Med Ctr, Dept Diagnost Imaging, Ramat Gan, Israel; [Brin, Dana; Sorin, Vera; Klang, Eyal] Tel Aviv Univ, Fac Med, Tel Aviv, Israel; [Vaid, Akhil; Charney, Alexander W.] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, New York, NY USA; [Soroush, Ali] Icahn Sch Med Mt Sinai, Div Data Driven & Digital Med D3M, New York, NY USA; [Glicksberg, Benjamin S.] Icahn Sch Med Mt Sinai, Hasso Plattner Inst Digital Hlth, Nyc, NY USA; [Nadkarni, Girish] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, Div Data Driven & Digital Med D3M, New York, NY USA Chaim Sheba Medical Center; Tel Aviv University; Tel Aviv University; Icahn School of Medicine at Mount Sinai; Icahn School of Medicine at Mount Sinai; Icahn School of Medicine at Mount Sinai; Icahn School of Medicine at Mount Sinai Brin, D (corresponding author), Chaim Sheba Med Ctr, Dept Diagnost Imaging, Ramat Gan, Israel.; Brin, D (corresponding author), Tel Aviv Univ, Fac Med, Tel Aviv, Israel. dannabrin@gmail.com Brin, Dana/MVU-5184-2025; Glicksberg, Benjamin/I-9500-2019; Sorin, Vera/IAR-4247-2023; mirzaei, hamed/X-2374-2018; Soroush, Ali/O-5540-2016 Brin, Dana/0009-0003-7316-206X; Soroush, Ali/0000-0001-6900-5596; Sorin, Vera/0000-0003-0509-4686 Ayers JW, 2023, JAMA INTERN MED, V183, P589, DOI 10.1001/jamainternmed.2023.1838; Gilson A, 2023, JMIR MED EDUC, V9, DOI 10.2196/45312; Howley LD, 2021, ACAD MED, V96, P1247, DOI 10.1097/ACM.0000000000004217; Jiang LY, 2023, NATURE, V619, P357, DOI 10.1038/s41586-023-06160-y; John JT, 2023, TEACH LEARN MED, V35, P218, DOI 10.1080/10401334.2022.2039154; Kung TH, 2023, PLOS DIGIT HEALTH, V2, DOI 10.1371/journal.pdig.0000198; Li R, 2023, JAMA INTERN MED, V183, P596, DOI 10.1001/jamainternmed.2023.1835; Liebrenz M, 2023, LANCET DIGIT HEALTH, V5, pE105, DOI 10.1016/S2589-7500(23)00019-5; Mladenovic J, 2023, ACAD MED, V98, P444, DOI 10.1097/ACM.0000000000005051; Nazario-Johnson L, 2023, J AM COLL RADIOL, V20, P1004, DOI 10.1016/j.jacr.2023.06.008; Nori H, 2023, Arxiv, DOI [arXiv:2303.13375, DOI 10.48550/ARXIV.2303.13375]; Sharma Akshita, 2019, J Grad Med Educ, V11, P412, DOI 10.4300/JGME-D-19-00099.1; Sorin V, 2023, NPJ BREAST CANCER, V9, DOI 10.1038/s41523-023-00557-8; Sorin V, 2023, J CANCER RES CLIN, V149, P9505, DOI 10.1007/s00432-023-04824-w; usmle, Work to relaunch USMLE Step. 2 CS discontinued; usmle, USMLE Physician Tasks/Competencies|USMLE; Yudkowsky R, 2021, ACAD MED, V96, P1250, DOI 10.1097/ACM.0000000000004209 17 153 155 14 60 NATURE PORTFOLIO BERLIN HEIDELBERGER PLATZ 3, BERLIN, 14197, GERMANY 2045-2322 SCI REP-UK Sci Rep OCT 1 2023 13 1 16492 10.1038/s41598-023-43436-9 http://dx.doi.org/10.1038/s41598-023-43436-9 5 Multidisciplinary Sciences Science Citation Index Expanded (SCI-EXPANDED) Science & Technology - Other Topics U4ER9 37779171 gold, Green Published 2025-08-15 WOS:001084350000002 J Wijaya, TT; Yu, QC; Cao, YM; He, YH; Leung, FKS Wijaya, Tommy Tanu; Yu, Qingchun; Cao, Yiming; He, Yahan; Leung, Frederick K. S. Latent Profile Analysis of AI Literacy and Trust in Mathematics Teachers and Their Relations with AI Dependency and 21st-Century Skills BEHAVIORAL SCIENCES English Article ChatGPT; AI tools; latent profile analysis; dependency; 21st-century skills STUDENTS; TECHNOLOGY Artificial Intelligence (AI) technology, particularly generative AI, has positively impacted education by enhancing mathematics instruction with personalized learning experiences and improved data analysis. Nonetheless, variations in AI literacy, trust in AI, and dependency on these technologies among mathematics teachers can significantly influence their development of 21st-century skills such as self-confidence, problem-solving, critical thinking, creative thinking, and collaboration. This study aims to identify distinct profiles of AI literacy, trust, and dependency among mathematics teachers and examines how these profiles correlate with variations in the aforementioned skills. Using a cross-sectional research design, the study collected data from 489 mathematics teachers in China. A robust three-step latent profile analysis method was utilized to analyze the data. The research revealed five distinct profiles of AI literacy and trust among the teachers: (1) Basic AI Engagement; (2) Developing AI Literacy, Skeptical of AI; (3) Balanced AI Competence; (4) Advanced AI Integration; and (5) AI Expertise and Confidence. The study found that an increase in AI literacy and trust directly correlates with an increase in AI dependency and a decrease in skills such as self-confidence, problem-solving, critical thinking, creative thinking, and collaboration. The findings underscore the need for careful integration of AI technologies in educational settings. Excessive reliance on AI can lead to detrimental dependencies, which may hinder the development of essential 21st-century skills. The study contributes to the existing literature by providing empirical evidence on the impact of AI literacy and trust on the professional development of mathematics teachers. It also offers practical implications for educational policymakers and institutions to consider balanced approaches to AI integration, ensuring that AI enhances rather than replaces the critical thinking and problem-solving capacities of educators. [Wijaya, Tommy Tanu; Yu, Qingchun; Cao, Yiming] Beijing Normal Univ, Sch Math Sci, Beijing 100088, Peoples R China; [Wijaya, Tommy Tanu; Yu, Qingchun; Cao, Yiming] Natl Res Inst Math Teaching Mat, Beijing 100190, Peoples R China; [He, Yahan] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China; [Leung, Frederick K. S.] Beijing Normal Univ, Coll Educ Future, Zhuhai 519087, Peoples R China Beijing Normal University; Capital Normal University; Beijing Normal University Wijaya, TT (corresponding author), Beijing Normal Univ, Sch Math Sci, Beijing 100088, Peoples R China.; Wijaya, TT (corresponding author), Natl Res Inst Math Teaching Mat, Beijing 100190, Peoples R China.; Leung, FKS (corresponding author), Beijing Normal Univ, Coll Educ Future, Zhuhai 519087, Peoples R China. 202139130001@mail.bnu.edu.cn; yuqc@bnu.edu.cn; caoym@bnu.edu.cn; b454@cnu.edu.cn; frederickleung@hku.hk ; Tanu Wijaya, Tommy/AAZ-4460-2020; Leung, Frederick Koon Shing/A-3166-2010; mo, fan/KHT-4787-2024; Cao, Yiming/D-3541-2013 YU, Qingchun/0000-0002-6619-689X; Tanu Wijaya, Tommy/0000-0001-6840-3875; Leung, Frederick Koon Shing/0000-0003-1725-3883; National Research Institute for Mathematics Teaching Materials; [2023GH-ZDA-JJ-Y-04] National Research Institute for Mathematics Teaching Materials; This research was funded by the National Research Institute for Mathematics Teaching Materials (2023GH-ZDA-JJ-Y-04). Abramowitz B, 2023, J RES TECHNOL EDUC, V55, P64, DOI 10.1080/15391523.2022.2119450; Acar IH, 2023, CURR PSYCHOL, V42, P28107, DOI 10.1007/s12144-022-03888-0; Ahmad SF, 2023, HUM SOC SCI COMMUN, V10, DOI 10.1057/s41599-023-01787-8; Alfaiz FS, 2020, J ADV ACAD, V31, P298, DOI 10.1177/1932202X20920572; Alonso-diaz S., 2024, Mind Soc, DOI [10.1007/s11299-024-00304-x, DOI 10.1007/S11299-024-00304-X]; [Anonymous], 469 Evan is four years younger than I am. He transferred directly from high school to the University of California and graduated with his BA a full year before I did. I asked him what factors he believed contributed to his relatively seamless academic success. The first thing he said was, "It was all the spoons full of fish oil that grandma gave us!" He was only half joking about this. As he continued explaining, I noticed several strong similarities, but more importantly, some distinguishing divergences. My brother stated that his success, like mine, was something our parents expected of us. There was always this underlying message that we must do well in school and attend university. Beyond their expectations, our parents made sure to guard us against unfair and unreasonable school staff who would otherwise have implemented decisions to hamstring our educational advancement. In kindergarten, for instance, my brother's teacher spoke to my parents about classifying him as developmentally disabled and placing him with those children. My parents were incensed at this suggestion and emphatically rejected the idea. My brother pinpoints his fifth-grade teacher as a major factor in his later success. Noticing that he was excelling as a student and outperforming his peers, she recommended him for GATE classes upon entry to middle school. My brother would spend his middle school years enjoying the benefits conferred by GATE. A pitfall that my brother avoided was having to contend with Mr. Puckett as his middle school vice principal. Puckett was no longer at the middle school and wouldn't be able to persecute my brother the way he had done to me. My parents then made the decision to enroll my brother in an expensive private school for two of his four high school years. As my brother explains, the quality of the instruction and education at the private school was no better than the public school. Rather, the benefits lay elsewhere. First, the student body at the private school were being groomed by their parents and the school for entry to four-year institutions. His peers were preoccupied with scoring well on the SAT. Conversations would revolve around the various test preparation classes and books, as well as techniques, and strategies that would help attain a high score. After taking the test, they would compare each other's scores. Students at the public school rarely, if ever, spoke about the SAT. Second, unlike the public school, the private school provided their students with generous access to well-resourced and informed counselors whose job it was to ensure access to four-year colleges and universities. Every student was assigned a counselor who was dedicated to carefully shepherding them towards this goal. My brother described the counseling services as a safety net, ensuring that no one would fall through the cracks. The idea that students were going to attend a 4-year institution was so ingrained in the school culture, that many didn't need the counselors. After all, parents weren't spending thousands of dollars a year in tuition to have their children stray away to community college. Part of the justification for the high tuition fees was the high rate of acceptance into colleges and universities. The high school published their impressive transfer statistics in pamphlets distributed to prospective students, and highlighted the successes of their alumni in their alumni magazine. My brother recalls students being given a handout to put into their college and university applications. The handout explained that their private school GPA might be lower than a public school GPA due to the competitive environment at the former. He saw this as nonsense, in part, because there was a mandatory religion class every semester in which students were guaranteed a freebie A. One class my brother remembers as being highly beneficial was word processing. It was a mandatory class during his freshman year that must be passed in order to continue to sophomore year. The public school offered a word processing class, but it was an elective. Finally, my brother was a competitive soccer player who played at the varsity level starting his sophomore year. He was sidelined his freshman year due to a ruptured kidney suffered during playoffs in eighth grade. He says his participation in sport built his confidence and gave him a sense of competency that transferred to his academics.; Aslan A, 2021, COMPUT EDUC, V171, DOI 10.1016/j.compedu.2021.104237; Athaluri SA, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.37432; Aytekin E, 2019, INT J MATH EDUC SCI, V50, P707, DOI 10.1080/0020739X.2018.1535097; Azriani N, 2019, J PHYS CONF SER, V1227, DOI 10.1088/1742-6596/1227/1/012033; Baillifard A, 2025, EDUC INF TECHNOL, V30, P297, DOI 10.1007/s10639-024-12888-5; Baran M., 2021, J. Turk. Sci. Educ, V18, P798, DOI DOI 10.36681/TUSED.2021.104; Bauer J, 2022, Methods for researching professional learning and development: challenges, applications and empirical illustrations, P243, DOI [DOI 10.1007/978-3-031-08518-5_11, DOI 10.1007/978-3-031-08518-511]; Beghetto R.A., 2010, The Cambridge handbook of creativity, DOI DOI 10.1017/CBO9780511763205.027; Benavides-Varela S, 2020, COMPUT EDUC, V157, DOI 10.1016/j.compedu.2020.103953; Brusilovsky P, 2024, INT J ARTIF INTELL E, V34, P122, DOI 10.1007/s40593-023-00356-z; Cai S, 2023, INTERACT LEARN ENVIR, V31, P5551, DOI 10.1080/10494820.2021.2012808; Carl M., 2023, Comput. Hum. Behav. Rep, V12, P100338, DOI [10.1016/j.chbr.2023.100338, DOI 10.1016/J.CHBR.2023.100338]; Celik I, 2023, COMPUT HUM BEHAV, V138, DOI 10.1016/j.chb.2022.107468; Chai CS, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8112089; Chen DY, 2024, ACTA PSYCHOL, V249, DOI 10.1016/j.actpsy.2024.104442; Chine DR, 2022, LECT NOTES COMPUT SC, V13355, P366, DOI 10.1007/978-3-031-11644-5_30; Chong LA, 2022, COMPUT HUM BEHAV, V127, DOI 10.1016/j.chb.2021.107018; Collins CM, 2019, MED SCI EDUC, V29, P1175, DOI 10.1007/s40670-019-00794-2; Dai Y., 2023, P 2023 INT C INT ED; Danday BA, 2019, J BALT SCI EDUC, V18, P692, DOI 10.33225/jbse/19.18.692; Darvishi A, 2024, COMPUT EDUC, V210, DOI 10.1016/j.compedu.2023.104967; Dégallier-Rochat S, 2022, FRONT ROBOT AI, V9, DOI 10.3389/frobt.2022.997386; Du H, 2024, HUM SOC SCI COMMUN, V11, DOI 10.1057/s41599-024-03101-6; Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642; Engelbrecht J, 2024, ZDM-MATH EDUC, V56, P281, DOI 10.1007/s11858-023-01530-2; Escalante J, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00425-2; Extance A, 2023, NATURE, V623, P474, DOI 10.1038/d41586-023-03507-3; Farazouli A, 2024, ASSESS EVAL HIGH EDU, V49, P363, DOI 10.1080/02602938.2023.2241676; Fatmawati A., 2018, PEDAGOGY J ENGLISH L, V6, P37, DOI [10.32332/pedagogy.v6i1.1111, DOI 10.32332/PEDAGOGY.V6I1.1111]; Fui-Hoon Nah F., 2023, Journal of Information Technology Case and Application Research, V25, P277, DOI [10.1080/15228053.2023.2233814, DOI 10.1080/15228053.2023.2233814]; Fujii A., 2009, IRAL, V47, P267, DOI DOI 10.1515/iral.2009.012; González-Pérez LI, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14031493; Groothuijsen S., 2024, Comput. Educ. Artif. Intell, V7, P100290, DOI [10.1016/j.caeai.2024.100290, DOI 10.1016/J.CAEAI.2024.100290]; Habib S., 2024, Journal of Creativity, V34, DOI DOI 10.1016/J.YJOC.2023.100072; Hadinugrahaningsih T, 2020, J PHYS CONF SER, V1440, DOI 10.1088/1742-6596/1440/1/012002; Haviz M., 2020, J. Turkish Sci. Educ, V17, P351, DOI [DOI 10.36681/TUSED.2020.32, 10.36681/tused.2020.32]; Hong J, 2025, EDUC INF TECHNOL, V30, P107, DOI 10.1007/s10639-024-12758-0; Hu J., 2024, P 2 INT C SOC PSYCH, V50, P213, DOI 10.54254/2753-7048/50/20240945; Iranzo N., 2011, Model-Centered Learning: Pathways to Mathematical Understanding Using GeoGebra, P91, DOI DOI 10.1007/978-94-6091-618-27; Jain KK, 2024, EDUC INF TECHNOL, V29, P17169, DOI 10.1007/s10639-024-12506-4; Joksimovic S., 2023, Comput. Educ.: Artif. Intell., V4, DOI [10.1016/j.caeai.2023.100138, DOI 10.1016/J.CAEAI.2023.100138]; Kamalov F, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su151612451; Karimi H., 2023, Creative Education, V14, P2405, DOI [10.4236/ce.2023.1412154, DOI 10.4236/CE.2023.1412154]; Kelley T.R., 2019, American Journal of Educational Research, V7, P583, DOI DOI 10.12691/EDUCATION-7-8-7; Kim J, 2024, EDUC INF TECHNOL, V29, P8693, DOI 10.1007/s10639-023-12109-5; Kong S.-C., 2024, Computers and Education: Artificial Intelligence, V6, P100214, DOI [DOI 10.1016/J.CAEAI.2023.100214, 10.1016/j.caeai.2024.100214]; Labadze L, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00426-1; Lee S, 2024, CURR PSYCHOL, V43, P18992, DOI 10.1007/s12144-024-05723-0; Liang Y., 2023, Frontiers in Humanities and Social Sciences, V3, P7, DOI DOI 10.54691/FHSS.V3I8.5531; Lin L, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.797786; Lintner T, 2024, NPJ SCI LEARN, V9, DOI 10.1038/s41539-024-00264-4; Liu CL, 2023, TEACH TEACH EDUC, V121, DOI 10.1016/j.tate.2022.103954; Liu Y., 2021, Artificial Intelligence, P891, DOI [10.53333/IJICC2013/15369, DOI 10.53333/IJICC2013/15369]; Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410; Long DR, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376727; Ma XY, 2023, TECHNOL SOC, V75, DOI 10.1016/j.techsoc.2023.102362; Mahbubah K, 2020, J PHYS CONF SER, V1655, DOI 10.1088/1742-6596/1655/1/012112; Mai DTT, 2024, FRONT EDUC, V9, DOI 10.3389/feduc.2024.1328769; Martin A.J., 2006, ASIA-PAC J TEACH EDU, V34, P73, DOI [10.1080/13598660500480100, DOI 10.1080/13598660500480100]; Matsuzaki T, 2018, AI COMMUN, V31, P251, DOI 10.3233/AIC-180762; Meng X., 2020, Comput. Educ. Artif. Intell, P124658; Metcalf KK, 1996, TEACH TEACH EDUC, V12, P271, DOI 10.1016/0742-051X(95)00037-K; Miao F., 2024, AI competency framework for teachers; National Council of Teachers of Mathematics (NCTM), 2000, Six Principles for School Mathematics; Nazaretsky T, 2022, LAK22 CONFERENCE PROCEEDINGS: THE TWELFTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, P56, DOI 10.1145/3506860.3506866; Ng DTK, 2023, ETR&D-EDUC TECH RES, V71, P137, DOI 10.1007/s11423-023-10203-6; Ning YM, 2024, SUSTAINABILITY-BASEL, V16, DOI 10.3390/su16030978; Nolan A, 2017, TEACH TEACH EDUC, V62, P10, DOI 10.1016/j.tate.2016.11.004; Olszewski B, 2020, COMPUT EDUC, V150, DOI 10.1016/j.compedu.2020.103849; Ouyang F., 2023, J. STEM Educ. Res., V6, P408, DOI [10.1007/s41979-023-00112-x.K, DOI 10.1007/S41979-023-00112-X.K]; Oyama T., 2022, Sustain. Anal. Model, V2, P100005, DOI [10.1016/j.samod.2022.100005, DOI 10.1016/J.SAMOD.2022.100005]; Pang D.C.G., 2021, P 8 INT C ED TECHN 2, P99; Pellegrino J.W., 2012, Education for life and work: Developing transferable knowledge and skills in the 21st century; Rapaka A, 2025, ENTERTAIN COMPUT, V52, DOI 10.1016/j.entcom.2024.100809; Rathod Dharmendrasinh G., 2023, FIRE '23: Proceedings of the 15th Annual Meeting of the Forum for Information Retrieval Evaluation, P115, DOI 10.1145/3632754.3632769; Ren LP, 2017, J KOREAN ACAD NURS, V47, P700, DOI 10.4040/jkan.2017.47.5.700; Rodrigues L, 2024, EDUC INF TECHNOL, V29, P11183, DOI 10.1007/s10639-023-12245-y; Ruan SRY, 2024, MACH LEARN, V113, P3023, DOI 10.1007/s10994-023-06423-9; Ruiz-Rojas LI, 2024, SUSTAINABILITY-BASEL, V16, DOI 10.3390/su16135367; Seo K, 2021, INT J EDUC TECHNOL H, V18, DOI 10.1186/s41239-021-00292-9; Serholt S, 2020, FRONT ROBOT AI, V7, DOI 10.3389/frobt.2020.00046; Sperling K, 2024, COMPUT EDUC OPEN, V6, DOI 10.1016/j.caeo.2024.100169; Stevens AF, 2023, J BIOMED INFORM, V148, DOI 10.1016/j.jbi.2023.104550; Suarsana IM, 2019, INT J INSTR, V12, P809, DOI 10.29333/iji.2019.12152a; Sun FY, 2024, BRIT J EDUC TECHNOL, V55, P2574, DOI 10.1111/bjet.13469; Tamborg AL, 2022, KUNSTL INTELL, V36, P73, DOI 10.1007/s13218-021-00753-3; Tan S., 2020, J. Educ, V2, P303; Teo T, 2021, COMPUT EDUC, V170, DOI 10.1016/j.compedu.2021.104223; Tsz D., 2021, Comput. Educ. Artif. Intell, V2, P100041, DOI [10.1016/j.caeai.2021.100041, DOI 10.1016/J.CAEAI.2021.100041]; Tzirides AO, 2024, COMPUT EDUC OPEN, V6, DOI 10.1016/j.caeo.2024.100184; UNESCO, 2024, AI competency framework for teachers; Upadyaya K, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.731929; Van Poucke M, 2024, COMPUT COMPOS, V73, DOI 10.1016/j.compcom.2024.102871; Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926; Walter Y, 2024, INT J EDUC TECHNOL H, V21, DOI 10.1186/s41239-024-00448-3; Wang H, 2024, INT J STEM EDUC, V11, DOI 10.1186/s40594-024-00499-y; Wang Lu, 2024, Chemosphere, V349, P141031, DOI 10.1016/j.chemosphere.2023.141031; Wang N, 2023, INT J ARTIF INTELL E, V33, P228, DOI 10.1007/s40593-023-00358-x; Wang YY, 2024, EDUC INF TECHNOL, V29, P4785, DOI 10.1007/s10639-023-12015-w; Wardat Y., 2023, Eurasia Journal of Mathematics, Science and Technology Education, V19, P1, DOI DOI 10.29333/EJMSTE/13272; Westphal A, 2024, TEACH TEACH EDUC, V150, DOI 10.1016/j.tate.2024.104718; Wijaya TT, 2025, EDUC INF TECHNOL, V30, P1387, DOI 10.1007/s10639-024-12837-2; Wijaya TT, 2021, INT J EMERG TECHNOL, V16, P212, DOI 10.3991/ijet.v16i13.21535; Wray E, 2022, TEACH TEACH EDUC, V117, DOI 10.1016/j.tate.2022.103800; Wu MJ, 2024, BMC MED EDUC, V24, DOI 10.1186/s12909-024-05627-4; Wu R, 2024, BRIT J EDUC TECHNOL, V55, DOI 10.1111/bjet.13334; Xia Y, 2023, SOFT COMPUT, DOI 10.1007/s00500-023-08093-0; Xiao YH, 2024, HELIYON, V10, DOI 10.1016/j.heliyon.2024.e37238; Xu WQ, 2022, INT J STEM EDUC, V9, DOI 10.1186/s40594-022-00377-5; Yan SX, 2021, ECNU REV EDUC, V4, P410, DOI 10.1177/2096531120944929; Yang K, 2024, LANG TEACH RES, DOI 10.1177/13621688241268891; Yang XR, 2021, ZDM-MATH EDUC, V53, P29, DOI 10.1007/s11858-020-01217-y; Yau KW, 2023, EDUC INF TECHNOL, V28, P1041, DOI 10.1007/s10639-022-11161-x; Yayuk E., 2020, European Journal of Education Research, V9, P1281, DOI DOI 10.12973/EU-JER.9.3.1281; Yim IHY, 2025, J COMPUT EDUC, V12, P93, DOI 10.1007/s40692-023-00304-9; Yong B, 2018, ADV INTELL SYST, V613, P362, DOI 10.1007/978-3-319-60744-3_39; Yu HJ, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14138184; Yu J., 2011, J. Ningbo Univ; Zhang CM, 2025, EDUC INF TECHNOL, V30, P2645, DOI 10.1007/s10639-024-12905-7; Zhang F, 2024, INT J ARTIF INTELL E, DOI 10.1007/s40593-024-00416-y; Zhang HL, 2025, INT J ARTIF INTELL E, V35, P398, DOI 10.1007/s40593-024-00398-x; Zhang L., 2020, Journal of Physics: Conference Series, V1663, DOI 10.1088/1742-6596/1663/1/012069; Zhang SA, 2024, INT J EDUC TECHNOL H, V21, DOI 10.1186/s41239-024-00467-0; Zhao LL, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142114549; Zhao Y., 2010, P 2010 INT C MULT TE; Zong MY, 2023, MACH LEARN APPL, V14, DOI 10.1016/j.mlwa.2023.100506 132 15 15 163 213 MDPI BASEL MDPI AG, Grosspeteranlage 5, CH-4052 BASEL, SWITZERLAND 2076-328X BEHAV SCI-BASEL Behav. Sci. NOV 2024 14 11 1008 10.3390/bs14111008 http://dx.doi.org/10.3390/bs14111008 25 Psychology, Multidisciplinary Social Science Citation Index (SSCI) Psychology N4G1M 39594308 gold 2025-08-15 WOS:001363933800001 J Borkovska, I; Kolosova, H; Kozubska, I; Antonenko, I Borkovska, Inna; Kolosova, Hanna; Kozubska, Iryna; Antonenko, Inna Integration of AI into the Distance Learning Environment: Enhancing Soft Skills ARAB WORLD ENGLISH JOURNAL English Article Artificial intelligence; distance education; English for Specific Purposes; ChatGPT; higher education; smart technologies; soft skills ARTIFICIAL-INTELLIGENCE; ONLINE EDUCATION Soft skills have become increasingly essential for success in the modern world, especially in the labor market, where employers value employees' social and communication skills. Online education, which is an integral part of the educational process in Ukraine, is adjusting to the development of students' soft skills. Integrating artificial intelligence tools into English language learning is becoming a new direction in soft skills development. This approach opens up new teaching strategies that make learning more effective, engaging, and innovative. While learning English, students develop communication, creativity, and critical thinking skills, which contribute to their educational process and prepare the foundation for employment. The study aims to 1) evaluate the impact of artificial intelligence on the development of students' soft skills in online learning; 2) identify the most essential soft skills for their effective learning and future employment based on a student survey; 3) develop criteria for an online course using artificial intelligence and outline strategies for integrating the ChatGPT tool into distance learning English classes. To achieve the objectives of our study, we developed and processed a questionnaire, collected quantitative data, and analyzed and interpreted qualitative data; the study sample included 304 students. The questionnaire results showed a generally positive attitude of students towards using artificial intelligence in English for Specific Purposes courses. They opened up prospects for introducing an online course in the English for Specific Purposes program and further research, including an experiment with the introduction of this online course. [Borkovska, Inna; Kolosova, Hanna; Kozubska, Iryna; Antonenko, Inna] Natl Tech Univ Ukraine Igor Sikorsky Kyiv Polytech, Fac Linguist, Dept English Language Humanities, Kiev, Ukraine Kozubska, I (corresponding author), Natl Tech Univ Ukraine Igor Sikorsky Kyiv Polytech, Fac Linguist, Dept English Language Humanities, Kiev, Ukraine. Borkovskaya@meta.ua; plakydanna@gmail.com; kozubskair@gmail.com; discussion17@ukr.net Kozubska, Iryna/I-7012-2017; Borkovska, Inna/IUM-2316-2023; Antonenko, Inna/KEJ-3961-2024; Kolosova, Hanna/GYU-1372-2022 Kolosova, Anna/0000-0003-4224-0371; Ali M., 2020, Business Information Review, V37, P116, DOI [10.1177/0266382120952016, DOI 10.1177/0266382120952016]; Almeida F, 2023, J EDUC-US, V203, P103, DOI 10.1177/00220574211016417; Baidoo-Anu D., 2023, Journal of AI, V7, P52, DOI [DOI 10.61969/JAI.1337500, 10.2139/ssrn.4337484, DOI 10.2139/SSRN.4337484, 10.61969/jai.1337500]; Caeiro-Rodríguez M, 2021, IEEE ACCESS, V9, P29222, DOI 10.1109/ACCESS.2021.3059516; Chaka C, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.824976; Edwards BI, 2018, APPL ARTIF INTELL, V32, P345, DOI 10.1080/08839514.2018.1464286; Fitria T. N., 2021, ELT Echo: The Journal of English Language Teaching in Foreign Language Context, V6, P213, DOI DOI 10.24235/ELTECHO.V6I2.9299; Fitria TN., 2021, Metathesis: Journal of English Language, Literature, and Teaching, V5, P65, DOI DOI 10.31002/METATHESIS.V5I1.3519; Gubareva R, 2020, PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED EDUCATION (CSEDU), VOL 1, P97, DOI 10.5220/0009417600970103; Hamdan M. K. K. H., 2022, International Journal of Social Learning (IJSL), V2, P235; Hui-Wen Huang, 2020, ICDEL 2020: Proceedings of the 5th International Conference on Distance Education and Learning, P122, DOI 10.1145/3402569.3402594; Humble N., 2022, Discover Artificial Intelligence, V2, P22, DOI DOI 10.1007/S44163-022-00039-Z; Marin-Zapata SI, 2022, REV MANAG SCI, V16, P969, DOI 10.1007/s11846-021-00474-9; Javaid M., 2023, opportunities through ChatGPT tool towards ameliorating the education, V3, DOI DOI 10.1016/J.TBENCH.2023.100115; Kansal AK, 2021, INFECT DIS REP, V13, P418, DOI 10.3390/idr13020040; Kelly A., 2023, Generative artificial intelligence: University student awareness, experience, and confidence in use across disciplines; Kirmizi O., 2022, AELTE 2022 21 CENT C, P422; Liu Kexin, 2020, 2020 International Conference on Artificial Intelligence and Education (ICAIE), P108, DOI 10.1109/ICAIE50891.2020.00032; Lyu WJ, 2021, APPL ENERG, V300, DOI 10.1016/j.apenergy.2021.117307; Nwachukwu D., 2023, International Academy Journal of Management, Marketing and Entrepreneurial Studies, V9, P44; Osetskyi V, 2020, FINANC CREDIT ACT, V2, P574; Otermans P.C.J., 2023, Journal of Teaching and Learning for Graduate Employability, V14, P151, DOI [10.21153/jtlge2023vol14no1art1665, DOI 10.21153/JTLGE2023VOL14NO1ART1665]; Ivanec TP, 2022, SOC SCI-BASEL, V11, DOI 10.3390/socsci11020042; Qadir J., 2022, 2023 IEEE GLOB ENG E; Ragusa A, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph191710699; Romanishyn I. M., 2023, Academic Visions, V24; Russell Stuart J., 2010, Artificial Intelligence: A Modern Approach; Schmidt T., 2022, Anglistik: International Journal of English Studies, V33, P165; Schultheiss T, 2023, IND RELAT, V62, P257, DOI 10.1111/irel.12325; Schulz B., 2008, The importance of soft skills: Education beyond academic knowledge, DOI 10.1016/0006-3207(93)90452-7; Sharma U., 2021, Impact of AI technologies on teaching, learning, and research in higher education, P222; Singh S., 2022, Lex Scholasticus Journal of Law And SocioEconomic Issues, V1; Su H, 2020, EDUC MEAS-ISSUES PRA, V39, P37, DOI 10.1111/emip.12369; Sun AN, 2016, J INF TECHNOL EDUC-R, V15, P157; Thornhill-Miller B, 2023, J INTELL-BASEL, V11, DOI 10.3390/jintelligence11030054 35 3 3 31 65 ARAB WORLD ENGLISH JOURNAL KUALA LUMPUR JALAN 34-24 WANGSA MAJU, KUALA LUMPUR, 53300, MALAYSIA 2229-9327 ARAB WORLD ENGL J Arab World Engl. J. APR 2024 SI 56 72 10.24093/awej/ChatGPT.3 http://dx.doi.org/10.24093/awej/ChatGPT.3 17 Language & Linguistics Emerging Sources Citation Index (ESCI) Linguistics TZ3Y7 Green Submitted 2025-08-15 WOS:001245053900004 J Cardon, P; Fleischmann, C; Logemann, M; Heidewald, J; Aritz, J; Swartz, S Cardon, Peter; Fleischmann, Carolin; Logemann, Minna; Heidewald, Jeanette; Aritz, Jolanta; Swartz, Stephanie Competencies Needed by Business Professionals in the AI Age: Character and Communication Lead the Way BUSINESS AND PROFESSIONAL COMMUNICATION QUARTERLY English Article artificial intelligence; generative AI; AI-mediated communication; business education; soft skills SOFT SKILLS; INTELLIGENCE; LEADERSHIP Many experts project generative AI will impact the types of competencies that are valued among working professionals. This is the first known academic study to explore the views of business practitioners about the impacts of generative AI on skill sets. This survey of 692 business practitioners showed that business practitioners widely use generative AI, with the most common uses involving research and ideation, drafting of business messages and reports, and summarizing and revising text. Business practitioners report that character-based traits such as integrity and soft skills will become more important. Implications for teaching business communication are discussed. [Cardon, Peter; Aritz, Jolanta] Univ Southern Calif, Los Angeles, CA USA; [Fleischmann, Carolin] Rosenheim Tech Univ Appl Sci, Rosenheim, Germany; [Logemann, Minna] Baruch Coll, New York, NY USA; [Heidewald, Jeanette] Indiana Univ, Bloomington, IN USA; [Swartz, Stephanie] Hsch Mainz, Mainz, Germany; [Cardon, Peter] Univ Southern Calif, 3225 W Mossey Creek Ln, South Jordan, UT 84095 USA University of Southern California; City University of New York (CUNY) System; Baruch College (CUNY); Indiana University System; Indiana University Bloomington; University of Southern California Cardon, P (corresponding author), Univ Southern Calif, 3225 W Mossey Creek Ln, South Jordan, UT 84095 USA. cardon@marshall.usc.edu ; Heidewald, Jeanette/JRX-9144-2023; Cardon, Peter/MIN-0877-2025 Cardon, Peter/0000-0002-4574-4439; Fleischmann, Carolin/0009-0001-5475-994X Anthony S, 2016, BUS PROF COMMUN Q, V79, P360, DOI 10.1177/2329490616642247; Beauchene V., 2023, BCG; Biro M.M., 2012, Forbes; Cardon P, 2023, BUS PROF COMMUN Q, V86, P257, DOI 10.1177/23294906231176517; Cardon PW, 2023, INT J BUS COMMUN, V60, P1095, DOI 10.1177/23294884211037009; Cardon Peter W., 2023, arXiv, DOI [10.31235/osf.io/b3ezy, DOI 10.31235/OSF.IO/B3EZY]; Chowdhury S., 2023, AACSB; Chui M., 2023, The Economic Potential of Generative AI; Davenport T. H., 2022, Harvard Business Review; De Vynck G., 2023, Wash. Post; DellAcqua F., 2023, Navigating the Jagged Technological Frontier: Field Experimental Evidence of the Effects of AI on Knowledge Worker Productivity and Quality; Dengel T., 2023, Fast Company; Di Battista A., 2023, Future of jobs reports 2023; Eapen TT, 2023, HARVARD BUS REV, V101, P55; Emig J., 1977, COLL COMPOS COMMUN, V28, P122, DOI [DOI 10.2307/356095, 10.2307/356095]; Estrada-Worthington R., 2017, Corporate recruiters survey report 2017; Eulerich M., 2023, SSRN Electronic Journal, DOI [10.2139/ssrn.4452175, DOI 10.2139/SSRN.4452175]; Fleischmann C., 2021, Acceptance of speech-to-text technology: Exploring language proficiency and psychological safety in global virtual teams, P411, DOI [10.24251/HICSS.2021.049, DOI 10.24251/HICSS.2021.049]; Getchell KM, 2022, BUS PROF COMMUN Q, V85, P7, DOI 10.1177/23294906221074311; Hancock JT, 2020, J COMPUT-MEDIAT COMM, V25, P89, DOI 10.1093/jcmc/zmz022; Hannah ST, 2011, LEADERSHIP QUART, V22, P979, DOI 10.1016/j.leaqua.2011.07.016; Hazenbush M., 2022, Corporate recruiters survey: 2022 summary report; Kiersch C, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2021.100573; Kissinger Henry., 2023, Wall Street Journal; Laker DR, 2011, HUM RESOUR DEV Q, V22, P111, DOI 10.1002/hrdq.20063; Manyika J., 2017, Jobs lost, jobs gained: Workforce transitions in a time of automation; Microsoft, 2023, Work trend index annual report: Will AI fix work?; Mollick E., 2023, One Useful Thing; Mollick E., 2022, Harvard Business Review; Moshiri F, 2020, BUS PROF COMMUN Q, V83, P469, DOI 10.1177/2329490620934043; Myers LL, 2005, BUS PROF COMMUN Q, V68, P44, DOI 10.1177/1080569904273753; NACE, 2021, NACE Journal; NACE, 2013, Professional competencies: For college and university services practitioners; Nerozzi T., 2023, Fox Business; Noy S, 2023, SCIENCE, V381, P187, DOI 10.1126/science.adh2586; Pichai S, 2023, An important next step on our ai journey; Piskorski M., 2023, Harvard Business Review; Quaquebeke NV, 2023, J LEADERSH ORG STUD, V30, P265, DOI 10.1177/15480518231181731; Quick JC, 2011, LEADERSHIP QUART, V22, P984, DOI 10.1016/j.leaqua.2011.07.017; Robles MM, 2012, BUS PROF COMMUN Q, V75, P453, DOI 10.1177/1080569912460400; Rogers E.M., 1962, Diffusion of innovations, V3rd, DOI DOI 10.1016/J.ENPOL.2017.03.064; Schechner S., 2023, The Wall Street Journal; Tamayo J., 2023, HARVARD BUS REV; Tanzi A., 2023, Bloomberg; Wright TA, 2011, LEADERSHIP QUART, V22, P975, DOI 10.1016/j.leaqua.2011.07.015; Zirar A, 2023, TECHNOVATION, V124, DOI 10.1016/j.technovation.2023.102747 46 11 11 10 67 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 2329-4906 2329-4922 BUS PROF COMMUN Q Bus. Prof. Commun. Q. JUN 2024 87 2 223 246 10.1177/23294906231208166 http://dx.doi.org/10.1177/23294906231208166 NOV 2023 24 Communication Emerging Sources Citation Index (ESCI) Communication RE1X8 2025-08-15 WOS:001100609100001 J Federiakin, D; Molerov, D; Zlatkin-Troitschanskaia, O; Maur, A Federiakin, Denis; Molerov, Dimitri; Zlatkin-Troitschanskaia, Olga; Maur, Andreas Prompt engineering as a new 21st century skill FRONTIERS IN EDUCATION English Article prompt engineering; artificial intelligence; 21st century skills; ChatGPT; digital skills; critical online reasoning; LLM APOPTOSIS Artificial Intelligence (AI) promises to revolutionize nearly every aspect of human learning. However, users have observed that the efficacy of AI assistants hinges crucially on the quality of the prompts supplied to them. A slight alteration in wording can make the difference between an assistant misinterpreting an instruction and exceeding expectations. The skill of precisely communicating the essence of a problem to an AI assistant is as crucial as the assistant itself. This paper aims to introduce Prompt Engineering (PE) as an emerging skill essential for personal and professional learning and development in the 21st century. We define PE as the skill of articulating a problem, its context, and the constraints of the desired solution to an AI assistant, ensuring a swift and accurate response. We show that no existing related frameworks on 21st skills and others cover PE to the extent that allows for its valid assessment and targeted promotion in school and university education. Thus, we propose a conceptual framework for this skill set including (1) comprehension of the basic prompt structure, (2) prompt literacy, (3) the method of prompting, and (4) critical online reasoning. We also discuss the implications and challenges for the assessment framework of this skill set and highlight current PE-related recommendations for researchers and educators. [Federiakin, Denis; Molerov, Dimitri; Zlatkin-Troitschanskaia, Olga; Maur, Andreas] Johannes Gutenberg Univ Mainz, Dept Business & Econ Educ, Mainz, Germany Johannes Gutenberg University of Mainz Federiakin, D (corresponding author), Johannes Gutenberg Univ Mainz, Dept Business & Econ Educ, Mainz, Germany. denis.federiakin@uni-mainz.de Zlatkin-Troitschanskaia, O./AAM-8286-2020; Federiakin, Denis/P-8505-2015 German Research Foundation [5404] German Research Foundation(German Research Foundation (DFG)) The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This research work was conducted in the context of the research Unit CORE (Critical Online Reasoning in Higher Education) funded, by the German Research Foundation (Funding number: 5404). Abbas M, 2024, INT J EDUC TECHNOL H, V21, DOI 10.1186/s41239-024-00444-7; Al-Samarraie H, 2018, THINK SKILLS CREAT, V27, P78, DOI 10.1016/j.tsc.2017.12.002; Alexander P.A., 2016, Journal of Educational Psychology, V108, P1140, DOI [https://doi.org/10.1037/edu0000110, DOI 10.1037/EDU0000110]; Alkaissi H, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35179; Anderson LW., 2001, A taxonomy for learning, teaching, and assessing: A revision of bloom's taxonomy of educational objectives, V3; [Anonymous], 2001, Knowing What Students Know: The Science and Design of Educational Assessment; [Anonymous], 2017, PISA 2015 Results (Volume III): Students' Well-Being, DOI DOI 10.1787/9789264273856-EN; BANDURA A, 1973, J PERS SOC PSYCHOL, V26, P122, DOI 10.1037/h0034205; Bertau MC, 2018, NEW IDEAS PSYCHOL, V49, P7, DOI 10.1016/j.newideapsych.2017.12.001; Björn PM, 2019, S AFR J CHILD EDUC, V9, DOI 10.4102/sajce.v9i1.716; Borenstein Jason, 2021, AI Ethics, V1, P61, DOI 10.1007/s43681-020-00002-7; Bragg Jonathan, 2021, ADV NEUR IN, V34; Brand-Gruwel S, 2009, COMPUT EDUC, V53, P1207, DOI 10.1016/j.compedu.2009.06.004; Brown TB, 2020, ADV NEUR IN, V33; Bsharat S. M., 2024, ARXIV, p2312.16171, DOI [10.48550/arXiv.2312.16171, DOI 10.48550/ARXIV.2312.16171]; Buolamwini J.A., 2017, THESIS MIT; Burstein J., 2024, Responsible AI standards; Busch K, 2023, LECT NOTES BUS INF P, V479, P3, DOI 10.1007/978-3-031-34241-7_1; Cain W, 2024, TECHTRENDS, V68, P47, DOI 10.1007/s11528-023-00896-0; Carnoy M, 2015, COMPARE, V45, P248, DOI 10.1080/03057925.2013.855002; Chen E., 2023, arXiv, P1, DOI [10.48550/arXiv.2305.01863, DOI 10.48550/ARXIV.2305.01863]; Chen L., 2024, Harvard Data Science Review, V6, P1, DOI DOI 10.1162/99608F92.5317DA47; Chinonso O. E., 2023, Global Academic Journal of Humanities and Social Sciences, V5, P33, DOI DOI 10.36348/GAJHSS.2023.V05I02.001; Chu Z., 2024, ArXiv, DOI [10.48550/arXiv.2309.15402, DOI 10.48550/ARXIV.2309.15402]; DAIR.AI, 2023, Elements of a prompt; Ding R., 2023, arXiv, P1, DOI [10.48550/arXiv.2311.04254, DOI 10.48550/ARXIV.2311.04254]; Dong Qingxiu, 2023, arXiv, DOI [10.48550/arXiv.2301.00234, DOI 10.48550/ARXIV.2301.00234]; Ekin S., 2023, PREPRINT, DOI [10.36227/techrxiv.22683919.v2, DOI 10.36227/TECHRXIV.22683919.V2]; Ercikan K., 2023, Innovating Assessments to Measure and Support Complex Skills, DOI DOI 10.1787/E5F3-341-EN; Foster N., 2023, Innovating Assessments to Measure and Support Complex Skills, DOI DOI 10.1787/E5F3-341-EN; Foster N., 2023, Innovating assessments to measure and support complex skills, P98, DOI DOI 10.1787/E5F3E341-EN; Gattupalli S., 2023, Educational Technology & Society, DOI [10.7275/3498-wx48, DOI 10.7275/3498-WX48]; Gentner D., 2001, THE ANALOGICAL MIND; Giray L, 2023, ANN BIOMED ENG, V51, P2629, DOI 10.1007/s10439-023-03272-4; Goldman SR, 2018, INTERNATIONAL HANDBOOK OF THE LEARNING SCIENCES, P86; Google, 2024, Prompting Guide 101: A Quick-Start Handbook for Effective Prompts; Greer RD, 2006, INT J PSYCHOL, V41, P486, DOI 10.1080/00207590500492435; Gu J., 2023, arXiv, P1, DOI [10.48550/arXiv.2307.12980, DOI 10.48550/ARXIV.2307.12980]; Haladyna TM., 2013, Developing and validating test items, V1, DOI DOI 10.4324/9780203850381; Hendijani R, 2016, HUM PERFORM, V29, P251, DOI 10.1080/08959285.2016.1157595; Hornberger M., 2023, Computers and Education: Artificial Intelligence, V5, DOI DOI 10.1016/J.CAEAI.2023.100165; Hosseini Mohammad, 2023, medRxiv, DOI 10.1101/2023.03.31.23287979; Hu S., 2024, arXiv, P1, DOI [10.48550/arXiv.2405.03734, DOI 10.48550/ARXIV.2405.03734]; Hu X., 2023, Innovating assessments to measure and support complex skills, P173; Hulbert D., 2023, Using tree-of-thought prompting to boost ChatGPT's reasoning; Hwang Y, 2023, Arxiv, DOI [arXiv:2311.05373, 10.48550/arXiv.2311.05373, DOI 10.48550/ARXIV.2311.05373]; Ivanovs A., 2023, Users are turning to reinforcement prompts to fix ChatGPT laziness; Jahn D., 2018, The digital turn in higher education: International perspectives on learning and teaching in a changing world, P81; Jiang F., 2024, arXiv, P1, DOI [10.48550/arXiv.2402.11753, DOI 10.48550/ARXIV.2402.11753]; Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2; Kaarakainen MT, 2018, UNIVERSAL ACCESS INF, V17, P349, DOI 10.1007/s10209-017-0553-9; Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274; Kim S., 2024, arXiv, P1, DOI [10.48550/arXiv.2405.01535, DOI 10.48550/ARXIV.2405.01535]; Knoth N., 2024, Computers and Education: Artificial Intelligence, V6, P1, DOI [DOI 10.1016/J.CAEAI.2024.100225, 10.1016/j.caeai.2024.100225]; Knoth N, 2024, COMPUT EDUC OPEN, V6, DOI 10.1016/j.caeo.2024.100177; Kojima T, 2022, ADV NEUR IN; Koltay T, 2011, MEDIA CULT SOC, V33, P211, DOI 10.1177/0163443710393382; Krupp L., 2023, ARXIV, DOI DOI 10.48550/ARXIV.2309.03087; Kuratov Y, 2024, Arxiv, DOI arXiv:2402.10790; LaFlair G., 2023, Advancing natural language processing in educational assessment, P107; List A, 2019, EDUC PSYCHOL-US, V54, P20, DOI 10.1080/00461520.2018.1505514; Liu VV, 2022, PROCEEDINGS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI' 22), DOI 10.1145/3491102.3501825; Lo L., 2023, Internet Reference Services Quarterly, V27, P203, DOI [10.1080/10875301.2023.2227621, DOI 10.1080/10875301.2023.2227621, https://doi.org/10.1080/10875301.2023.2227621]; Lo LS, 2023, J ACAD LIBR, V49, DOI 10.1016/j.acalib.2023.102720; Long J., 2023, arXiv, P1, DOI [10.48550/arXiv.2305.08291, DOI 10.48550/ARXIV.2305.08291]; Lottridge S., 2023, Advancing Natural Language Processing in Educational Assessment, P15, DOI 10.4324/9781003278658-3; Maharjan J, 2024, SCI REP-UK, V14, DOI 10.1038/s41598-024-64827-6; Min S., 2022, Working paper, P1, DOI [10.48550/arXiv.2202.12837, DOI 10.48550/ARXIV.2202.12837]; Mislevy RJ., 2006, Educational Measurement: Issues and Practice, V25, P6, DOI DOI 10.1111/J.1745-3992.2006.00075.X; Mitra A., 2023, arXiv, P1, DOI [10.48550/arXiv.2311.11045, DOI 10.48550/ARXIV.2311.11045]; Mohr G., 2023, bersicht zu Chat-GPT im Kontext Hochschullehre; Molerov D., 2020, Assessing University Students' Critical Online Reasoning Ability: A Conceptual and Assessment Framework With Preliminary Evidence, V5, P1102, DOI [10.3389/feduc.2020.577843, DOI 10.3389/FEDUC.2020.577843]; Morton J., 2024, Using prompt engineering to better communicate with people; Mosbach M., 2023, arXiv, P1, DOI [10.48550/arXiv.2305.16938, DOI 10.48550/ARXIV.2305.16938]; Mukherjee S, 2023, ARXIV, DOI DOI 10.48550/ARXIV.2306.02707; Nagel MT, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.914857; Nagel MT, 2020, FRONT EDUC, V5, DOI 10.3389/feduc.2020.565062; Nori H., 2023, PREPRINT, DOI DOI 10.48550/ARXIV.2311.16452; OECD, 2023, PISA 2025 learning in the digital world framework (second draft); Oppenlaender J, 2024, BEHAV INFORM TECHNOL, V43, P3763, DOI 10.1080/0144929X.2023.2286532; Pellegrino J. W., 2023, Innovating assessments to measure and support complex skills, P15; Piacentini M., 2023, Innovating assessments to measure and support complex skills, P45; Prokop M, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20102750; Reid M., 2024, arXiv:2403.05530, P1, DOI [10.48550/arXiv.2403.05530, DOI 10.48550/ARXIV.2403.05530]; Ridnik T., 2024, ARXIV, DOI DOI 10.48550/ARXIV.2401.08500; Roll I., 2023, Innovating assessments to measure and support complex skills, P159; Sabatini J., 2023, Innovating assessments to measure and support complex skills, P131; Sahoo P., 2024, arXiv preprint arXiv:2402.07927, P1, DOI [10.48550/arXiv.2402.07927, DOI 10.48550/ARXIV.2402.07927]; Schmidt S, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.576273; Semnani S., 2023, arXiv, P1, DOI [10.48550/arXiv.2305.14292, DOI 10.48550/ARXIV.2305.14292]; Shah C., 2024, arXiv, P1, DOI [10.48550/arXiv.2401.04122, DOI 10.48550/ARXIV.2401.04122]; Shavelson RJ, 2019, INT J TEST, V19, P337, DOI 10.1080/15305058.2018.1543309; Sparks J.R., 2016, ETS RES REPORTS SERI, V2016, P1, DOI DOI 10.1002/ETS2.12118; Surowiecki James, 2005, WISDOM CROWDS WHY MA; Vaswani A, 2023, Arxiv, DOI [arXiv:1706.03762, 10.48550/arXiv.1706.03762, DOI 10.48550/ARXIV.1706.03762]; Walter Y, 2024, INT J EDUC TECHNOL H, V21, DOI 10.1186/s41239-024-00448-3; Wang BC, 2023, BEHAV INFORM TECHNOL, V42, P1324, DOI 10.1080/0144929X.2022.2072768; Wang J., 2023, ARXIV, DOI DOI 10.48550/ARXIV.2304.14670; Wang X., 2023, 11 INT C LEARN REPR, DOI DOI 10.48550/ARXIV.2203.11171; Wang X., 2023, arXiv, P1, DOI [10.48550/arXiv.2309.03409, DOI 10.48550/ARXIV.2309.03409]; Wang Z. J., 2024, ARXIV, DOI DOI 10.48550/ARXIV.2401.14447; Weber P., 2023, PACIS 2023 P, V60; Wei JS, 2022, ADV NEUR IN; White J., 2023, ARXIV, DOI [DOI 10.48550/ARXIV.2302.11382, 10.48550/arxiv.2302.11382]; Wineburg S, 2022, J EDUC PSYCHOL, V114, P893, DOI 10.1037/edu0000740; Yao SY, 2023, ADV NEUR IN; Yao Y., 2023, arXiv, P1, DOI [10.48550/arXiv.2305.16582, DOI 10.48550/ARXIV.2305.16582]; Yu Z., 2024, arXiv, P1, DOI [10.48550/arXiv.2403.17336, DOI 10.48550/ARXIV.2403.17336]; Zhang P., 2024, arXiv, P1, DOI [10.48550/arXiv.2404.19553, DOI 10.48550/ARXIV.2404.19553]; Zhou A., 2024, arXiv, P1, DOI [10.48550/arXiv.2401.17263, DOI 10.48550/ARXIV.2401.17263]; Zhou Y., 2023, ARXIV, DOI DOI 10.48550/ARXIV.2211.01910; Zhu Y., 2024, arXiv, P1, DOI [10.48550/arXiv.2401.02330, DOI 10.48550/ARXIV.2401.02330]; Zlatkin-Troitschanskaia O, 2021, STUD HIGH EDUC, V46, P1996, DOI 10.1080/03075079.2021.1953336 113 7 7 29 41 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 2504-284X FRONT EDUC Front. Educ. NOV 29 2024 9 1366434 10.3389/feduc.2024.1366434 http://dx.doi.org/10.3389/feduc.2024.1366434 14 Education & Educational Research Emerging Sources Citation Index (ESCI) Education & Educational Research P2E2B gold 2025-08-15 WOS:001376100500001 J Mirón-Mérida, VA; García-García, RM Miron-Merida, Vicente Antonio; Garcia-Garcia, Rebeca Maria Developing written communication skills in engineers in Spanish: is ChatGPT a tool or a hindrance? FRONTIERS IN EDUCATION English Article AI; critical thinking; written communication; engineering; soft skills; higher education EMPLOYABILITY SKILLS As 2023 became a disruptive year, due to the accelerated appearance of AI tools such as ChatGPT, the educational systems started to change and adapt to the new approaches observed in students, teachers, and employers. Although AI is likely to be integrated into different industrial and academic processes, its indiscriminate use could hinder the development of soft skills, including oral and written communication. Hence, it is important to identify any AI-generated assignments to secure a successful learning process. For those reasons, in this work, the effectivity of three plagiarism checkers, namely Turnitin, Unicheck and GPTZero, was evaluated on an engineering-based written text generated in ChatGPT in the Spanish language. A comparison with the plagiarism rate obtained for an original piece was conducted with One-way ANOVA. In all the cases, based on the low plagiarism rates (Unicheck: 14.44%, Turnitin: 12.43%), no plagiarism was detected in the AI-generated texts. Likewise, the GPTZero platform detected low AI-Origin in the texts created in ChatGPT (1.04%). Both results denoted the low efficiency of these platforms for assignments in Spanish and the high risk of conducting plagiarism without implications. Additionally, different alternatives were proposed for either integrating ChatGPT in learning activities or replacing the use of AI to ensure the development of skills and competencies in the students. [Miron-Merida, Vicente Antonio; Garcia-Garcia, Rebeca Maria] Tecnol Monterrey, Sch Engn & Sci, Monterrey, Mexico Tecnologico de Monterrey Mirón-Mérida, VA; García-García, RM (corresponding author), Tecnol Monterrey, Sch Engn & Sci, Monterrey, Mexico. vicente.miron.m@tec.mx; rebeca.garcia.garcia@tec.mx Writing Lab, Institute for the Future of Education, Tecnologico de Monterrey, Mexico Writing Lab, Institute for the Future of Education, Tecnologico de Monterrey, Mexico We thank the students from the TA2006B course for its collaboration and interest on providing the studied material; in the same way, we acknowledge the partial financial support of Writing Lab, Institute for the Future of Education, Tecnologico de Monterrey, Mexico, in the preparation of this manuscript. Adeshola I, 2024, INTERACT LEARN ENVIR, V32, P6159, DOI 10.1080/10494820.2023.2253858; Akdur D, 2023, ACM T COMPUT EDUC, V23, DOI 10.1145/3567837; Pérez JA, 2021, IEEE GLOB ENG EDUC C, P322, DOI 10.1109/EDUCON46332.2021.9453888; Bharadiya JP., 2023, European Journal of Technology, V7, P15, DOI [10.47672/ejt.1488, DOI 10.47672/EJT.1488]; Bogost I., 2022, ChatGPT is dumber than you think; Broo DG, 2022, J IND INF INTEGR, V25, DOI 10.1016/j.jii.2021.100311; Castelló ML, 2023, EDUC CHEM ENG, V42, P33, DOI 10.1016/j.ece.2022.11.003; Chandere V, 2021, Ann Rom Soc Cell Biol, P7110; Dalalah D, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100822; de Campos D., 2020, Creat. Educ, V11, P1504, DOI DOI 10.4236/CE.2020.118109; Ballell TRD, 2019, UNIV LAW REV, V24, P302, DOI 10.1093/ulr/unz018; Diego Olite F. M., 2023, Educ. Md. Superior, V37; Eke D.O., 2023, J. Responsible Technol, V13, P100060, DOI [DOI 10.1016/J.JRT.2023.100060, 10.1016/j.jrt.2023.100060, 10.1016/J.JRT.2023.100060]; Elkhatat AM, 2021, INT J EDUC INTEGR, V17, DOI 10.1007/s40979-021-00082-w; García-Peñalvo FJ, 2023, EDUC KNOWL SOC, V24, DOI 10.14201/eks.31279; Gordon C., 2022, Will 2023 be the Year That openAIs ChatGPT Breaks Free? Forbes; Grassini S, 2023, EDUC SCI, V13, DOI 10.3390/educsci13070692; Habibzadeh F, 2023, J KOREAN MED SCI, V38, DOI 10.3346/jkms.2023.38.e319; Harvard University, Guidelines for Using ChatGPT and Other Generative AI tools at Harvard; Hendriksen C, 2023, J SUPPLY CHAIN MANAG, V59, P65, DOI 10.1111/jscm.12304; Heumann M., 2023, 20 9 AMERICAS C INFO, DOI 10.2139/ssrn.4467646; Hirudayaraj M, 2021, EDUC SCI, V11, DOI 10.3390/educsci11100641; Jackson D, 2014, J EDUC WORK, V27, P220, DOI 10.1080/13639080.2012.718750; Kangas-Olson G., 2023, Managing Plagiarism and Artificial Intelligence in a High School Classroom; Lingard L, 2023, PERSPECT MED EDUC, V12, P261, DOI 10.5334/pme.1072; Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410; Mendona J., 2020, Proceedings of the 12th International Conference on Education and New Learning Technologies, P8518; Muthmainnah, 2022, EDUC RES INT, V2022, DOI 10.1155/2022/6468995; OpenAI, 2024, About us; Pavaloaia VD, 2023, ELECTRONICS-SWITZ, V12, DOI 10.3390/electronics12051102; Pires P. B., 2023, Confronting Security and Privacy Challenges in Digital Marketing; Rahman MM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13095783; Reedy AK, 2020, EDUC CHEM ENG, V33, P91, DOI 10.1016/j.ece.2020.09.002; Rooses K., 2022, The Brilliance and Weirdness of ChatGPT. The New York Times; Shidiq M., 2023, P INT C ED SOC HUM T, V1, P353; Tecnolgico de Monterrey, 2023, Tec de Monterrey Recomienda a su Comunidad Uso Inteligente de ChatGPT. Conecta; Zhang LX, 2025, BEHAV INFORM TECHNOL, V44, P491, DOI 10.1080/0144929X.2024.2325023 37 1 1 5 7 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 2504-284X FRONT EDUC Front. Educ. DEC 16 2024 9 1416152 10.3389/feduc.2024.1416152 http://dx.doi.org/10.3389/feduc.2024.1416152 9 Education & Educational Research Emerging Sources Citation Index (ESCI) Education & Educational Research Q6E3U gold 2025-08-15 WOS:001385583700001 J Yildiz, TA Yildiz, Tugba Aydin Exploring the Impact of ChatGPT on Improving 21st-Century Skills for Future English Teachers During Lesson Planning COMPUTERS IN THE SCHOOLS English Article; Early Access ChatGPT; lesson plan; 21st century skills; teacher education Recognizing its potential impact on educational practices, this study aims to explore the impact of ChatGPT-aided lesson planning (LP) on enhancing 21st-century skills (4Cs: critical thinking, creativity, collaboration, and communication) among pre-service English teachers (PSTs). Utilizing a qualitative case study design, the research involved two PSTs conducting internships at different high schools. The study was conducted in two stages: the first focused on identifying PSTs' needs and providing structured instructional training on ChatGPT use, LP preparation, and 4 C skills; the second evaluated the impact through weekly discussions, reflection reports, observations, and semi-structured interviews. Thematic content analysis, aided by MAXQDA 2020, revealed that ChatGPT significantly enhanced critical thinking by aiding in problem-solving and evaluating multiple perspectives. Creativity was also fostered through innovative teaching strategies, communication was seen by helping articulate ideas and facilitate discussions, and collaboration was supported by enhancing idea-sharing and brainstorming sessions. [Yildiz, Tugba Aydin] Zonguldak Bulent Ecevit Univ, Egitim Fakult, TR-67500 Kdz Eregli, Turkiye Zonguldak Bulent Ecevit University Yildiz, TA (corresponding author), Zonguldak Bulent Ecevit Univ, Egitim Fakult, TR-67500 Kdz Eregli, Turkiye. tugbaaydinyildiz5@gmail.com ahin H., 2020, The Reading Matrix: An International Online Journal, V20, P167; Ananiadou K., 2009, OECD Education Working Papers, DOI DOI 10.1787/218525261154; Biletska I.O., 2021, Linguist. Cult. Rev, V5, P16, DOI [10.21744/lingcure.v5nS2.1327, DOI 10.21744/LINGCURE.V5NS2.1327]; Brandl K., 2002, LANGUAGE LEARNING TE, V6, P87; Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA]; Bümen NT, 2007, INT REV EDUC, V53, P439, DOI 10.1007/s11159-007-9052-1; Chalkiadaki A, 2018, INT J INSTR, V11, P1, DOI 10.12973/iji.2018.1131a; Chapelle C. A., 2003, Language Learning & Language Teaching, V1, P1; Chen LJ, 2020, IEEE ACCESS, V8, P75264, DOI 10.1109/ACCESS.2020.2988510; Chinonso O. E., 2023, Global Academic Journal of Humanities and Social Sciences, V5, P33, DOI DOI 10.36348/GAJHSS.2023.V05I02.001; Chu SKW, 2017, 21ST CENTURY SKILLS DEVELOPMENT THROUGH INQUIRY-BASED LEARNING: FROM THEORY TO PRACTICE, P1, DOI 10.1007/978-981-10-2481-8; Corbin R. A., 2023, Community colleges as incubators of innovation: Unleashing entrepreneurial opportunities for communities and students; Creswell JW, 2007, COUNS PSYCHOL, V35, P236, DOI 10.1177/0011000006287390; DAndrea W., 2011, Psychological Assessment, V23, P679, DOI [https://doi.org/10.1037/a0024014, DOI 10.1037/A0024014]; Dilzhan B., 2024, Teaching English and artificial intelligence: EFL teachers' perceptions and use of ChatGPT; Dörner D, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.01153; Finley S. L., 2023, Cultivating critical discourse in the classroom; González-Pérez LI, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14031493; Greenstein L. M., 2012, ERIC, V1; Guo Y, 2023, J CHEM EDUC, V100, P4876, DOI 10.1021/acs.jchemed.3c00505; Huang Jiamiao., 2023, International Journal of Education and Social Science Research, V6, P75, DOI [10.37500/IJESSR.2023.6406, DOI 10.37500/IJESSR.2023.6406]; Javaid M., 2023, opportunities through ChatGPT tool towards ameliorating the education, V3, DOI DOI 10.1016/J.TBENCH.2023.100115; Karakose T, 2023, Ed Process Int J, V12, P7, DOI [10.22521/edupij.2023.123.1, DOI 10.22521/EDUPIJ.2023.123.1]; Koraishi O., 2023, Language Education and Technology, V3, P55; Kortemeyer G, 2023, PHYS REV PHYS EDUC R, V19, DOI 10.1103/PhysRevPhysEducRes.19.010132; Lee HY, 2024, INT J EDUC TECHNOL H, V21, DOI 10.1186/s41239-024-00447-4; Lestari I. W., 2022, INT C SUST INN HUM E; Liu Y, 2024, IEEE INT CONF ASAP, P71, DOI [10.1109/ASAP61560.2024.00025, 10.1007/978-981-97-1983-9_7]; Luciana N. L. R., 2020, Jurnal Pendidikan Dan Pengajaran, V53, P168, DOI [https://doi.org/10.23887/jpp.v53i2.26406, DOI 10.23887/JPP.V53I2.26406]; Meniado JC, 2023, ARAB WORLD ENGL J, V14, P3, DOI 10.24093/awej/vol14no4.1; O'Neal LJ, 2017, COMPUT SCH, V34, P192, DOI 10.1080/07380569.2017.1347443; Orak S. D., 2021, World Journal of English Language, V11, P166, DOI [https://doi.org/10.5430/wjel.v11n2p166, DOI 10.5430/WJEL.V11N2P166]; Paek S, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13147941; Peel K.L., 2020, Practical Assessment, Research, and Evaluation, V25, P1, DOI [https://doi.org/10.7275/ryr5-k983, 10.7275/ryr5-k983, DOI 10.7275/RYR5-K983]; Ratama I. P., 2021, Journal of Education Research and Evaluation, V5, P223, DOI [https://doi.org/10.23887/jere.v5i2.30849, DOI 10.23887/JERE.V5I2.30849]; Reed B., 2023, Guardian US; Rudolph J., 2023, J APPL LEARNING TEAC, V6, P342, DOI [10.37074/jalt.2023.6.1.9, DOI 10.37074/JALT.2023.6.1.9]; Saavedra AR, 2012, PHI DELTA KAPPAN, V94, P8, DOI 10.1177/003172171209400203; Santosa M H., 2022, Teaching English as a Second Language - Electronic Journal, V26, DOI [DOI 10.55593/EJ.26101A2, 10.55593/ej.26101a2]; Shidiq M., 2023, P INT C ED SOC HUM T, V1, P353; Snyder L., 2008, DELTA PI EPSILON J, V50, P90; Stahl NA, 2020, Journal of Developmental Education, V44, P26; Sudrajad W., 2024, EDUCATUM: Scientific Journal of Education, V2, P48, DOI [https://doi.org/10.59165/educatum.v2i2.65, DOI 10.59165/EDUCATUM.V2I2.65]; Sullivan M., 2023, Journal of Applied Learning Teaching, V6, P1, DOI DOI 10.37074/JALT.2023.6.1.17; Thornhill-Miller B, 2023, J INTELL-BASEL, V11, DOI 10.3390/jintelligence11030054; Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x; van den Berg G, 2023, EDUC SCI, V13, DOI 10.3390/educsci13100998; Walter Y, 2024, INT J EDUC TECHNOL H, V21, DOI 10.1186/s41239-024-00448-3; Wang L. Xu W. Lan Y. Hu Z. Lan Y. Lee R. K.-W. Lim E.-P., 2023, arXiv:2305.04091, V3, P1; Wannapiroon N, 2022, EDUC INF TECHNOL, V27, P5689, DOI 10.1007/s10639-021-10849-w; Woodward T., 2001, Planning lessons and courses: Designing sequences of work for the language classroom; Yesilcinar Sabahattin., 2022, Participatory Educational Research, V9, P315, DOI [10.17275/per.22.68.9.3, DOI 10.17275/PER.22.68.9.3]; Zacharia N.T., 2016, Indonesian JELT, V11, P101, DOI [DOI 10.25170/IJELT.V11I2.1492, https://doi.org/10.25170/ijelt.v11i2.1492]; Zhai XS, 2021, COMPLEXITY, V2021, DOI 10.1155/2021/8812542; Zhang RF, 2022, COMPUT ASSIST LANG L, V35, P696, DOI 10.1080/09588221.2020.1744666; Zhang Z, 2018, ASSESS WRIT, V36, P90, DOI 10.1016/j.asw.2018.02.004 56 0 0 11 13 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 0738-0569 1528-7033 COMPUT SCH Comput. Sch. 2024 NOV 14 2024 10.1080/07380569.2024.2429534 http://dx.doi.org/10.1080/07380569.2024.2429534 NOV 2024 24 Education & Educational Research Emerging Sources Citation Index (ESCI) Education & Educational Research P4N0W 2025-08-15 WOS:001377684300001 J Giordano, V; Spada, I; Chiarello, F; Fantoni, G Giordano, Vito; Spada, Irene; Chiarello, Filippo; Fantoni, Gualtiero The impact of ChatGPT on human skills: A quantitative study on twitter data TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE English Article ChatGPT; Generative Artificial Intelligence; Natural Language Processing; Skills; ESCO ARTIFICIAL-INTELLIGENCE; EMPLOYMENT; JOBS; EXTRACTION; FUTURE; TOPICS The novel generative Artificial Intelligence (AI) developed by OpenAI, i.e., ChatGPT, rised a great interest in both scientific and business contexts. This new wave of technological advancement typically produces deep transformation in the workplace, requiring new skills. However, none of the studies in literature provide quantitative analysis and measures on the impact of ChatGPT on human skills. To address this gap, we collected a database of 616,073 tweets about ChatGPT, and used Natural Language Processing techniques to identify the tasks users requested ChatGPT to perform, and the sentiment related to these tasks. Then, we compared these tasks with a standard taxonomy of skills (i.e., ESCO) using BERT. The results of the study underline that ChatGPT impacts 185 different skills. Moreover, we proposed a model to represent the interaction of the user and ChatGPT, useful to define four skills which are emerging for using this new technology. [Giordano, Vito; Chiarello, Filippo] Univ Pisa, Dept Energy Syst Terr & Construct Engn, Largo Lucio Lazzarino 2, I-56122 Pisa, Italy; [Spada, Irene; Fantoni, Gualtiero] Univ Pisa, Dept Civil & Ind Engn, Largo Lucio Lazzarino 2, I-56122 Pisa, Italy; [Giordano, Vito; Spada, Irene; Chiarello, Filippo; Fantoni, Gualtiero] Business Engn Data Sci B4DS Res Lab, Pisa, Italy University of Pisa; University of Pisa Giordano, V (corresponding author), Univ Pisa, Dept Energy Syst Terr & Construct Engn, Largo Lucio Lazzarino 2, I-56122 Pisa, Italy.; Giordano, V (corresponding author), Business Engn Data Sci B4DS Res Lab, Pisa, Italy. vito.giordano@unipi.it; irene.spada@phd.unipi.it; filippo.chiarello@unipi.it; gualtiero.fantoni@unipi.it Giordano, Vito/JWP-2098-2024; Fantoni, Gualtiero/GWZ-8445-2022 GIORDANO, VITO/0000-0002-8149-8124; PNRR-M4C2-Investimento 1.3, "FAIR-Future Artificial Intelligence Research"-Spoke 1 "Human-centered AI" - European Commission under the Nexteneration EU program [PE00000013]; PRA 2022-23 project - University of Pisa; CIMEA (Centro Informazioni Mobilita Equivalenze Accademiche) PNRR-M4C2-Investimento 1.3, "FAIR-Future Artificial Intelligence Research"-Spoke 1 "Human-centered AI" - European Commission under the Nexteneration EU program; PRA 2022-23 project - University of Pisa; CIMEA (Centro Informazioni Mobilita Equivalenze Accademiche) This research has been partly funded by PNRR-M4C2-Investimento 1.3, Partenariato Esteso PE00000013-"FAIR-Future Artificial Intelligence Research"-Spoke 1 "Human-centered AI", funded by the European Commission under the Nexteneration EU program and by PRA 2022-23 project "EduSkillMeter, a text mining -based tool to support universities & companies to be in line with SDGs", funded by University of Pisa. This research has been partly funded by CIMEA (Centro Informazioni Mobilita Equivalenze Accademiche) under the joitn agreeement "Joint Observatory CIMEA-UNIPI on higher edu skills and competences". Abadie A, 2024, TECHNOL FORECAST SOC, V201, DOI 10.1016/j.techfore.2023.123202; Acemoglu D, 2022, J LABOR ECON, V40, pS293, DOI 10.1086/718327; Acemoglu D, 2011, HBK ECON, V4, P1043, DOI 10.1016/S0169-7218(11)02410-5; Ågerfalk PJ, 2020, EUR J INFORM SYST, V29, P1, DOI 10.1080/0960085X.2020.1721947; Aguinis H, 2024, ORGAN DYN, V53, DOI 10.1016/j.orgdyn.2024.101029; [Anonymous], 2023, NATURE, V613, P612, DOI 10.1038/d41586-023-00191-1; [Anonymous], 2022, OECD Digital Economy Papers, DOI DOI 10.1787/CB6D9-CA-EN; Aristodemou L, 2018, WORLD PAT INF, V55, P37, DOI 10.1016/j.wpi.2018.07.002; Arts S, 2021, RES POLICY, V50, DOI 10.1016/j.respol.2020.104144; Autor DH, 2015, J ECON PERSPECT, V29, P3, DOI 10.1257/jep.29.3.3; Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012; Bhattacharya K, 2023, INDIAN J SURG, V85, P1346, DOI 10.1007/s12262-023-03727-x; Bockting CL, 2023, NATURE, V614, P224, DOI 10.1038/d41586-023-00288-7; Bouschery SG, 2023, J PROD INNOVAT MANAG, V40, P139, DOI 10.1111/jpim.12656; Budhwar P, 2023, HUM RESOUR MANAG J, V33, P606, DOI 10.1111/1748-8583.12524; Burnap P, 2015, TECHNOL FORECAST SOC, V95, P96, DOI 10.1016/j.techfore.2013.04.013; Calvino F., 2022, OECD Science, Technology and Industry Working Papers, V2022, DOI DOI 10.1787/154981D7-EN; Calvino F., 2023, OECD Science, Technology and Industry Working Papers, V2023, DOI DOI 10.1787/0FB79BB9-EN; Cascini G., 2007, International Journal of Product Development, V4, P52, DOI 10.1504/IJPD.2007.011533; Cascini G., 2011, DESIGN COMPUTING COG, P77, DOI [10.1007/978-94-007-0510-4_5, DOI 10.1007/978-94-007-0510-4_5]; Chiarello F, 2024, TECHNOVATION, V133, DOI 10.1016/j.technovation.2024.103002; Chiarello F, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121177; Chiarello F, 2018, WORLD PAT INF, V54, P28, DOI 10.1016/j.wpi.2018.07.006; Chiarello F, 2018, COMPUT IND, V100, P244, DOI 10.1016/j.compind.2018.04.006; Choi Y, 2021, NUCL ENG TECHNOL, V53, P866, DOI 10.1016/j.net.2020.08.010; Chuang SF, 2018, EUR J TRAIN DEV, V42, P400, DOI 10.1108/EJTD-03-2018-0030; Colombo E, 2019, INF ECON POLICY, V47, P27, DOI 10.1016/j.infoecopol.2019.05.003; Dang H, 2022, Arxiv, DOI [arXiv:2209.01390, 10.48550/arXiv.2209.01390, DOI 10.48550/ARXIV.2209.01390, 10.48550/arxiv.2209.01390]; Dernis H., 2023, OECD Science, Technology and Industry Working Papers, V2023, DOI DOI 10.1787/1F5307-7-EN; Devlin J, 2019, Arxiv, DOI [arXiv:1810.04805, DOI 10.48550/ARXIV.1810.04805]; Dowling M, 2023, FINANC RES LETT, V53, DOI 10.1016/j.frl.2023.103662; Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642; Elkins K., 2020, Journal of Cultural Analytics, V5, P1, DOI [DOI 10.22148/001C.17212, 10.22148/001c.17212]; Else H, 2023, NATURE, V613, P423, DOI 10.1038/d41586-023-00056-7; Fareri S., 2021, Expert Systems with Applications, V184, DOI [DOI 10.1016/J.ESWA.2021.115544, 10.1016/j.eswa.2021.115544]; Finnie-Ansley J, 2022, PROCEEDINGS OF THE 24TH AUSTRALASIAN COMPUTING EDUCATION CONFERENCE, ACE 2022, P10, DOI 10.1145/3511861.3511863; Floridi L, 2020, MIND MACH, V30, P681, DOI 10.1007/s11023-020-09548-1; Frey CB, 2017, TECHNOL FORECAST SOC, V114, P254, DOI 10.1016/j.techfore.2016.08.019; Frijns HA, 2023, INT J SOC ROBOT, V15, P473, DOI 10.1007/s12369-021-00785-7; Garbuio M, 2021, J PROD INNOVAT MANAG, V38, P701, DOI 10.1111/jpim.12602; Gero JS, 2004, DESIGN STUD, V25, P373, DOI 10.1016/j.destud.2003.10.010; Giordano V, 2023, IEEE T ENG MANAGE, V70, P1490, DOI 10.1109/TEM.2021.3078231; Gordijn B, 2023, MED HEALTH CARE PHIL, V26, P1, DOI 10.1007/s11019-023-10136-0; Haefner N, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120392; Haque M. U., 2022, arXiv; Hengstler M, 2016, TECHNOL FORECAST SOC, V105, P105, DOI 10.1016/j.techfore.2015.12.014; Hocky GM, 2022, DIGIT DISCOV, V1, P79, DOI 10.1039/d1dd00009h; Holzinger A, 2023, NEW BIOTECHNOL, V74, P16, DOI 10.1016/j.nbt.2023.02.001; Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459; Kacprzyk J, 2010, IEEE T FUZZY SYST, V18, P461, DOI 10.1109/TFUZZ.2010.2040480; Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004; Kayser V, 2017, TECHNOL FORECAST SOC, V116, P208, DOI 10.1016/j.techfore.2016.10.017; Kim D, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120448; Kim K, 2017, TECHNOL FORECAST SOC, V123, P362, DOI 10.1016/j.techfore.2017.01.001; Kohl C., 2018, Journal of Business Economics, V88, P617, DOI [DOI 10.1007/S11573-018-0897-5, 10.1007/s11573-018-0897-5]; Kshetri N, 2024, INT J INFORM MANAGE, V75, DOI 10.1016/j.ijinfomgt.2023.102716; Kumar N, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121284; Kumar S, 2024, TECHNOL FORECAST SOC, V201, DOI 10.1016/j.techfore.2024.123258; Lacasa ID, 2003, SCIENTOMETRICS, V57, P175, DOI 10.1023/A:1024133517484; Lee PL, 2023, J BUS PSYCHOL, V38, P163, DOI 10.1007/s10869-022-09864-6; Li X, 2022, TECHNOL FORECAST SOC, V184, DOI 10.1016/j.techfore.2022.122042; Li X, 2019, TECHNOL FORECAST SOC, V146, P687, DOI 10.1016/j.techfore.2018.06.004; Liu PF, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3560815; Locke E. A., 2013, New developments in goal setting and task performance, V24, P664; Locke EA, 2006, CURR DIR PSYCHOL SCI, V15, P265, DOI 10.1111/j.1467-8721.2006.00449.x; Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009; Mariani M, 2024, J BUS RES, V175, DOI 10.1016/j.jbusres.2024.114542; Mariani MM, 2023, TECHNOVATION, V122, DOI 10.1016/j.technovation.2022.102623; Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434; Mikolov T, 2013, Arxiv, DOI [arXiv:1301.3781, DOI 10.48550/ARXIV.1301.3781]; Montobbio F, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121122; Moravec V, 2024, TECHNOL FORECAST SOC, V200, DOI 10.1016/j.techfore.2023.123162; Nadeau D, 2007, LINGUIST INVESTIG, V30, P3; Nerdel C, 2023, ChatGPT for good? On opportunities and challenges of large language models for education. Chatgpt for good? On opportunities and challenges of large language models for education, P1, DOI DOI 10.35542/OSF.IO/5-R8F; OECD, 2019, OECD/LEGAL/0449; Oppenlaender Jonas, 2022, Academic Mindtrek 2022: 25th International Academic Mindtrek conference, P192, DOI 10.1145/3569219.3569352; Ouyang L, 2022, ADV NEUR IN; Ozcan S, 2021, TECHNOVATION, V107, DOI 10.1016/j.technovation.2021.102322; Pavlik J. V., 2023, JOURNALISM MASS COMM, V78, P84, DOI [DOI 10.1177/10776958221149577, 10.1177/10776958221149577]; Pennington J., 2014, C EMP METH NAT LANG, DOI DOI 10.3115/V1/D14-1162; Porter AL, 2019, TECHNOL FORECAST SOC, V146, P628, DOI 10.1016/j.techfore.2018.04.016; Puccetti G, 2023, TECHNOL FORECAST SOC, V186, DOI 10.1016/j.techfore.2022.122160; Puccio GJ, 2017, J CREATIVE BEHAV, V51, P330, DOI 10.1002/jocb.203; Qadir J., 2022, 2023 IEEE GLOB ENG E; Le Q, 2014, PR MACH LEARN RES, V32, P1188; Saura JR, 2023, TECHNOVATION, V119, DOI 10.1016/j.technovation.2021.102447; Ranaei S, 2020, SCIENTOMETRICS, V122, P215, DOI 10.1007/s11192-019-03275-w; Raschka S, 2020, INFORMATION, V11, DOI 10.3390/info11040193; Ravì D, 2017, IEEE J BIOMED HEALTH, V21, P4, DOI 10.1109/JBHI.2016.2636665; Reynolds L, 2021, EXTENDED ABSTRACTS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'21), DOI 10.1145/3411763.3451760; Rice S, 2024, TECHNOL SOC, V76, DOI 10.1016/j.techsoc.2023.102426; Rotolo D, 2015, RES POLICY, V44, P1827, DOI 10.1016/j.respol.2015.06.006; Rudolph J., 2023, J APPL LEARNING TEAC, V6, P342, DOI [10.37074/jalt.2023.6.1.9, DOI 10.37074/JALT.2023.6.1.9]; Russell Stuart J., 2010, Artificial Intelligence: A Modern Approach; Small H, 2014, RES POLICY, V43, P1450, DOI 10.1016/j.respol.2014.02.005; Stokel-Walker C, 2023, NATURE, V614, P214, DOI 10.1038/d41586-023-00340-6; Stokel-Walker C, 2023, NATURE, V613, P620, DOI 10.1038/d41586-023-00107-z; Stokel-Walker Chris, 2022, Nature, DOI 10.1038/d41586-022-04397-7; Susnjak T., 2022, arXiv, DOI 10.48550/arXiv.2212.09292; Susskind D., 2020, WORLD WORK TECHNOLOG; Taecharungroj V, 2023, BIG DATA COGN COMPUT, V7, DOI 10.3390/bdcc7010035; Talaei-Khoei A, 2024, TECHNOVATION, V132, DOI 10.1016/j.technovation.2024.102975; Thorp HH, 2023, SCIENCE, V379, P313, DOI 10.1126/science.adg7879; Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x; Tripathi A.K., 2016, Ubiquity, V2016, P1, DOI [10.1145/2903524, DOI 10.1145/2903524]; Trocin C, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121081; Truong Y, 2022, TECHNOL FORECAST SOC, V183, DOI 10.1016/j.techfore.2022.121852; Tsai RTH, 2006, BMC BIOINFORMATICS, V7, P1, DOI 10.1186/1471-2105-7-92; Van Roy V, 2018, RES POLICY, V47, P1762, DOI 10.1016/j.respol.2018.06.008; Wang S, 2023, Arxiv, DOI [arXiv:2302.03495, DOI 10.48550/ARXIV.2302.03495]; Webb M., 2020, The impact of artificial intelligence on the labor market, DOI [10.2139/ssrn.3482150, DOI 10.2139/SSRN.3482150]; Yamashita I., 2021, OECD Science, Technology and Industry Working Papers, V09, DOI [10.1787/7b43b038-en, DOI 10.1787/7B43B038-EN] 112 23 23 81 235 ELSEVIER SCIENCE INC NEW YORK STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA 0040-1625 1873-5509 TECHNOL FORECAST SOC Technol. Forecast. Soc. Chang. JUN 2024 203 123389 10.1016/j.techfore.2024.123389 http://dx.doi.org/10.1016/j.techfore.2024.123389 APR 2024 24 Business; Regional & Urban Planning Social Science Citation Index (SSCI) Business & Economics; Public Administration RL8L3 hybrid 2025-08-15 WOS:001227910200001 J Toncheva, M Toncheva, Michaela MNEMONICS - KNOWN AND UNKNOWN PEDAGOGIKA-PEDAGOGY English Article learning, mnemonics; creativity; memory; artificial intelligence; ChatGPT The given article deals with the issue of mnemonics, their types and their application in the learning process and daily activities. Examples in several languages and for different study subjects and areas are covered. Mnemonic techniques proposed by artificial intelligence are reviewed. The work presents the results of a survey among 301 participants aimed at revealing people's awareness of the possibilities of mnemonics and their propensity to use them. The idea that mnemonics in school should be considered from two sides - as a finished product on the one hand and as an author's realization on the other hand - has been revealed. Creating your own mnemonics involves high cognitive levels and important soft skills. [Toncheva, Michaela] Sofia Univ St Kliment Ohridski, Sofia, Bulgaria University of Sofia Toncheva, M (corresponding author), Sofia Univ, Sofia, Bulgaria. mihaela.s.toncheva@edu.mon.bg ASTVACATUROV A., 2009, Potential Magazine, V12, P79; bin Mohamed MZ, 2022, INT ELEC J MATH EDUC, V17, DOI 10.29333/iejme/12132; BUZAN T., 1996, Use Your Memory; Gruneberg M., 1973, ED RESOURCES, V15, P134, DOI DOI 10.1080/0013188730150209; IVANOVA-NEDELCHEVA A., 2016, MATTEX 2016-Shumen, P247; Karpicke JD, 2009, MEMORY, V17, P471, DOI 10.1080/09658210802647009; LYUBCHENKO V., 2022, The scientific heritage, V84, P39; McCabe JA, 2013, TEACH PSYCHOL, V40, P183, DOI 10.1177/0098628313487460; Mountstephens James, 2020, 2020 Sixth International Conference on e-Learning (econf), P271, DOI 10.1109/econf51404.2020.9385452; MURASHOV O., 2021, RMAT, V3, P80; PAUK B, 2013, How To Study In College; Pavlova NH, 2024, INT ELEC J MATH EDUC, V19, DOI 10.29333/iejme/14025; Soler MJ, 1996, APPL COGNITIVE PSYCH, V10, P41, DOI 10.1002/(SICI)1099-0720(199602)10:1<41::AID-ACP361>3.0.CO;2-1; Stalder DR, 2005, TEACH PSYCHOL, V32, P222, DOI 10.1207/s15328023top3204_3; TITLIN L., 1868, Electronic Philosophical Journal, V23; TSITSERON M, 1992, Orator; VanVoorhis CRW, 2002, TEACH PSYCHOL, V29, P249; Wardat Y., 2023, Eurasia Journal of Mathematics, Science and Technology Education, V19, P1, DOI DOI 10.29333/EJMSTE/13272; Yates FrancesAmelia., 1999, ART MEMORY 19 0 0 2 6 NATSIONALNO IZDATELSTVO AZ BUKI SOFIA BUL TSARIGRADSKO SHOSE, 125, BL 5, SOFIA, 1113, BULGARIA 0861-3982 1314-8540 PEDAGOGIKA Pedagogika 2024 96 2 S 42 55 10.53656/ped2024-2s.04 http://dx.doi.org/10.53656/ped2024-2s.04 14 Education & Educational Research Emerging Sources Citation Index (ESCI) Education & Educational Research SH8U6 2025-08-15 WOS:001233664000004 J Rivera, PR; León, AM Rivera, Paula Rodriguez; Leon, Ana Manzano Transversal competencies and artificial intelligence in higher education: perceptions and applications REDU-REVISTA DE DOCENCIA UNIVERSITARIA Spanish Article Artificial Intelligence (AI); Learning personalization; Ethics and privacy; Information and Communication Technologies (ICT); Transversal Skills; Learning Currently, artificial intelligence (AI) is beginning to integrate into higher education, demonstrating its ability to personalize and enrich learning processes. This study evaluates the impact of ChatGPT, an AI tool from OpenAI, on students' learning in the Social Education degree, focusing on the design and development of practical cases. Two main areas are investigated: the influence of ChatGPT on the acquisition of crosscutting skills essential for professional development and student perceptions of its use in learning. The study was conducted at the University of Vigo with 28 Social Education students during the 2023/2024 academic year, using a mixed- methods approach of quantitative and qualitative methods. Instruments included the Cross-Cutting Skills Assessment Questionnaire for Degrees (CECTGRA), a ChatGPT usage scale, an open-ended questionnaire, and an assessment rubric. Results showed significant improvements in the development of cross-cutting skills, mastery of these skills, and perceptions of the importance of these skills for professional growth. Most students positively evaluated ChatGPT, highlighting its convenience and accuracy. The educational possibilities of integrating ChatGPT into higher education are discussed, given its potential to enhance cross-cutting skills and enrich the educational experience. [Rivera, Paula Rodriguez] Univ Vigo, Vigo, Spain; [Leon, Ana Manzano] Univ Almeria, Almeria, Spain Universidade de Vigo; Universidad de Almeria Rivera, PR (corresponding author), Univ Vigo, Vigo, Spain. paula.rodriguez.rivera@uvigo.es; aml570@ual.es Manzano León, Ana/AAX-5249-2021; Rivera, Paula/MIO-9105-2025 Akiba D, 2023, EDUC SCI, V13, DOI 10.3390/educsci13090885; Bahroun Z, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su151712983; Brown L., 2023, Adapting Curriculum for Tomorrow's Technology: Tools for Educators; Cilesiz S, 2020, REV RES EDUC, V44, P332, DOI 10.3102/0091732X20907347; Crompton H, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00392-8; Darwin, 2024, COGENT EDUC, V11, P1, DOI [10.1080/2331186X.2023.2290342, DOI 10.1080/2331186X.2023.2290342]; Dong Y., 2023, J HIGHER ED RES, V4; Fontenelle-Tereshchuk D., 2024, Discov. Educ, V3, P6, DOI [10.1007/s44217-023-00076-5, DOI 10.1007/S44217-023-00076-5]; Garcia Sanchez O., 2023, RITI REV INVESTIGACI, V11, P98, DOI [10.36825/RITI.11.23.009, DOI 10.36825/RITI.11.23.009]; Gonzalez J., 2003, TUNING ED STRUCTURES; Kamalov F, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su151612451; Labadze L, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00426-1; Lai TH, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0283170; Libarkin Julie., 2002, J GEOSCIENCE ED, V50, P78, DOI [DOI 10.1080/10899995.2002.12028053, 10.1080/10899905.200212028053]; Martinez P., 2019, Bordon. Revista de Pedagogia, V71, P65; O'Dea XH, 2023, J UNIV TEACH LEARN P, V20; Onesi-Ozigagun O, 2024, Int. J. Appl. Res. Social Sci., V6, P589, DOI [10.51594/ijarss.v6i4.1011, DOI 10.51594/IJARSS.V6I4.1011]; Pisica AI, 2023, SOCIETIES, V13, DOI 10.3390/soc13050118; Romero M., 2024, Creative Applications of Artificial Intelligence in Education, DOI [10.1007/978-3-031-55272-4_10, DOI 10.1007/978-3-031-55272-4_10]; Saheb T, 2024, TELEMAT INFORM REP, V14, DOI 10.1016/j.teler.2024.100146; Tapalova O, 2022, ELECTRON J E-LEARN, V20, P639; Zeb A, 2024, INT J INF LEARN TECH, V41, P99, DOI 10.1108/IJILT-04-2023-0046 22 1 1 13 14 UNIV POLITECNICA VALENCIA, EDITORIAL UPV VALENCIA CAMINO VERA S-N, VALENCIA, 46022, SPAIN 1696-1412 1887-4592 REDU REDU JUL-DEC 2024 22 2 31 47 10.4995/redu.2024.22020 http://dx.doi.org/10.4995/redu.2024.22020 17 Education & Educational Research Emerging Sources Citation Index (ESCI) Education & Educational Research S0X4W gold 2025-08-15 WOS:001395561300003 J Cail, J Cail, Jessica Visualization of AI Accuracy: A Novel Assignment for the Teaching of Critical Thinking and Science Writing TEACHING OF PSYCHOLOGY English Article critical thinking; technology; writing; artificial intelligence; teaching Background Rapid changes brought on by generative artificial intelligence (AI) have emphasized the need to teach students to work with this technology while also developing the "robot proof" human skills future workers will need, such as creativity, communication, and critical thinking.Objective The study objective was to explore whether a fact-checking, generative-AI assignment, inserted between the outline, and first-draft stages of a student's literature review writing process, would relate to student classification, perceptions of AI accuracy, and future trust in AI-generated content.Method Students in upper and lower division psychology classes used AI to generate a literature review on their final paper topic, which they then fact-checked for accuracy and usefulness using a color-coded system.Results Lower division students expected more inaccuracy, highlighted less information as inaccurate, and reported greater future trust of AI-generated content than upper division students.Conclusion Students with more experience critically evaluating primary sources may be better equipped to detect inaccuracies within AI-generated content.Teaching Implications Teachers of any course requiring a literature review paper may use this assignment to encourage student use of AI with a critical eye toward recognizing where that content is incorrect. [Cail, Jessica] Pepperdine Univ, Dept Psychol, 24255 Pacific Coast Hwy, Malibu, CA 90263 USA Pepperdine University Cail, J (corresponding author), Pepperdine Univ, Dept Psychol, 24255 Pacific Coast Hwy, Malibu, CA 90263 USA. Jessica.cail@pepperdine.edu Cail, Jessica/JVN-0770-2024 Aoun JE, 2017, ROBOT-PROOF: HIGHER EDUCATION IN THE AGE OF ARTIFICIAL INTELLIGENCE, P1; Bearman M, 2023, HIGH EDUC, V86, P369, DOI 10.1007/s10734-022-00937-2; Benvenuti M, 2023, COMPUT HUM BEHAV, V148, DOI 10.1016/j.chb.2023.107903; Bitzenbauer P, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13176; Bogost I., 2022, ChatGPT is dumber than you think; Bowles DC, 2023, PEDAGOGY HEAL PROMOT, V9, P75, DOI 10.1177/23733799231175171; Cail J., 2024, AI LIT REV ASSIGNMEN; Carvalho L., 2022, Computers and Education: Artificial Intelligence, V3, DOI DOI 10.1016/J.CAEAI.2022.100053; Dumitru D, 2023, J INTELL-BASEL, V11, DOI 10.3390/jintelligence11100194; Fowler G, 2023, The washington post; Fyfe P, 2023, AI SOC, V38, P1395, DOI 10.1007/s00146-022-01397-z; Habibzadeh F, 2023, J KOREAN MED SCI, V38, DOI 10.3346/jkms.2023.38.e319; Imran M, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13605; Johnson G. P., 2023, Composition Studies, V51, P169; Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274; Markauskaite L., 2022, Computers and Education Artificial Intelligence, V3, DOI [DOI 10.1016/J.CAEAI.2022.100056, 10.1016/j.caeai]; Morgan Stanley, 2023, GENERATIVE AI COULD; Morgan Stanley, 2023, GENERATIVE AI IS SET; Naumova EN, 2023, J PUBLIC HEALTH POL, V44, P173, DOI 10.1057/s41271-023-00400-1; Office of Educational Technology, 2023, ART INT FUT TEACH LE; Rampersad G, 2020, J BUS RES, V116, P68, DOI 10.1016/j.jbusres.2020.05.019; Terry O. K., 2023, CHRON HIGHER EDUC, V69, P1; Thornhill-Miller B, 2023, J INTELL-BASEL, V11, DOI 10.3390/jintelligence11030054; UNESCO, 2023, Guidance for Generative AI in Education and Research 24 1 1 46 96 SAGE PUBLICATIONS LTD LONDON 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND 0098-6283 1532-8023 TEACH PSYCHOL Teach. Psychol. JUL 2025 52 3 SI 285 290 10.1177/00986283241289551 http://dx.doi.org/10.1177/00986283241289551 OCT 2024 6 Education & Educational Research; Psychology, Multidisciplinary Social Science Citation Index (SSCI) Education & Educational Research; Psychology 3BE8O 2025-08-15 WOS:001336171900001 J Monib, WK; Qazi, A; Apong, RA; Azizan, MT; De Silva, L; Yassin, H Monib, Wali Khan; Qazi, Atika; Apong, Rosyzie Anna; Azizan, Mohammad Tazli; De Silva, Liyanage; Yassin, Hayati Generative AI and future education: a review, theoretical validation, and authors' perspective on challenges and solutions PEERJ COMPUTER SCIENCE English Article Gen AI; ChatGPT; Education; Challenges; Solutions; Theory; Authors' perspective; UNESCO ETHICAL DECISION-MAKING; STUDENTS Generative AI (Gen AI), exemplified by ChatGPT, has witnessed a remarkable surge in popularity recently. This cutting-edge technology demonstrates an exceptional ability to produce human-like responses and engage in natural language conversations guided by context-appropriate prompts. However, its integration into education has become a subject of ongoing debate. This review examines the challenges of using Gen AI like ChatGPT in education and offers effective strategies. To retrieve relevant literature, a search of reputable databases was conducted, resulting in the inclusion of twenty-two publications. Using Atlas.ti, the analysis reflected six primary challenges with plagiarism as the most prevalent issue, closely followed by responsibility and accountability challenges. Concerns were also raised about privacy, data protection, safety, and security risks, as well as discrimination and bias. Additionally, there were challenges about the loss of soft skills and the risks of the digital divide. To address these challenges, a number of strategies were identified and subjected to critical evaluation to assess their practicality. Most of them were practical and align with the ethical and pedagogical theories. Within the prevalent concepts, " ChatGPT " emerged as the most frequent one, followed by " AI, " " student, " " research, " and " education, " highlighting a growing trend in educational discourse. Moreover, close collaboration was evident among the leading countries, all forming a single cluster, led by the United States. This comprehensive review provides implications, recommendations, and future prospects concerning the use of generative AI in education. [Monib, Wali Khan; Qazi, Atika; Azizan, Mohammad Tazli] Univ Brunei Darussalam, Ctr Lifelong Learning, Gadong, Brunei; [De Silva, Liyanage; Yassin, Hayati] Univ Brunei Darussalam, Sch Digital Sci, Gadong, Brunei; [De Silva, Liyanage; Yassin, Hayati] Univ Brunei Darussalam, Fac Integrated Technol, Gadong, Brunei University Brunei Darussalam; University Brunei Darussalam; University Brunei Darussalam Qazi, A (corresponding author), Univ Brunei Darussalam, Ctr Lifelong Learning, Gadong, Brunei. atika.qazi@ubd.edu.bn Qazi, Atika/D-9377-2016; Monib, Wali Khan/ACI-7149-2022 Monib, Wali Khan/0000-0002-9575-9305 Universiti Brunei Darussalam Universiti Brunei Darussalam Funding This work was supported by Universiti Brunei Darussalam. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Al-Qaraghuli M, 2024, JORDAN J COMPUT INFO, V10, P46; Alokla A, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10213967; Anshari M, 2023, AI SOC, V38, P707, DOI 10.1007/s00146-022-01471-6; Ary D., 2018, Cengage Learning; Banks S., 2015, International Encyclopedia of the Social Behavioral Sciences, V22, P782; Barrot JS, 2023, ASSESS WRIT, V57, DOI 10.1016/j.asw.2023.100745; Belagatti P, 2023, SingleStore; Bewersdorff A., 2023, Comput Educ, V4, P100143, DOI [DOI 10.1016/J.CAEAI.2023.100143, 10.1016/j.caeai.2023.100143]; Bom HSH, 2023, NUCL MED MOLEC IMAG, V57, P165, DOI 10.1007/s13139-023-00809-2; Bridgelall R, 2024, ARTIF INTELL REV, V57, DOI 10.1007/s10462-024-10720-7; Cardon P, 2023, BUS PROF COMMUN Q, V86, P257, DOI 10.1177/23294906231176517; Chan CKY, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00411-8; Chaudhry IS, 2023, COGENT EDUC, V10, DOI 10.1080/2331186X.2023.2210461; Chen YC, 2020, P ANN M ASS COMP LIN; Chomphooyod P, 2023, Comput Educ Artif Intell, V5, DOI [10.1016/j.caeai.2023.100158, DOI 10.1016/J.CAEAI.2023.100158]; Choudhary H., 2024, DEV LEARNING ORG, V38, P15, DOI [10.1108/DLO-02-2023-0038, DOI 10.1108/DLO-02-2023-0038]; Chowdhury T., 2020, Mental and behavioral health of immigrants in the United States, P179, DOI 10.1016/B978-0-12-816117-3.00009-9; Cohen JR, 2001, J BUS ETHICS, V30, P319, DOI 10.1023/A:1010745425675; Corbett F, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e03250; Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148; Currie GM, 2023, SEMIN NUCL MED, V53, P719, DOI 10.1053/j.semnuclmed.2023.04.008; Dalalah D, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100822; Dave T, 2023, FRONT ARTIF INTELL, V6, DOI 10.3389/frai.2023.1169595; Dexcom, 2023, Terms of use; Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642; Eke D.O., 2023, J. Responsible Technol, V13, P100060, DOI [DOI 10.1016/J.JRT.2023.100060, 10.1016/j.jrt.2023.100060, 10.1016/J.JRT.2023.100060]; Farazouli A, 2024, ASSESS EVAL HIGH EDU, V49, P363, DOI 10.1080/02602938.2023.2241676; Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846; Giannini S., 2023, Generative AI and the future of education; Griful-Freixenet J, 2020, EDUC RES REV-NETH, V29, DOI 10.1016/j.edurev.2019.100306; Hill K., 2020, All Ireland Journal of Higher Education, V12, P1, DOI DOI 10.1002/BJS.11808; Howell BE, 2023, TELECOMMUN POLICY, V47, DOI 10.1016/j.telpol.2023.102576; Jahankhani H., 2020, Strategy, leadership, and AI in the cyber ecosystem: the role of digital societies in information governance and decision making, DOI DOI 10.1016/B978; Jung IS, 2009, COMPUT EDUC, V53, P940, DOI 10.1016/j.compedu.2009.05.011; Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274; Kocon J, 2023, INFORM FUSION, V99, DOI 10.1016/j.inffus.2023.101861; Kooli C, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15075614; Kukla A., 2000, Social Constructivism and the Philosophy of Science; Lewis M, 2019, Arxiv, DOI arXiv:1910.13461; Liamputtong P., 2019, Handbook of research methods in health social sciences, P843, DOI 10.1007/978-981-10-5251-4_103; Liu Y, 2024, BMC MED INFORM DECIS, V24, DOI 10.1186/s12911-024-02481-8; Májovsky M, 2023, J MED INTERNET RES, V25, DOI 10.2196/46924; Masters K, 2023, MED TEACH, V45, P574, DOI 10.1080/0142159X.2023.2186203; McGowan A, 2023, PSYCHIAT RES, V326, DOI 10.1016/j.psychres.2023.115334; McGrath McGrath C. C., 2023, Computers and Education: Artificial Intelligence, V4 4, P100139, DOI [DOI 10.1016/J.CAEAI.2023.100139, 10.1016/j.caeai.2023.100139]; Moons P, 2024, EUR J CARDIOVASC NUR, V23, P122, DOI 10.1093/eurjcn/zvad087; Oralbekova D, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app132312901; Radanliev P, 2024, J EXP THEOR ARTIF IN, DOI 10.1080/0952813X.2024.2323042; Raffel C, 2020, J MACH LEARN RES, V21; Rannikmae M., 2020, Science Education in Theory and Practice: An Introductory Guide to Learning Theory, P259, DOI [DOI 10.1007/978-3-030-43620-9_18, DOI 10.1007/978-3-030-43620-0_18]; Rao DVY, 2023, INDIAN J OTOLARYNGOL, V75, P2638, DOI 10.1007/s12070-023-03755-9; Rasul T., 2023, Journal of Applied Learning and Teaching, V6, P41, DOI [DOI 10.37074/JALT.2023.6.1.29, 10.37074/JALT.2023.6.1.29, DOI 10.37074/JALT.2023.6]; Rettberg J, 2022, ChatGPT is multilingual but monocultural, and it's learning your values; Roberts K, 2019, BMC MED RES METHODOL, V19, DOI 10.1186/s12874-019-0707-y; Roumeliotis KI, 2023, FUTURE INTERNET, V15, DOI 10.3390/fi15060192; Runehov A LC., 2013, Encyclopedia of Sciences and Religions [Internet], DOI DOI 10.1007/978-1-4020-8265-8; Schneider P, 2022, Anomaly Detection and Complex Event Processing Over IoT Data Streams, P317, DOI [10.1016/B978-0-12-823818-9.00025-0, DOI 10.1016/B978-0-12-823818-9.00025-0, 10.1016/C2020-0-00589-X, DOI 10.1016/C2020-0-00589-X]; Sezgin E, 2022, JMIR MED INF, V10, DOI 10.2196/32875; Vadla MKS, 2024, ALGORITHMS, V17, DOI 10.3390/a17020059; Soto-Pérez M, 2022, J ACAD ETHICS, V20, P375, DOI 10.1007/s10805-021-09423-3; Stahl BC, 2024, INT J INFORM MANAGE, V74, DOI 10.1016/j.ijinfomgt.2023.102700; Stokel-Walker C, 2023, NATURE, V614, P214, DOI 10.1038/d41586-023-00340-6; Su JH, 2023, ECNU REV EDUC, V6, P355, DOI 10.1177/20965311231168423; Suen HY, 2023, COMPUT HUM BEHAV, V143, DOI 10.1016/j.chb.2023.107713; Sweeney S, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100818; Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x; Turk Z, 2018, EURAS STUD BUS ECON, V8, P245, DOI 10.1007/978-3-319-67913-6_17; UNESCO, 2023, UNESCO issues urgent call for appropriate use of technology in education; UNESCO, 2023, Foundation models such as ChatGPT through the prism of the UNESCO recommendation on the ethics of artificial intelligence; Vázquez-Cano E, 2023, THINK SKILLS CREAT, V49, DOI 10.1016/j.tsc.2023.101380; Venkataramana A, 2022, MYSURUCON 2022 2022; Viscu L, 2021, A Guide to Clinical Supervision, P39; Vygotsky L, 1962, THOUGHT LANGUAGE; Waraas A., 2022, Researching Values: Methodological Approaches for Understanding Values Work in Organisations and Leadership, P153, DOI [DOI 10.1007/978-3-030-90769-3, DOI 10.1007/978-3-030-90769-3_9]; World Health Organization, 2021, "Closing the Leadership Gap: Gender Equity and Leadership in the Global Health and Care Workforce."; Yildirim-Erbasli SN., 2023, COMPUTERS ED ARTIFIC, V4, P1, DOI DOI 10.1016/J.CAEAI.2023.100135; Yilmaz R., 2023, COMPUT ED ARTIF INTE, DOI [10.1016/j.caeai.2023.100147, DOI 10.1016/J.CAEAI.2023.100147] 77 0 0 33 50 PEERJ INC LONDON 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND 2376-5992 PEERJ COMPUT SCI PeerJ Comput. Sci. DEC 3 2024 10 e2105 10.7717/peerj-cs.2105 http://dx.doi.org/10.7717/peerj-cs.2105 32 Computer Science, Artificial Intelligence; Computer Science, Information Systems; Computer Science, Theory & Methods Science Citation Index Expanded (SCI-EXPANDED) Computer Science P0D3Q 39650462 gold 2025-08-15 WOS:001374721200005 J Dahri, NA; Yahaya, N; Al-Rahmi, WM Dahri, Nisar Ahmed; Yahaya, Noraffandy; Al-Rahmi, Waleed Mugahed Exploring the influence of ChatGPT on student academic success and career readiness EDUCATION AND INFORMATION TECHNOLOGIES English Article ChatGPT; Academic success; Career readiness; Cognitive skills; Personalized learning USER ACCEPTANCE; COLLEGE; ACHIEVEMENT; RELIABILITY; FRAMEWORK; EDUCATION; SYSTEMS; IMPACT Enhancing student academic success and career readiness is important in the rapidly evolving educational field. This study investigates the influence of ChatGPT, an AI tool, on these outcomes using the Stimulus-Organism-Response (SOR) theory and constructs from the Technology Acceptance Model (TAM). The aim is to explore how ChatGPT impacts cognitive skill development, career-relevant knowledge and skills, academic success, and career readiness. Employing a quantitative research approach, survey data from 290 students at University Teknologi Malaysia were analyzed using Structural Equation Modeling (SEM). Findings indicate that frequent ChatGPT usage positively affects cognitive skills and career-relevant knowledge. Specifically, high-quality ChatGPT outputs significantly enhance cognitive skills (beta = 0.40, p < 0.001) and career-relevant knowledge (beta = 0.36, p < 0.001). Personalized learning experiences through ChatGPT further support cognitive development (beta = 0.23, p < 0.001) and career-relevant knowledge acquisition (beta = 0.17, p < 0.001). The study also demonstrates that improved cognitive skills contribute to higher academic success (beta = 0.35, p < 0.001) and greater career readiness (beta = 0.28, p < 0.001). However, trust in ChatGPT and access to information alone did not significantly impact cognitive skills or career-relevant knowledge. Additionally, career-relevant knowledge alone did not predict substantially career readiness, highlighting the importance of practical experience and soft skills. While ChatGPT enhances academic performance and career preparation, potential challenges include over-reliance on AI and misinformation risks. The findings highlighted the need for balanced AI integration in education, complementing traditional methods with critical evaluation skills. Future research should examine how ChatGPT can be combined with other educational strategies to improve career readiness further and address AI's limitations in educational settings. [Dahri, Nisar Ahmed; Yahaya, Noraffandy] Univ Teknol Malaysia, Fac Educ Sci & Technol FEST, Johor Baharu, Malaysia; [Al-Rahmi, Waleed Mugahed] Dar Al Uloom Univ, Coll Business Adm, Dept Management Informat Syst, Riyadh 13314, Saudi Arabia Universiti Teknologi Malaysia; Dar Al Uloom University Dahri, NA; Yahaya, N (corresponding author), Univ Teknol Malaysia, Fac Educ Sci & Technol FEST, Johor Baharu, Malaysia. dahrinisar@gmail.com; p-afandy@utm.my Dahri, Dr Nisar Ahmed/AFK-1350-2022; Yahaya, Noraffandy/AAX-1687-2020; Al-Rahmi, Waleed/W-4086-2019 Yahaya, Noraffandy/0000-0002-7952-5461; Research Management Centre (RMC) at Universiti Teknologi Malaysia [Q.J130000.21A2.07E10] Research Management Centre (RMC) at Universiti Teknologi Malaysia We thank the Research Management Centre (RMC) at Universiti Teknologi Malaysia (UTM) for allowing us to conduct this research study (under the Postdoc fellowship project, Q.J130000.21A2.07E10). Afzaal M, 2021, FRONT ARTIF INTELL, V4, DOI 10.3389/frai.2021.723447; Agbo FJ, 2019, 19TH KOLI CALLING CONFERENCE ON COMPUTING EDUCATION RESEARCH (KOLI CALLING 2019), DOI 10.1145/3364510.3364521; Akiba D, 2023, EDUC SCI, V13, DOI 10.3390/educsci13090885; Akyuz Y., 2020, Creative Education, V11, P953, DOI [DOI 10.4236/CE.2020.116069, 10.4236/ce.2020.116069]; Al-kfairy M., 2024, FACTORS IMPACTING AD; Al-Rahmi WM, 2022, INTERACT LEARN ENVIR, V30, P1434, DOI 10.1080/10494820.2020.1728342; AlAfnan M. A., 2023, Journal of Artificial Intelligence and Technology, V3, P60, DOI [DOI 10.37965/JAIT.2023.0184, 10.37965/jait.2023.0184]; Aljanabi M., 2023, Iraqi J. Comput. Sci. Math, V4, P62, DOI DOI 10.52866/20IJCSM.2023.01.01.0018; Almogren AS, 2024, HELIYON, V10, DOI 10.1016/j.heliyon.2024.e31887; Alyoussef IY, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13116450; Amjad AI, 2024, EUR J EDUC, V59, DOI 10.1111/ejed.12625; Atlas S., 2023, ChatGPT for Higher Education and Professional Development: A Guide to Conversational AI; Bai Long, 2023, Brain-X, V1, P30, DOI [10.1002/brx2.30, DOI 10.1002/BRX2.30]; Bangert-Drowns RL, 2004, REV EDUC RES, V74, P29, DOI 10.3102/00346543074001029; Belkin N.J., 1996, P 5 INT S INFORM SCI, P25; Bencheikh L., 2023, EXPLORING EFFICACY C; Bilquise G, 2024, EDUC INF TECHNOL, V29, P6357, DOI 10.1007/s10639-023-12076-x; Borghans L., 2008, MODERNISING VOCATION, P1; Borghans L, 2012, BRIT J IND RELAT, V50, P436, DOI 10.1111/j.1467-8543.2011.00848.x; Bouteraa M, 2024, COMPUT HUM BEHAV REP, V14, DOI 10.1016/j.chbr.2024.100402; Brown S. D., 2020, Career development and counseling: Putting theory and research to work, P129; Burnside O., 2019, Employing Student Success: Comprehensive examination of on-campus student employment; Caratiquit KD., 2023, Journal of Social, Humanity, and Education, V4, P21, DOI [10.35912/jshe.v4i1.1558, DOI 10.35912/JSHE.V4I1.1558]; Casheekar A, 2024, COMPUT SCI REV, V52, DOI 10.1016/j.cosrev.2024.100632; Chatterjee S, 2024, INFORM SYST FRONT, DOI 10.1007/s10796-023-10463-w; Chen JJ, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su152416928; Chen LJ, 2020, IEEE ACCESS, V8, P75264, DOI 10.1109/ACCESS.2020.2988510; Chen Y, 2023, INFORM SYST FRONT, V25, P161, DOI 10.1007/s10796-022-10291-4; Chew TH, 2023, UNIVERSAL ACCESS INF, V22, P687, DOI 10.1007/s10209-022-00874-y; Choudhury A, 2024, JMIR HUM FACTORS, V11, DOI 10.2196/55399; Choudhury A, 2023, J MED INTERNET RES, V25, DOI 10.2196/47184; College A., 2000, INF LIT COMP STAND H; Considine Julie, 2005, Collegian, V12, P19, DOI 10.1016/S1322-7696(08)60478-3; Corry M., 2014, J ED ONLINE, V11, P1; Dahri NA, 2024, HELIYON, V10, DOI 10.1016/j.heliyon.2024.e29317; Dahri NA, 2024, EDUC INF TECHNOL, V29, P18695, DOI 10.1007/s10639-024-12599-x; Dahri NA, 2024, EDUC INF TECHNOL, V29, P14553, DOI 10.1007/s10639-023-12434-9; Dahri NA, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15118514; Dahri NA, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15075839; Dahri NA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132313222; DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008; Dempere J, 2023, FRONT EDUC, V8, DOI 10.3389/feduc.2023.1206936; Duong CD, 2024, INT J MANAG EDUC-OXF, V22, DOI 10.1016/j.ijme.2024.101019; Duong CD, 2024, INT J INF LEARN TECH, V41, P556, DOI 10.1108/IJILT-01-2024-0006; Dwyer CP, 2014, THINK SKILLS CREAT, V12, P43, DOI 10.1016/j.tsc.2013.12.004; Elbanna S, 2024, Manag. Sustain. Arab Rev, V3, P16, DOI DOI 10.1108/MSAR-03-2023-0016; Elmore R.F., 2002, Bridging the gap between standards and achievement: The imperative for professional development in education p, P313; Ferguson R., 2016, Research evidence on the use of learning analytics: Implications for education policy, DOI [DOI 10.2791/955210, 10.2791/955210]; Firat M., 2023, Journal of Applied Learning and Teaching, V6, P57, DOI [10.37074/jalt.2023.6.1.22, DOI 10.37074/JALT.2023.6.1.22]; Fong LHN, 2013, EUR J TOUR RES, V6, P211, DOI 10.1016/j.lrp.2013.01.002; Forman N., 2023, International Journal of Advanced Natural Sciences and Engineering Researches, V7, P95, DOI [DOI 10.59287/IJANSER.562, 10.59287/ijanser.562]; FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312; Foroughi B, 2024, INT J HUM-COMPUT INT, V40, P4501, DOI 10.1080/10447318.2023.2226495; Fricker T., 2015, College Quarterly, V18; Fui-Hoon Nah F., 2023, Journal of Information Technology Case and Application Research, V25, P277, DOI [10.1080/15228053.2023.2233814, DOI 10.1080/15228053.2023.2233814]; Gao B, 2023, ACTA PSYCHOL, V234, DOI 10.1016/j.actpsy.2023.103856; Garrison D.R., 2001, Critical thinking, cognitive presence and computer conferencing in distance education; Gill Sukhpal Singh, 2024, Internet of Things and Cyber-Physical Systems, V4, P19, DOI 10.1016/j.iotcps.2023.06.002; Gliem J.A., 2003, CALCULATING INTERPRE, DOI DOI 10.1016/B978-0-444-88933-1.50023-4; Goldrick-Rab S, 2010, REV EDUC RES, V80, P437, DOI 10.3102/0034654310370163; Gothberg JE, 2015, TEACH EXCEPT CHILD, V47, P344, DOI 10.1177/0040059915587890; Greenstein L., 2012, Assessing 21st century skills: A guide to evaluating mastery and authentic learning; Gunawardena C. N., 1995, International Journal of Educational Telecommunications, V1, P147; Gupta P., 2022, Artificial Intelligence in Higher Education, P113, DOI [10.1201/9781003184157-6, DOI 10.1201/9781003184157-6]; Hadi Mogavi Reza, 2024, Computers in Human Behavior: Artificial Humans, V2, DOI 10.1016/j.chbah.2023.100027; Hair J., 2021, A primer on partial least squares structural equation modeling (PLS-SEM); Hair J.F., 2010, Multivariate data analysis, V7th ed.; Hair J, 2017, IND MANAGE DATA SYST, V117, P442, DOI 10.1108/IMDS-04-2016-0130; Hair JF, 2012, J ACAD MARKET SCI, V40, P414, DOI 10.1007/s11747-011-0261-6; Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203; Halaweh M, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13036; Han MS, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103061; Hanna S. L. L., 2022, ED PERCEPTIONS COVID; Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8; Herbert IP, 2020, INT J MANAG EDUC-OXF, V18, DOI 10.1016/j.ijme.2020.100378; Herring J., 2011, Improving Students' Web Use and Information Literacy; Hlee S, 2023, INFORM TECHNOL PEOPL, V36, P1020, DOI 10.1108/ITP-10-2020-0740; Hmelo-Silver CE, 2007, EDUC PSYCHOL-US, V42, P99, DOI 10.1080/00461520701263368; Horowitz MC, 2024, AI SOC, V39, P1721, DOI 10.1007/s00146-023-01666-5; Huang HY, 2023, INT J ORAL SCI, V15, DOI 10.1038/s41368-023-00239-y; Huang JS, 2023, AM J CANCER RES, V13, P1148; Humlum A, 2024, Becker Friedman Institute for Economics Working Paper, P2024; Jacobsen L., 2023, The Promises and Pitfalls of ChatGPT as a Feedback Provider in Higher Education: An Exploratory Study of Prompt Engineering and the Quality of AI-Driven Feedback, DOI DOI 10.31219/OSF.IO/CR257; Javaid M., 2023, opportunities through ChatGPT tool towards ameliorating the education, V3, DOI DOI 10.1016/J.TBENCH.2023.100115; Ji Yu, 2023, ICETM '23: Proceedings of the 2023 6th International Conference on Educational Technology Management, P16, DOI 10.1145/3637907.3637948; Jo H, 2023, TELEMAT INFORM, V85, DOI 10.1016/j.tele.2023.102067; Johnson C, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e12559; Khan U. A., 2023, Tech. Rep.; Khan U. A., 2023, UNSTOPPABLE MARCH AR; Kim JK, 2023, J PEDIATR UROL, V19, P598, DOI 10.1016/j.jpurol.2023.05.018; Kooli C, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15075614; Kuhn D, 2000, COGNITION INSTRUCT, V18, P495, DOI 10.1207/S1532690XCI1804_3; Levy F, 2004, EDUC LEADERSHIP, V62, P80; Levy F, 2007, LEARNING IN THE GLOBAL ERA: INTERNATIONAL PERSPECTIVES ON GLOBALIZATION AND EDUCATION, P158; Li K, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15065221; Liu M., 2023, Future in Educational Research, V1, P72, DOI [10.1002/fer3.10 10.1002/fer3.10, DOI 10.1002/FER3.10, 10.1002/fer3.10]; Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410; Lombardi A, 2011, J CAREER ASSESSMENT, V19, P375, DOI 10.1177/1069072711409345; Loxton N., 2016, APPL STRUCTURAL EQUA; Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009; Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750; Makki B. I., 2015, J APPL SCI ENG TECHN, DOI [10.19026/rjaset.10.1867, DOI 10.19026/RJASET.10.1867]; Malinka K, 2023, PROCEEDINGS OF THE 2023 CONFERENCE ON INNOVATION AND TECHNOLOGY IN COMPUTER SCIENCE EDUCATION, ITICSE 2023, VOL 1, P47, DOI 10.1145/3587102.3588827; Mariani MM, 2023, TECHNOVATION, V122, DOI 10.1016/j.technovation.2022.102623; Martin F, 2019, ONLINE LEARN, V23, P97, DOI 10.24059/olj.v23i3.1555; Mayer RE, 2021, J APPL RES MEM COGN, V10, P229; McCord B, 2014, COMPUT HUM BEHAV, V34, P23, DOI 10.1016/j.chb.2014.01.020; McGarrah M.W., 2014, Lifelong learning skills for college and career readiness: An annotated bibliography; Mehrabian A., 1974, An approach to environmental psychology, DOI DOI 10.1108/IJCHM-11-2016-0630; Mhlanga D., 2023, Education, the Responsible and Ethical Use of ChatGPT Towards Lifelong Learning, DOI [10.2139/ssrn.4354422, DOI 10.2139/SSRN.4354422]; Mohammad Ali A., 2023, INTERVENTION STUDY U; Mohammed AA., 2023, J ENGLISH STUDIES AR, V2, P9, DOI [10.56540/jesaf.v2i2.55, DOI 10.56540/JESAF.V2I2.55]; Nakavachara V., 2024, PREPRINT; Nunnally J. C., 1994, PSYCHOMETRIC THEORY, V3rd ed., DOI DOI 10.1037/018882; Ofosu-Ampong K., 2023, Information and Knowledge Management, V13, P37, DOI [DOI 10.7176/IKM/13-4-03, 10.7176/IKM/13-4-03]; Olsen C., 2004, College Entrance Examination Board, V26, P2006; Ooi KB, 2025, J COMPUT INFORM SYST, V65, P76, DOI 10.1080/08874417.2023.2261010; Osman M. G., 2024, ROLE CHAT GPT ENHANC, DOI [10.14303/2315-5663.2023.98, DOI 10.14303/2315-5663.2023.98]; Oswald F.L., 2019, Workforce readiness and the future of work; Paas F, 2003, EDUC PSYCHOL-US, V38, P63, DOI 10.1207/S15326985EP3801_8; Panda Subhajit, 2023, Library Hi Tech News, P22, DOI 10.1108/LHTN-02-2023-0032; Parker L., 2024, CHATGPT GLOBAL HIGHE, V219; Parker L, 2024, COMPUT EDUC OPEN, V6, DOI 10.1016/j.caeo.2024.100166; Peña-Ayala A, 2014, COMPUT HUM BEHAV, V30, P131, DOI 10.1016/j.chb.2013.07.057; Petzer C., 2011, P S AFR I COMP SCI I, P330; Picciano Anthony G., 2017, ONLINE LEARNING, V21, P166, DOI [10.1163/9789004471382_005, DOI 10.1163/9789004471382_005, 10.24059/olj.v21i3.1225, DOI 10.24059/OLJ.V21I3.1225]; Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879; Pratama MP., 2023, Klasikal J Educ Lang Teach Sci, V5, P350, DOI DOI 10.52208/KLASIKAL.V5I2.877; Rafiq F, 2022, MATHEMATICS-BASEL, V10, DOI 10.3390/math10132190; Rahman MS, 2023, AUSTRALAS J EDUC TEC, V39, P51, DOI 10.14742/ajet.8956; Raman R., 2023, University students as early adopters of ChatGPT: innovation Diffusion Study; Rasul T., 2023, Journal of Applied Learning and Teaching, V6, P41, DOI [DOI 10.37074/JALT.2023.6.1.29, 10.37074/JALT.2023.6.1.29, DOI 10.37074/JALT.2023.6]; Rathore B., 2023, Eduzone: International Peer Reviewed/Refereed Multidisciplinary Journal, V12, P63, DOI [10.56614/eiprmj.v12i1y23.254, DOI 10.56614/EIPRMJ.V12I1Y23.254]; Raykov T, 1997, MULTIVAR BEHAV RES, V32, P329, DOI 10.1207/s15327906mbr3204_2; Raykov T, 1997, APPL PSYCH MEAS, V21, P173, DOI 10.1177/01466216970212006; Rietig K., 2023, INTRO INNOVATIVE SOC, DOI [10.1007/978-3-031-41452-71, DOI 10.1007/978-3-031-41452-71]; Rietig K., 2024, INNOVATIVE SOCIAL SC; Rollnick S., 2010, Health Behavior Change E-Book; Romero Rodrguez JM., 2023, LARA LARA F; Rönkkö M, 2022, ORGAN RES METHODS, V25, P6, DOI 10.1177/1094428120968614; Sampson JP., 2011, Fostering college and career readiness: How career development activities in schools impact on graduation rates and students' life success; Sánchez-Prieto JC, 2020, IN SY AP IN WE HC, V12205, P292, DOI 10.1007/978-3-030-50513-4_22; Santhi T. M., 2024, IEEE T LEARN TECHNOL; Schiff D, 2022, INT J ARTIF INTELL E, V32, P527, DOI 10.1007/s40593-021-00270-2; Schwarz A, 2017, DATA BASE ADV INF SY, V48, P93, DOI 10.1145/3051473.3051479; Shabani K., 2010, English Language Teaching, V3, P237, DOI [10.5539/elt.v3n4p237, DOI 10.5539/ELT.V3N4P237]; Shin D, 2020, J BROADCAST ELECTRON, V64, P541, DOI 10.1080/08838151.2020.1843357; Steiss J, 2024, LEARN INSTR, V91, DOI 10.1016/j.learninstruc.2024.101894; Stewart M., 2017, Student perceptions of soft skills as an indicator of workplace success; SWELLER J, 1988, COGNITIVE SCI, V12, P257, DOI 10.1207/s15516709cog1202_4; Tam ACF, 2025, ASSESS EVAL HIGH EDU, V50, P219, DOI 10.1080/02602938.2024.2374485; Tanantong T, 2024, SYSTEMS-BASEL, V12, DOI 10.3390/systems12010028; Tossell CC, 2024, IEEE T LEARN TECHNOL, V17, P1069, DOI 10.1109/TLT.2024.3355015; Tucker M.S., 2019, Leading high-performance school systems: Lessons from the worlds best; Tyson W., 2020, TEACHING LEARNING EM, P1; Vashishth T. K., 2024, Using Traditional Design Methods to Enhance AI-Driven Decision Making, P206, DOI [10.4018/979-8-3693-0639-0.ch009, DOI 10.4018/979-8-3693-0639-0.CH009]; Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540; Waldrip B., 2016, LEARNING ENVIRON RES, V9, P169, DOI 10.1007/s10984-016-9204-y; Walkington CA, 2013, J EDUC PSYCHOL, V105, P932, DOI 10.1037/a0031882; Wang CZ, 2024, EDUC SCI, V14, DOI 10.3390/educsci14090976; Wang XH, 2023, TOUR MANAG PERSPECT, V46, DOI 10.1016/j.tmp.2023.101074; Wang XQ, 2018, INT J ENV RES PUB HE, V15, DOI 10.3390/ijerph15050991; Wong E., 2021, CREATIVE COLLABORATI, P121; Woolf BP, 2010, Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning, DOI [10.1016/B978-0-12-373594-2.X0001-9, DOI 10.1016/B978-0-12-373594-2.X0001-9]; Xu XS, 2024, PLOS ONE, V19, DOI 10.1371/journal.pone.0295646; Yanagiura T., 2023, J ED DATA MINING, V15, P1; Yang X., 2019, ECNU Rev Educ, V2, P347, DOI DOI 10.1177/2096531119878590; Yu H, 2024, HELIYON, V10, DOI 10.1016/j.heliyon.2024.e24289; Zwain AAA, 2019, INTERACT TECHNOL SMA, V16, P239, DOI 10.1108/ITSE-09-2018-0065 169 7 7 49 89 SPRINGER NEW YORK ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES 1360-2357 1573-7608 EDUC INF TECHNOL Educ. Inf. Technol. MAY 2025 30 7 8877 8921 10.1007/s10639-024-13148-2 http://dx.doi.org/10.1007/s10639-024-13148-2 NOV 2024 45 Education & Educational Research Social Science Citation Index (SSCI) Education & Educational Research 2HW3N 2025-08-15 WOS:001362280000001 J Yunianto, W; Galiç, S; Lavicza, Z Yunianto, Wahid; Galic, Selen; Lavicza, Zsolt Exploring Computational Thinking in Mathematics Education: Integrating ChatGPT with GeoGebra for Enhanced Learning Experiences INTERNATIONAL JOURNAL OF EDUCATION IN MATHEMATICS SCIENCE AND TECHNOLOGY English Article ChatGPT; Computational thinking; GeoGebra; Mathematics education ChatGPT has become a significant topic of interest in the field of education, prompting of the potential applications of such technology. The utilization of ChatGPT may facilitate the fostering of 21st century skills, such as computational thinking (CT) and technology, which could subsequently provide a means of offering students personalized assistance. The current study presents the experience of students undertaking a GeoGebra-based mathematics+CT task with the assistance of ChatGPT. The data was collected and analyzed, including students' screen recording, students' interaction with ChatGPT, and the questionnaire. The findings indicate that a limited number of students were able to successfully construct objects on GeoGebra with the assistance of ChatGPT. Students were unable to provide a sufficiently detailed prompt to enable them to receive guidance. Nevertheless, the majority of students perceived ChatGPT as beneficial, although they felt that its responses required adaptation. This study highlights the importance of integrating and utilizing both ChatGPT and GeoGebra to enhance CT skills. Future research may examine the relationship between the expertise of using software or writing qualified prompts on ChatGPT and the effectiveness of responses. [Yunianto, Wahid; Lavicza, Zsolt] Johannes Kepler Univ Linz, Altenberger Str 69, A-4040 Linz, Austria; [Galic, Selen] Hacettepe Univ, Fac Educ, Dept Math & Sci Educ, TR-06800 Ankara, Turkiye Johannes Kepler University Linz; Hacettepe University Yunianto, W (corresponding author), Johannes Kepler Univ Linz, Altenberger Str 69, A-4040 Linz, Austria. yunianto.wah@gmail.com ; Galiç, Selen/KDO-6850-2024; Lavicza, Zsolt/AAH-3896-2020 Galic, Selen/0000-0002-3524-6428; Lavicza, Zsolt/0000-0002-3701-5068; Yunianto, Wahid/0000-0003-1693-6383 Adelabu FM, 2019, J TECH EDUC TRAIN, V11, P44, DOI 10.30880/jtet.2019.11.01.006; Albadarin Y, 2024, Discov Educ, V3, P60, DOI [10.1007/s44217-024-00138-2, DOI 10.1007/S44217-024-00138-2]; Ang K. C., 2020, P AS TECHN C MATH; Bocconi S., 2022, Dagiene,. and Gabriele. Stupuriene; Bocconi S., 2016, Developing Computational Thinking in Compulsory Education: Implications for Policy and Practice; Botana F, 2024, COMPUTATION, V12, DOI 10.3390/computation12020030; Boulden DC, 2021, EDUC INF TECHNOL, V26, P4663, DOI 10.1007/s10639-021-10487-2; Braun V., 2006, QUAL RES PSYCHOL, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA]; Chan SW, 2021, HELIYON, V7, DOI 10.1016/j.heliyon.2021.e07922; Cheng YP, 2023, COMPUT EDUC, V200, DOI 10.1016/j.compedu.2023.104794; Chytas C., 2024, Digital Experiences in Mathematics Education, V10, P228, DOI [10.1007/s40751-024-00141-0, DOI 10.1007/S40751-024-00141-0]; Cotton DRE, 2024, INNOV EDUC TEACH INT, V61, P228, DOI 10.1080/14703297.2023.2190148; Dagiene V, 2016, LECT NOTES COMPUT SC, V9973, P28, DOI 10.1007/978-3-319-46747-4_3; Dasari D, 2024, FRONT EDUC, V8, DOI 10.3389/feduc.2023.1295413; Guo Biyang, 2023, Comparison Corpus, Evaluation, and Detection; Hickmott D., 2018, Digital Experiences in Mathematics Education, V4, P48, DOI DOI 10.1007/S40751-017-0038-8; Hohenwarter M., 2008, 11 INT C MATH ED; Kallia M, 2021, RES MATH EDUCAT, V23, P159, DOI 10.1080/14794802.2020.1852104; Karatas V., 2022, Publicatioon, V1148; Klimova B, 2024, FRONT PSYCHOL, V15, DOI 10.3389/fpsyg.2024.1269319; Kooli C, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15075614; Kuhail MA, 2023, EDUC INF TECHNOL, V28, P973, DOI 10.1007/s10639-022-11177-3; Li Pin-Hui, 2023, Innovative Technologies and Learning: 6th International Conference, ICITL 2023, Proceedings. Lecture Notes in Computer Science (14099), P77, DOI 10.1007/978-3-031-40113-8_8; Liang YC, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00273-7; Lo LS, 2023, J ACAD LIBR, V49, DOI 10.1016/j.acalib.2023.102720; Luo WW, 2024, EARLY EDUC DEV, V35, P96, DOI 10.1080/10409289.2023.2214181; Mai DTT, 2024, FRONT EDUC, V9, DOI 10.3389/feduc.2024.1328769; McKenney S, 2012, CONDUCTING EDUCATIONAL DESIGN RESEARCH, P1; Meyer JG, 2023, BIODATA MIN, V16, DOI 10.1186/s13040-023-00339-9; Ng OL, 2021, ZDM-MATH EDUC, V53, P847, DOI 10.1007/s11858-020-01200-7; Plata S., 2023, Asian Journal of University Education, V19, P743, DOI DOI 10.24191/AJUE.V19I4.24697; Rane N., 2023, ED 40 50 INTEGRATING, DOI [10.2139/ssrn.4638365, DOI 10.2139/SSRN.4638365]; Rospigliosi PA, 2023, INTERACT LEARN ENVIR, V31, P1, DOI 10.1080/10494820.2023.2180191; Salami O. O., 2024, Studies in Learning and Teaching, V5, P118, DOI [10.46627/silet, DOI 10.46627/SILET]; Sánchez-Ruiz LM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13106039; Sapkota B, 2024, INT J TECHNOL EDUC, V7, P218, DOI 10.46328/ijte.677; Shabunina Viktoriia, 2023, 2023 IEEE 5th International Conference on Modern Electrical and Energy System (MEES), P1, DOI 10.1109/MEES61502.2023.10402380; Shute VJ, 2017, EDUC RES REV-NETH, V22, P142, DOI 10.1016/j.edurev.2017.09.003; Sohail SS, 2023, J KING SAUD UNIV-COM, V35, DOI 10.1016/j.jksuci.2023.101675; Subramaniam S., 2022, Cypriot Journal of Educational Sciences, V17, P2029, DOI 10.18844/cjes.v17i6.7494; Tashtoush M A., 2023, Journal of Higher Education Theory and Practice, V23, P162, DOI DOI 10.33423/JHETP.V23I5.5933; Urhan S, 2024, INTERACT LEARN ENVIR, V32, P7186, DOI 10.1080/10494820.2024.2308093; Valtonen T, 2022, COMPUT HUM BEHAV, V128, DOI 10.1016/j.chb.2021.107123; van Borkulo S. P., 2023, Digital Experiences in Mathematics Education, V9, P420, DOI [10.1007/s40751-023-00126-5, DOI 10.1007/S40751-023-00126-5]; van Borkulo S, 2021, PROCEEDINGS OF THE 16TH WORKSHOP IN PRIMARY AND SECONDARY COMPUTING EDUCATION, WIPSCE 2021, DOI 10.1145/3481312.3481319; Wang CZ, 2022, INT J SCI MATH EDUC, V20, P1949, DOI 10.1007/s10763-021-10227-5; Wardat Y., 2023, Eurasia Journal of Mathematics, Science and Technology Education, V19, P1, DOI DOI 10.29333/EJMSTE/13272; Weintrop D, 2016, J SCI EDUC TECHNOL, V25, P127, DOI 10.1007/s10956-015-9581-5; Wing JM, 2011, S VIS LANG HUM CEN C, P3, DOI 10.1109/VLHCC.2011.6070404; Wing JM, 2006, COMMUN ACM, V49, P33, DOI 10.1145/1118178.1118215; Ye HY, 2023, INT J STEM EDUC, V10, DOI 10.1186/s40594-023-00396-w; Yunianto W., 2023, 28 AS TECHN C MATH, P322; Yunianto W., 2024, Journal on Mathematics Education, V3, P1027, DOI [10.22342/jme.v15i3.pp1027-1052, DOI 10.22342/JME.V15I3.PP1027-1052]; Yunianto W., 2023, 2023 INT S COMP ED S, P1, DOI [10.1109/SIIE59826.2023.10423707, DOI 10.1109/SIIE59826.2023.10423707]; Yunianto W, 2025, SCI ACT, V62, P171, DOI 10.1080/00368121.2024.2387382; Zdravkova K., 2023, 2023 INT S COMP ED S, P1, DOI [10.1109/SIIE59826.2023.10423681, DOI 10.1109/SIIE59826.2023.10423681] 56 1 1 15 18 NECMETTIN ERBAKAN UNIV KONYA AHMET KELESOGLU FAC EDUCATION, DEPT COMPUTER EDUCATION & INSTRUCTIONAL TECHNOLOGY, KONYA, 42090, Turkiye 2147-611X INT J EDUC MATH SCI Int. J. Educ. Math. Sci. Technol. 2024 12 6 10.46328/ijemst.4437 http://dx.doi.org/10.46328/ijemst.4437 21 Education, Scientific Disciplines Emerging Sources Citation Index (ESCI) Education & Educational Research T0O1Z gold 2025-08-15 WOS:001402099400003 J Rojek, M; Kufel, J; Bielówka, M; Mitrega, A; Kaczynska, D; Czogalik, L; Kondol, D; Palkij, K; Mielcarska, S; Bartnikowska, W Rojek, Marcin; Kufel, Jakub; Bielowka, Michal; Mitrega, Adam; Kaczynska, Dominika; Czogalik, Lukasz; Kondol, Dominika; Palkij, Kacper; Mielcarska, Sylwia; Bartnikowska, Wiktoria Exploring the performance of ChatGPT3.5 in addressing dermatological queries: a research investigation into AI capabilities PRZEGLAD DERMATOLOGICZNY English Article medical education; artificial intelligence; dermatology; venereology; ChatGPT-3.5 ARTIFICIAL-INTELLIGENCE Introduction: In the 21 st century's era of rapid technological advancement, ChatGPT-3.5, an artificial intelligence (AI) language model, is scrutinized for its application in dermatology. Using 119 questions from the National Specialist Examination (PES), we assess ChatGPT-3.5's performance by comparing it to human skills and addressing ethical implications. Objective: Our primary aim is to evaluate ChatGPT-3.5's proficiency in responding to 119 dermatology questions from the PES. The study emphasizes ethical considerations and compares the model's knowledge and skills to those of human dermatologists. Material and methods: Utilizing the 2023 PES question database, questions were categorized by Bloom's taxonomy and thematic content. ChatGPT-3.5, version of 3 August 2023, answered 119 questions in five sessions, allowing for a probabilistic evaluation. Statistical analyses, conducted using R Studio, assessed correctness, confidence, and dif - ficulty. Results: ChatGPT-3.5 achieved a 49.58% correct response rate, below the 60% passing threshold. No significant differences in difficulty or correlations between difficulty and certainty were observed. Varied per - formance across question types highlighted strengths and weaknesses. Despite suboptimal results, ChatGPT-3.5's differential performance offers insights, suggesting future improvements. The study advocates for ongoing research into AI integration in dermatology, envisioning a promising role for AI in assisting dermatologists. Conclusions: Ethical considerations are crucial for effective AI intro - duction, minimizing errors, and enhancing dermatological healthcare quality, fostering optimism for AI's evolving role in dermatology. [Rojek, Marcin; Bielowka, Michal; Mitrega, Adam; Kaczynska, Dominika; Czogalik, Lukasz] Med Univ Siles, Dept Radiol & Nucl Med, Students Sci Assoc Comp Anal & Artificial Intellig, Katowice, Poland; [Kufel, Jakub] Med Univ Silesia, Dept Radiodiagnost Intervent Radiol & Nucl Med, Katowice, Poland; [Kufel, Jakub] Med Univ Siles, Dept Radiol & Nucl Med, Katowice, Poland; [Kondol, Dominika; Palkij, Kacper] Multispecialty Dist Hosp SA Dr B Hager Pyskowicka, Tarnowskie Gory, Poland; [Mielcarska, Sylwia] Med Univ Siles, Fac Med Sci Zabrze, Dept Med & Mol Biol, Katowice, Poland; [Bartnikowska, Wiktoria] Med Univ Siles, Fac Med Sci Katowice, Katowice, Poland Medical University of Silesia; Medical University of Silesia; Medical University of Silesia; Medical University of Silesia; Medical University of Silesia Bielówka, M (corresponding author), Med Univ Siles, Dept Radiol & Nucl Med, Students Sci Assoc Comp Anal & Artificial Intellig, Katowice, Poland. Kufel, Jakub/GSN-6436-2022; Bielówka, Michał/JLL-4813-2023 Kufel, Jakub/0000-0001-7633-3600; Bartnikowska, Wiktoria/0000-0002-9303-946X [Anonymous], Centrum Egzaminow Medycznych Internet; [Anonymous], 2023, S4 wyniki jesiennego naboru na specjalizacje. Hitem m.in. radiologia, dermatologia i psychiatria; [Anonymous], Introducing GPTs Internet; [Anonymous], 2023, Centrum Egzaminow Medycznych; [Anonymous], Introducing ChatGPT Internet; Fishman EK, 2023, CAN ASSOC RADIOL J, V74, P622, DOI 10.1177/08465371231174817; Foreland M, 2010, Emerging Perspectives on Learning, Teaching, and Technology Internet; Joly-Chevrier M, 2023, J CUTAN MED SURG, V27, P409, DOI 10.1177/12034754231188437; Kufel J, 2023, POL J RADIOL, V88, pE430, DOI 10.5114/pjr.2023.131215; Lewandowski M, 2023, CLIN EXP DERMATOL, V49, P686, DOI 10.1093/ced/llad255; Niewgowski K., 2021, Med. Og. Nauk. Zdr., V27, P213; Passby L, 2023, CLIN EXP DERMATOL, V49, P722, DOI 10.1093/ced/llad197; Patel S, 2021, CLIN DERMATOL, V39, P667, DOI 10.1016/j.clindermatol.2021.03.012; Porter E, 2023, J EUR ACAD DERMATOL, V37, pE943, DOI 10.1111/jdv.19174; Young AT, 2020, J INVEST DERMATOL, V140, P1504, DOI 10.1016/j.jid.2020.02.026 15 3 3 0 2 TERMEDIA PUBLISHING HOUSE LTD POZNAN KLEEBERGA 2, POZNAN, 61-615, POLAND 0033-2526 2084-9893 PRZ DERMATOL Prz. Dermatol. 2024 111 1 26 30 10.5114/dr.2024.140796 http://dx.doi.org/10.5114/dr.2024.140796 5 Dermatology Emerging Sources Citation Index (ESCI) Dermatology XT4O5 gold 2025-08-15 WOS:001263918000003 J Meishar-Tal, H Meishar-Tal, Hagit ChatGPT: The Challenges It Presents for Writing Assignments TECHTRENDS English Article ChatGPT; Writing; Generative AI; 21th century skills; EPSS WIKIPEDIA This paper critically analyzes the potential impact of ChatGPT, a creative artificial intelligence tool, on learning and teaching, focusing on its impact on using writing assignments as a means of assessing knowledge. The paper examines the challenges this tool presents to learners and teachers in various aspects, including writing as a means of constructing knowledge, designing writing assignments, and assessing ChatGPT-assisted writing tasks. The paper examines the challenges posed by ChatGPT for writing from three different aspects: the role of ChatGPT as a learning support tool, the consequences of using ChatGPT for acquiring 21st-century skills, and challenges regarding the evaluation of the learners. The analysis indicates that ChatGPT might serve as a performance support system rather than a learning support tool. It also argued that incorporating ChatGPT into the learning process requires a significant degree of critical thinking from both students and teachers. It is crucial that they utilize this tool with the primary objective of enriching their thinking and writing abilities rather than seeking to circumvent the cognitive information processing mechanisms as a shortcut to produce writing products. [Meishar-Tal, Hagit] Holon Inst Technol, 52th Golomb st, Holon, Israel Meishar-Tal, H (corresponding author), Holon Inst Technol, 52th Golomb st, Holon, Israel. hagitmt@hit.ac.il Meishar-Tal, Hagit/K-2666-2019 Agosto DE, 2005, J AM SOC INF SCI TEC, V56, P1008, DOI 10.1002/asi.20155; AlAfnan M. A., 2023, Journal of Artificial Intelligence and Technology, V3, P60, DOI [DOI 10.37965/JAIT.2023.0184, 10.37965/jait.2023.0184]; [Anonymous], 2009, P 5 INT S WIK OP COL, DOI DOI 10.1145/1641309.1641333; [Anonymous], 2009, P21 Framework Definitions; [Anonymous], [No title captured], DOI [DOI 10.1002/PIQ.21143, DOI 10.1111/J.1937-8327.1993.TB00605.X]; Binkley M, 2012, ASSESSMENT AND TEACHING OF 21ST CENTURY SKILLS, P17, DOI 10.1007/978-94-007-2324-5_2; Carretero S., 2017, DigComp 2.1: the digital competence framework for citizens with eight proficiency levels and examples of use, DOI [10.2760/38842, DOI 10.2760/38842]; De Paor S, 2020, J ACAD LIBR, V46, DOI 10.1016/j.acalib.2020.102218; Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642; Gal E., 2011, Interdisciplinary Journal of E-Learning and Learning Objects, V7, P213, DOI 10.28945/1520; García-Peñalvo FJ, 2023, EDUC KNOWL SOC, V24, DOI 10.14201/eks.31279; Harasim L., 2017, LEARNING THEORY ONLI, V2nd, DOI DOI 10.4324/9781315716831; Honebein RC., 1993, DESIGNING ENV CONSTR, P87, DOI [DOI 10.1007/978-3-642-78069-15, 10.1007/978-3-642-78069-15]; Huitt W., 2003, Educ Psychol Interact, V3, P1; Hutson M, 2022, NATURE, V611, P192, DOI 10.1038/d41586-022-03479-w; Jonassen D.H., 1996, COMPUTERS CLASSROOM; Jones-Jang SM, 2021, AM BEHAV SCI, V65, P371, DOI 10.1177/0002764219869406; Jowett B., 1892, DIALOGUES PLATO 5 VO, V1, P483; Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274; Kay K, 2011, EXPLOR EDUC PURP, V13, P41, DOI 10.1007/978-94-007-0268-4_3; Knight C, 2012, TEACH HIGH EDUC, V17, P649, DOI 10.1080/13562517.2012.666734; Koubaa A., 2023, Preprints, P1, DOI DOI 10.20944/PREPRINTS202303.0438.V1; Kramer M., 2008, P 2008 INT S WIK SEP, DOI [10.1145/1822258.1822291, DOI 10.1145/1822258.1822291]; Laor T, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0276449; Lih A., 2004, NATURE; Lo LS, 2023, J ACAD LIBR, V49, DOI 10.1016/j.acalib.2023.102720; Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009; Mao J, 2024, TECHTRENDS, V68, P58, DOI 10.1007/s11528-023-00911-4; McGee RW., 2023, IS CHAT GPT BIASED C, DOI DOI 10.2139/SSRN.4359405; Meishar-Tal H, 2015, AUST J TEACH EDUC, V40, P126, DOI 10.14221/ajte.2015v40n12.9; Nappi J. S., 2017, Delta Kappa Gamma Bulletin, V84, P30; Newton PE, 2007, ASSESS EDUC, V14, P149, DOI 10.1080/09695940701478321; Perkins D.N., 1991, Educational Technology, V31, P18; Ray PP., 2023, Internet of Things and Cyber-Physical Systems, V3, P121, DOI DOI 10.1016/J.IOTCPS.2023.04.003; Rozado D, 2023, SOC SCI-BASEL, V12, DOI 10.3390/socsci12030148; Rudolph J., 2023, J APPL LEARNING TEAC, V6, P342, DOI [10.37074/jalt.2023.6.1.9, DOI 10.37074/JALT.2023.6.1.9]; Salomon G., 2000, Technology and education in the information age; Savage L.B., 1998, CLEARING HOUSE, V71, P291, DOI DOI 10.1080/00098659809602727; Shidiq M, 2023, P INT C ED SOC HUMAN, V1, P360; Sigthorsson G., 2005, MC J, V8, DOI [10.5204/mcj.2360, DOI 10.5204/MCJ.2360]; Sisti DA, 2007, ETHICS BEHAV, V17, P215, DOI 10.1080/10508420701519163; Tight M, 2021, EUR J HIGH EDUC, V11, P160, DOI 10.1080/21568235.2020.1835517; Wiliam D., 2011, Studies in Educational Evaluation, V37, P3, DOI [DOI 10.1016/J.STUEDUC.2011.03.001, 10.1016/j.stueduc.2011.03.001] 43 1 1 8 55 SPRINGER INT PUBL AG CHAM GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND 8756-3894 1559-7075 TECHTRENDS TechTrends JUL 2024 68 4 SI 705 710 10.1007/s11528-024-00972-z http://dx.doi.org/10.1007/s11528-024-00972-z JUN 2024 6 Education & Educational Research Emerging Sources Citation Index (ESCI) Education & Educational Research A2F0M 2025-08-15 WOS:001237759100001 J Folmeg, M; Fekete, I; Koris, R Folmeg, Marta; Fekete, Imre; Koris, Rita Towards identifying the components of students' AI literacy: An exploratory study based on Hungarian higher education students' perceptions JOURNAL OF UNIVERSITY TEACHING AND LEARNING PRACTICE English Article ICT With the advent of the popular use of artificial intelligence (AI), the higher education (HE) sector is now facing a new challenge regarding how to exploit the educational potentials of Human-computer interaction (HCI). Developing students' AI literacy is now attracting the attention of the HE and HCI research community. This paper aims to explore HE students' perceptions of efficient and critical use of AI tools, and to systematically map the potential components of AI literacy as a new 21st century skill for HE students. This study applied a qualitative, exploratory approach in the form of semi- structured interviews with HE students. Results indicate that the participants primarily use ChatGPT for tasks such as brainstorming, topic selection, searching for information, and translation. While many find it useful for creating and reformatting texts, some encountered challenges, including generality in responses, outdated information, and issues during exams. Students highlighted its effectiveness in various academic tasks, from writing essays and CVs to language learning and transcription. Instructors' perspectives on ChatGPT varied, with some advocating for its integration, while others expressed concerns about job security and misinformation. The implications of the study call for a more systematic introduction and discussion around AI literacy in educational settings. [Folmeg, Marta; Fekete, Imre; Koris, Rita] Budapest Business Univ, Budapest, Hungary Budapest Business University Folmeg, M (corresponding author), Budapest Business Univ, Budapest, Hungary. Koris, Rita/IYT-0925-2023 Koris, Rita/0000-0003-1912-8744 Atlas S., 2023, ChatGPT for Higher Education and Professional Development: A Guide to Conversational AI; Banele S. D., 2023, SocioEdu: Sociological Education, V4, P53, DOI [10.59098/socioedu.v4i2.1203, DOI 10.59098/SOCIOEDU.V4I2.1203]; Charow R, 2021, JMIR MED EDUC, V7, DOI 10.2196/31043; Chiu TKF, 2024, INTERACT LEARN ENVIR, V32, P6187, DOI 10.1080/10494820.2023.2253861; Crawford J, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.3.02; Creswell J. W., 2014, A concise introduction to mixed methods research; Creswell JW., 2018, Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, DOI DOI 10.3109/08941939.2012.723954; Diveki R., 2024, Developing global competence in the Hungarian EFL classroom; Eager B, 2023, J UNIV TEACH LEARN P, V20; Fekete I., 2023, Akademiai Kiado, DOI [10.1556/9789634548706, DOI 10.1556/9789634548706]; Hews R, 2022, J UNIV TEACH LEARN P, V19; Ilieva G, 2023, INFORMATION, V14, DOI 10.3390/info14090492; Kamalov F, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su151612451; Kelly A, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.6.12; Khiat H, 2022, J UNIV TEACH LEARN P, V19; Kim S, 2021, AAAI CONF ARTIF INTE, V35, P15569; Kostka I., 2023, Tesl-ej, V27, pn3, DOI [https://doi.org/10.55593/ej.27107int, DOI 10.55593/EJ.27107INT]; Krakowski A, 2022, AAAI CONF ARTIF INTE, P12774; Lacey MM, 2023, MICROBIOL AUST, V44, P124, DOI 10.1071/MA23036; Lee I, 2022, PROCEEDINGS OF THE 53RD ACM TECHNICAL SYMPOSIUM ON COMPUTER SCIENCE EDUCATION (SIGCSE 2022), VOL 1, P202, DOI 10.1145/3478431.3499318; Lim CP, 2002, BRIT J EDUC TECHNOL, V33, P411, DOI 10.1111/1467-8535.00278; Lim WM, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100790; Lodge JM, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.7.02; Long DR, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376727; McDougall A., 2006, Technology, Pedagogy and Education, V15, P353, DOI 10.1080/14759390600923915; Munoz S. A. S., 2023, Social Space, V23, P1; Nadeem M, 2021, J UNIV TEACH LEARN P, V18; Ng DTK, 2023, EDUC INF TECHNOL, V28, P8445, DOI 10.1007/s10639-022-11491-w; Ng DTK., 2021, Computers and Education: Artificial Intelligence, V2, P100041, DOI [DOI 10.1016/J.CAEAI.2021.100041, 10.1016/j.caeai.2021.100041]; Saetra HS, 2023, TECHNOL SOC, V75, DOI 10.1016/j.techsoc.2023.102372; Sutherland R, 2004, J COMPUT ASSIST LEAR, V20, P413, DOI 10.1111/j.1365-2729.2004.00104.x; Williams R, 2021, AAAI CONF ARTIF INTE, V35, P15678 32 6 6 5 15 Open Access Publishing Assoc Launceston 28a Brisbane St, Launceston, Tasmania, AUSTRALIA 1449-9789 J UNIV TEACH LEARN P J. Univ. Teach. Learn. Pract. 2024 21 6 33 16 Education & Educational Research Emerging Sources Citation Index (ESCI) Education & Educational Research D5J4K 2025-08-15 WOS:001296541300002 J Chaka, C Chaka, Chaka Stylised-facts view of fourth industrial revolution technologies impacting digital learning and workplace environments: ChatGPT and critical reflections FRONTIERS IN EDUCATION English Article fourth industrial revolution; stylised facts; digital learning; workplace; artificial intelligence; automation; ChatGPT; critical reflections STYLIZED FACTS; ALGORITHMS; DATAFICATION; AUTOMATION; ROBOTICS; FUTURE When the 21st century was ushered in, and in the period following its inception, there was a lot of hype about how 21st-century skills, especially the 4Cs (critical thinking, collaboration, communication, and creativity), were going to play a pivotal role for digital learning and workplace environments. Two decades later, these environments are still grappling with the specific changes brought about and the actual role played by these skills in their respective facets. Within these two decades, though, a new hype has emerged about how fourth industrial revolution (4IR) technologies are likely to affect and change the future of digital learning and workplace environments in ways never seen in previous industrial and digital revolutions. Amongst these technologies, artificial intelligence and automation are touted as some of the technologies that will change the future of digital learning and work. Against this background, this paper sets out to critically reflect on the prospects and challenges these two 4IR technologies have for digital learning and work as the 21st century is on the cusp of the third decade. It does so by analysing and discussing AI-/machine-human fused stylised facts based on ChatGPT-generated responses and on a human distillation and reworking of those responses. [Chaka, Chaka] UNISA, Coll Human Sci, Dept English Studies, Pretoria, South Africa University of South Africa Chaka, C (corresponding author), UNISA, Coll Human Sci, Dept English Studies, Pretoria, South Africa. chakachaka8@gmail.com Chaka, Chaka/AAN-3211-2021 Abad LA, 2015, J ECON METHODOL, V22, P143, DOI 10.1080/1350178X.2015.1024878; Acemoglu D, 2022, ECONOMETRICA, V90, P1973, DOI 10.3982/ECTA19815; Alismail HA., 2015, Journal of Education and Practice, V6, P150; Ally M., 2020, Sustainable Development and Education in the Fourth Industrial Revolution (4IR); Almarzooq ZI, 2020, J AM COLL CARDIOL, V75, P2635, DOI 10.1016/j.jacc.2020.04.015; Alsoliman BSH, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.950766; [Anonymous], 2018, S AFR J SCI, V114, DOI 10.17159/sajs.2018/a0271; [Anonymous], 2018, TECH4GOOD SUMMIT ORG; [Anonymous], 2018, Preparing Tomorrows Workforce for the Fourth Industrial Revolution-For Business: A Framework for Action; [Anonymous], 2010, SMART TEACHING TRANS; Badet J., 2021, OPEN J BUSINESS MANA, V9, P2452, DOI [10.4236/ojbm.2021.95132, DOI 10.4236/OJBM.2021.95132]; Balliester T., 2018, The future of work: A literature review; Belpaeme T, 2018, SCI ROBOT, V3, DOI 10.1126/scirobotics.aat5954; Bowman E., 2023, A College Student Created an App That Can Tell Whether AI Wrote an Essay; Butt R, 2020, INTERACT TECHNOL SMA, V17, P337, DOI 10.1108/ITSE-02-2020-0022; Care E., 2017, Skills for a changing world: National perspectives and the global movement; Catana SA, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18158180; CERI, 2008, 21 CENTURY LEARNING; Chaka C., 2020, Research Square, DOI DOI 10.21203/RS.3.RS-61482/V1; Chaka C., 2022, J ED E LEARN RES, V9, P136, DOI [10.20448/jeelr.v9i3.4102, DOI 10.20448/JEELR.V9I3.4102]; Chaka C., 2016, J HIGH ED AFRICA, V3, P19; Chaka C., 2009, HDB RES E LEARNING L, P550; Chaka C., 2010, HDB RES WEB 2 0 3 0, VI, P630; Chaka C., 2010, Handbook of Research on Practices and Outcomes in E-Learning: Issues and Trends, P38; Chaka C., 2021, Zeitschrift fur Hochschulentwicklung, V16, P17, DOI 10.3217/zfhe-16-03/02; Chaka C, 2023, RES PRACT TECH ENHAN, V18, DOI 10.58459/rptel.2023.18002; Chaka C, 2022, J E-LEARN KNOWL SOC, V18, P83, DOI 10.20368/1971-8829/1135678; Chaka C, 2022, J E-LEARN KNOWL SOC, V18, P58, DOI 10.20368/1971-8829/1135578; Chaka C, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.824976; Chaka C, 2020, IFLA J-INT FED LIBR, V46, P369, DOI 10.1177/0340035219896376; Chaka C, 2019, NORD J DIGIT LIT, V14, P54, DOI 10.18261/issn.1891-943x-2019-01-02-05; Chaka C, 2011, PALGRAVE DIGIT ED LE, P37; Change Recruitment, 2017, WILL 4 IND REV IMP F; ChatGPT, 2023, CHATGPT WHAT AR YOU; Couldry N, 2019, TELEV NEW MEDIA, V20, P336, DOI 10.1177/1527476418796632; Cutcliffe J., 2022, CHATGPT CHATBOTS ART; da Silva LBP, 2022, COMPUT IND ENG, V168, DOI 10.1016/j.cie.2022.108111; Dede C., 2005, ED Q, V28, P7; Dede C., 2009, Comparing frameworks for 21st century skills; Elayyan S., 2021, Journal of Educational Technology Online Learning, V4, P23, DOI [10.31681/jetol.737193, DOI 10.31681/JETOL.737193, 10.31681/ jetol.737]; Evans C, 2020, HUM BEHAV EMERG TECH, V2, P269, DOI 10.1002/hbe2.196; Filippi E, 2023, TECHNOL FORECAST SOC, V191, DOI 10.1016/j.techfore.2023.122448; Frey CB, 2017, TECHNOL FORECAST SOC, V114, P254, DOI 10.1016/j.techfore.2016.08.019; Govender C.M., 2022, INT J ENTREPRENEURSH, V26, P1; Harris M., 2022, CHATGPT GAME CHANGIN; Heilweil R., 2022, AI is finally good at stuff, and that's a problem; Helfat CE, 2007, STRATEG ORGAN, V5, P185, DOI 10.1177/1476127007077559; Hern A., 2022, AI bot ChatGPT stuns academics with essay-writing skills and usability. The Guardian; Hewson E., 2021, Int. J. Manag. Sci. Bus. Adm, V7, P37, DOI [10.18775/ijmsba.1849-5664-5419.2014.73.1004, DOI 10.18775/IJMSBA.1849-5664-5419.2014.73.1004]; Hirschman D, 2016, SOCIOL SCI, V3, P604, DOI 10.15195/v3.a26; Ilori MO, 2020, WORLDW HOSP TOUR THE, V12, P3, DOI 10.1108/WHATT-10-2019-0066; Joynes C., 2019, 21st century skills: Evidence of issues in definition, demand and delivery for development contexts (K4D helpdesk report); Kaldor N., 1961, THEORY CAPITAL LONDO, P177, DOI DOI 10.1007/978-1-349-08452-4_10; Keser H., 2019, Contemporary Educational Researches Journal, V9, P39, DOI DOI 10.18844/CERJ.V9I3.4269; Khadragy S., 2022, INT J MECH ENG, V7, P3118; Kibe L., 2023, TECHNOLOGICAL SUSTAI, V2, DOI [10.1108/TECHS-01-2023-0004, DOI 10.1108/TECHS-01-2023-0004]; Lambert M., 2002, 21 CENTURY LEARNERS; Lepasepp TK, 2021, FUTURE INTERNET, V13, DOI 10.3390/fi13100264; Li L, 2024, INFORM SYST FRONT, V26, P1697, DOI 10.1007/s10796-022-10308-y; Luckin R., 2016, Intelligence unleashed: An argument for AI in education; Lyotard F., 1984, POSTMODERN CONDITION; Marlin D., 2018, MILLENNIALS THIS IS; Masriadi D., 2023, Endless: International Journal of Future Studies, V6, P125, DOI 10.54783/endlessjournal.v6i1.131; Meghmala, 2023, GPTZERO APP DET WHET; Mendritzki S, 2014, J ECON METHODOL, V21, P107, DOI 10.1080/1350178X.2014.907439; Mitchell R, 2022, ACCOUNT FINANC, V62, P2667, DOI 10.1111/acfi.12878; Moldoveanu I., 2022, REV INT COMP MANAG, V23, P439, DOI [10.24818/RMCI.2022.3.439, DOI 10.24818/RMCI.2022.3.439]; Morgan J., 2007, VISIO LOOK FUT LEARN, V4, P9; Mury SR, 2022, FRONT EDUC, V7, DOI 10.3389/feduc.2022.968675; Nasreen F., 2022, Malaysian Online Journal of Educational Management, V10, P15; NCTE, 2008, NCTE FRAM 21 CENT CU; NCTE, 2007, 21 CENT LIT POL RES; Nedelkoska L., 2018, Automation, skills use and training, DOI [DOI 10.1787/2E2F4EEA-EN, 10.1787/2-2f4eea-en, DOI 10.1787/2-2F4EEA-EN, DOI 10.1787/1815199X, https://doi.org/10.1787/2e2f4eea-en]; Oosthuizen R. M., 2022, The Fourth Industrial Revolution: Smart technology, artificial intelligence, robotics and algorithms (STARA)-Industrial Psychologists in future workplaces Inaugural address, V5, P913168, DOI 10.3389/frai.2022.913168; Partnership for 21st Century Skills, 2008, 21 CENTURY LEARNING; Peixoto B, 2021, IEEE ACCESS, V9, P48952, DOI 10.1109/ACCESS.2021.3068858; Pennsylvania Department of Education, 2008, 21 CENT WORKPL SKILL; Pianta M., 2020, HDB LABOR HUMAN RESO; Pianta M., 2018, The Indian Journal of Labour Economics, V61, P189, DOI [10.1007/s41027-018-0124-5, DOI 10.1007/S41027-018-0124-5]; Prensky M., 2001, On the Horizon, V9, P3, DOI [DOI 10.1108/10748120110424816, 10.1108/10748120110424843, DOI 10.1108/10748120110424843]; Reaves J., 2019, International Journal on Innovations in Online Education, V3, DOI [DOI 10.1615/INTJINNOVONLINEEDU.2019029705, https://doi.org/10.1615/IntJInnovOnlineEdu.2019029705]; Sole E., 2023, TEACHERS SOUND CHATG; Spires H., 2008, 21 CENTURY SKILLS SE; Stokel-Walker Chris, 2022, Nature, DOI 10.1038/d41586-022-04397-7; Stuart L., 1999, 21 CENTURY SKILLS 21; Tangermann V., 2023, THERES PROBLEM APP D; The Economist, 2018, The Economist; Thomas M., 2022, ROBOTS AI TAKING JOB; Uenuma F., 2019, 20 YEARS LATER Y2K B; Whitby G., 2007, PEDAGOGIES 21 CENTUR; White House, 2022, IMP ART INT FUT WORK; Wichmann R. L., 2019, DIRECTION IND LIT RE; Wiggers K., 2023, OpenAI Begins Piloting ChatGPT Professional, a Premium Version of Its Viral Chatbot; Williamson B, 2023, LEARN MEDIA TECHNOL, V48, P1, DOI 10.1080/17439884.2023.2167830; Yancey K., 2009, WRITING 21 CENTURY; Yusuf B, 2020, INT J EMERG TECHNOL, V15, P93, DOI 10.3991/ijet.v15i03.11849; Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0; Zembylas M, 2023, LEARN MEDIA TECHNOL, V48, P25, DOI 10.1080/17439884.2021.2010094; Zervoudi E. K., 2020, Industrial robotics: New paradigms, DOI DOI 10.5772/INTECHOPEN.90412 99 5 5 2 45 FRONTIERS MEDIA SA LAUSANNE AVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND 2504-284X FRONT EDUC Front. Educ. JUL 28 2023 8 1150499 10.3389/feduc.2023.1150499 http://dx.doi.org/10.3389/feduc.2023.1150499 10 Education & Educational Research Emerging Sources Citation Index (ESCI) Education & Educational Research O8SO9 gold 2025-08-15 WOS:001046462400001 J Hojeij, Z; Kuhail, MA; El Sayary, A Hojeij, Zeina; Kuhail, Mohammad Amin; El Sayary, Areej Investigating in-service teachers' views on ChatGPT integration INTERACTIVE TECHNOLOGY AND SMART EDUCATION English Article; Early Access ChatGPT integration; AI in education; Technological pedagogical content knowledge (TPACK); Teacher perceptions; Educational technology policy; UAE educational system PEDAGOGICAL CONTENT KNOWLEDGE; TPACK PurposeThis study aims investigate in-service teachers' perspectives on the integration of ChatGPT, an artificial intelligence (AI)-driven chatbot, into United Arab Emirates (UAE) private schools. As the UAE progresses towards a knowledge-based economy, aligning with the goals of the UAE 2030 vision, this research assesses the capacity of ChatGPT to enhance the educational experience within the framework of technological pedagogical content knowledge.Design/methodology/approachA mixed-methods approach is used, combining a survey assessing teachers' attitudes and a thematic analysis of open-ended responses, to explore the effectiveness, challenges and pedagogical implications of ChatGPT's use in the classroom.FindingsFindings reveal that teachers value ChatGPT for its potential to individualize learning and streamline the creation of educational materials, aligning with the shift towards student-centred approaches and the demands of 21st-century skills. However, significant challenges are noted, including ethical concerns, the need for reliable content and a necessity for extensive professional development to fully realize ChatGPT's benefits.Practical implicationsWhile ChatGPT transforms teaching and learning practices, realizing this potential requires addressing critical issues through adaptive policy-making, continuous educator training and thoughtful integration into the curriculum.Originality/valueThe study highlights the importance of a collaborative approach to dealing with the details of AI in education, ensuring that advancements like ChatGPT align with the evolving educational paradigms of the UAE. [Hojeij, Zeina] Zayed Univ, Coll Interdisciplinary Studies, Dubai, U Arab Emirates; [Kuhail, Mohammad Amin; El Sayary, Areej] Zayed Univ, Coll Interdisciplinary Studies, Abu Dhabi, U Arab Emirates Zayed University; Zayed University El Sayary, A (corresponding author), Zayed Univ, Coll Interdisciplinary Studies, Abu Dhabi, U Arab Emirates. areej.elsayary@zu.ac.ae Hojeij, Zeina/AAM-8239-2021; ElSayary, Areej/ABH-4270-2022; Kuhail, Mohammad/AAS-6745-2020 Statements and declarations. Funding: This work was supported by Zayed University Research Incentive (RIF) Grant (Grant number 23071). Competing interests: The authors have no relevant financial or non-financial interests to disclose. An X, 2023, EDUC INF TECHNOL, V28, P5187, DOI 10.1007/s10639-022-11286-z; [Anonymous], 2017, UAE and the 2030 agenda for sustainable development: Excellence in implementation; Benotti L, 2018, IEEE T LEARN TECHNOL, V11, P179, DOI 10.1109/TLT.2017.2682084; Bittencourt II, 2023, INT J ARTIF INTELL E, DOI 10.1007/s40593-023-00357-y; Brusilovsky P, 2024, INT J ARTIF INTELL E, V34, P122, DOI 10.1007/s40593-023-00356-z; Byrne B, 2010, INTERNATIONAL HANDBOOK OF PSYCHOLOGY IN EDUCATION, P3; Celik I, 2023, COMPUT HUM BEHAV, V138, DOI 10.1016/j.chb.2022.107468; Christensen R., 1997, Effect of technology integration education on the attitudes of teachers and their students; Dai Yun, 2023, Procedia CIRP, P84, DOI 10.1016/j.procir.2023.05.002; ElSayary A, 2024, J COMPUT ASSIST LEAR, V40, P931, DOI 10.1111/jcal.12926; George D., 2010, USING SPSS WINDOWS S, DOI DOI 10.1080/13854046.2020.1810323; Giray L, 2023, ANN BIOMED ENG, V51, P2629, DOI 10.1007/s10439-023-03272-4; Hair J.F., 2010, Multivariate data analysis, V7th ed.; Hao K., 2020, MIT Technology Review; Heston TF, 2023, Int Med Educ, V2, P198, DOI [10.3390/ime2030019, DOI 10.3390/IME2030019]; Kim K, 2023, EDUC INF TECHNOL, V28, P9827, DOI 10.1007/s10639-023-11600-3; Kim S, 2021, KUNSTL INTELL, V35, P139, DOI 10.1007/s13218-021-00731-9; Knaus T., 2023, Social Sciences & Humanities Open, V8, DOI [10.1016/j.ssaho.2023.100504, DOI 10.1016/J.SSAHO.2023.100504]; Kuhail MA, 2023, EDUC INF TECHNOL, V28, P973, DOI 10.1007/s10639-022-11177-3; Lee MH, 2010, INSTR SCI, V38, P1, DOI 10.1007/s11251-008-9075-4; Li Y., 2023, Comput Educ Art Intell, V5, DOI [10.1016/j.caeai.2023.100157, DOI 10.1016/J.CAEAI.2023.100157]; Lin RY, 2023, EDUC INF TECHNOL, V28, P2845, DOI 10.1007/s10639-022-11274-3; Long DR, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376727; Malik S, 2018, ADV SOC SCI EDUC HUM, V299, P498; Mishra P., 2023, Journal of Digital Learning in Teacher Education, V39, P235, DOI DOI 10.1080/21532974.2023.2247480; Mishra P, 2023, TECHTRENDS, V67, P207, DOI 10.1007/s11528-023-00839-9; Mishra P, 2006, TEACH COLL REC, V108, P1017, DOI 10.1111/j.1467-9620.2006.00684.x; Ng DTK., 2021, Computers and Education: Artificial Intelligence, V2, P100041, DOI [DOI 10.1016/J.CAEAI.2021.100041, 10.1016/j.caeai.2021.100041]; Phillips TM, 2023, INT J ARTIF INTELL E, V33, P635, DOI 10.1007/s40593-022-00295-1; Ramadevi J., 2023, Journal of High Technology Management Research, V34, DOI 10.1016/j.hitech.2023.100478; Rodway P., 2023, Computers and Education, V5, P100150, DOI [DOI 10.1016/J.CAEAI.2023.100150, https://doi.org/10.1016/j.caeai.2023.100150, 10.1016/j.caeai.2023.100150 10.1016/j.caeai.2023.100150]; Sanusi IT, 2022, COMPUT EDUC OPEN, V3, DOI 10.1016/j.caeo.2021.100072; Shulman LS, 2019, PROFESORADO, V23, P269, DOI 10.30827/profesorado.v23i3.11230; Southworth J., 2023, Computers and Education: Artificial Intelligence, V4, DOI [10.1016/j.caeai.2023.100127, DOI 10.1016/J.CAEAI.2023.100127]; Spasic AJ, 2023, 2023 58TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, ICEST, P47, DOI 10.1109/ICEST58410.2023.10187269; Sun JM, 2023, EDUC INF TECHNOL, V28, P1509, DOI 10.1007/s10639-022-11256-5; Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x; Tseng W., 2023, J CHINA COMPUTER ASS, V3, P258, DOI DOI 10.1515/JCCALL-2023-0008; Valtonen T, 2017, AUSTRALAS J EDUC TEC, V33, P15, DOI 10.14742/ajet.3518; Voosen P, 2017, SCIENCE, V357, P22, DOI 10.1126/science.357.6346.22; Wang W., 2018, Journal of Digital Learning in Teacher Education, V34, P234, DOI DOI 10.1080/21532974.2018.1498039; Wang XH, 2023, COMPUT HUM BEHAV, V146, DOI 10.1016/j.chb.2023.107798; Wardat Y., 2023, Eurasia Journal of Mathematics, Science and Technology Education, V19, P1, DOI DOI 10.29333/EJMSTE/13272; Winkler R., 2018, Acad. Manage. Proc, V2018, DOI [DOI 10.5465/AMBPP.2018.15903ABSTRACT, 10.5465/AMBPP.2018.15903abstract] 44 2 2 16 46 EMERALD GROUP PUBLISHING LTD Leeds Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND 1741-5659 1758-8510 INTERACT TECHNOL SMA Interact. Technol. Smart Educ. 2024 JUL 29 2024 10.1108/ITSE-04-2024-0094 http://dx.doi.org/10.1108/ITSE-04-2024-0094 JUL 2024 26 Education & Educational Research Emerging Sources Citation Index (ESCI) Education & Educational Research ZN5I0 2025-08-15 WOS:001275986900001 J Tang, CM; Chaw, LY Tang, Chun Meng; Chaw, Lee Yen Public Discussions about ChatGPT in Malaysian Education During its Initial Launch: A Qualitative Content Analysis of Newspaper Articles ELECTRONIC JOURNAL OF E-LEARNING English Article Artificial intelligence; ChatGPT; Chatbot; Education; Education policy; Qualitative content analysis An open access article under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License Abstract: The launch of ChatGPT in late 2022 offers a glimpse into the capability of generative artificial intelligence (AI) chatbots, as well as a future that is both exciting and filled with uncertainty about how powerful chatbots might become. ChatGPT, which has been trained on a huge dataset, can engage in a conversation with its users and respond to their questions. The launch of ChatGPT was followed by newspaper articles speculating on the transformations and impacts that ChatGPT would have on various facets of life, especially education. To gain a better understanding of what people have discussed about ChatGPT in Malaysian education during ChatGPT's initial launch, this study first searched three mainstream national Malaysian English newspapers using the search terms "ChatGPT" and "education" to identify 16 relevant newspaper articles, which were then analysed using a qualitative content analysis. The analysis revealed that the discussions regarding ChatGPT in Malaysian education in these newspaper articles could be categorised into five level-one categories: academic ethics, AI competence, ChatGPT adoption, learning design, and soft skills, which were further divided into 15 level-two subcategories. The findings of this study have various practical implications that may help academics and educational institutions better prepare for the expected increase in chatbot use by students and academics. The findings also make several theoretical contributions and provide a point of departure for future research. [Tang, Chun Meng] James Cook Univ, Singapore, Singapore; [Chaw, Lee Yen] UCSI Univ, Kuala Lumpur, Malaysia James Cook University; UCSI University Tang, CM (corresponding author), James Cook Univ, Singapore, Singapore. chunmeng.tang@jcu.edu.au; chawly@ucsiuniversity.edu.my ; Chaw, Lee Yen/AAF-7706-2019; Tang, Chun/ABW-6615-2022; Chaw, Lee Yen/AAF-7706-2019 Tang, Chun Meng/0000-0001-6227-5200; Chaw, Lee Yen/0000-0002-1516-0600; Chaw, Lee Yen/0000-0002-1516-0600 Abramson A., 2023, How to use ChatGPT as a learning tool; Adeshola I, 2024, INTERACT LEARN ENVIR, V32, P6159, DOI 10.1080/10494820.2023.2253858; Adiguzel T, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/13152; [Anonymous], 2019, Key competences for lifelong learning; [Anonymous], 2023, The Straits Times; [Anonymous], 2023, The Star; Ansari AN, 2024, EDUC INF TECHNOL, V29, P11281, DOI 10.1007/s10639-023-12223-4; Athilingam P, 2024, TEACH LEARN NURS, V19, P97, DOI 10.1016/j.teln.2023.11.004; Benuyenah V., 2023, J. Res. Innov. Teach. Learn, V16, P134, DOI [DOI 10.1108/JRIT-03-2023-097, 10.1108/JRIT-03-2023-097, 10.1108/jrit-03-2023-097]; Chaudhry IS, 2023, COGENT EDUC, V10, DOI 10.1080/2331186X.2023.2210461; Ciampa K, 2023, J ADOLESC ADULT LIT, V67, P186, DOI 10.1002/jaal.1310; Crawford J, 2023, J UNIV TEACH LEARN P, V20, DOI 10.53761/1.20.3.02; Diaz M., 2023, ChatGPT sees its first monthly drop in traffic since launch; Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642; Fahr M., 2023, The Star; Farrokhnia M, 2024, INNOV EDUC TEACH INT, V61, P460, DOI 10.1080/14703297.2023.2195846; Geerling Wayne, 2023, The American Economist, V68, P233, DOI DOI 10.1177/05694345231169654; Gill Sukhpal Singh, 2024, Internet of Things and Cyber-Physical Systems, V4, P19, DOI 10.1016/j.iotcps.2023.06.002; Goh H.-H., 2023, New Straits Times; Google, BARD FAQ; Gorichanaz T., 2023, LEARNING RES PRACTIC, V9, P183, DOI [DOI 10.48550/ARXIV.2308.16374, DOI 10.1080/23735082.2023.2254787]; Guo Y, 2023, J CHEM EDUC, V100, P4876, DOI 10.1021/acs.jchemed.3c00505; Hasanein AM, 2023, EUR J INVEST HEALTH, V13, P2599, DOI 10.3390/ejihpe13110181; Humble N, 2024, ELECTRON J E-LEARN, V22, P16, DOI 10.34190/ejel.21.5.3154; Ibrahim J., 2023, The Star; Johnston L., 2023, Colgate-Palmolive piloting generative AI chatbot with potential to shape product development; Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274; Kohnke L, 2023, RELC J, V54, P537, DOI 10.1177/00336882231162868; Kortemeyer G, 2023, PHYS REV PHYS EDUC R, V19, DOI 10.1103/PhysRevPhysEducRes.19.010132; Kuan H.C., 2023, The Star; Lancaster T, 2023, INT J EDUC INTEGR, V19, DOI 10.1007/s40979-023-00131-6; Lim C.L., 2023, The Sun; Lo CK, 2023, EDUC SCI, V13, DOI 10.3390/educsci13040410; Maheshwari G, 2024, EDUC INF TECHNOL, V29, P12167, DOI 10.1007/s10639-023-12333-z; Mayring P., 2014, SOCIAL SCI OPEN ACCE; Michel-Villarreal R, 2023, EDUC SCI, V13, DOI 10.3390/educsci13090856; Microsoft, Frequently Asked Questions; Miles M. B., 1994, Qualitative Data Analysis: An Expanded Sourcebook, V2nd, DOI DOI 10.1016/S0272-4944(05)80231-2; Mohamed N., 2023, online New Straits Times; Mok D., 2023, The Star; Muthiah W., 2023, The Star; Ngo C.K.D., 2023, The Star; Nikolic S, 2023, EUR J ENG EDUC, V48, P559, DOI 10.1080/03043797.2023.2213169; OpenAI, 2023, Introducing ChatGPT Plus; OpenAI T., 2022, Optimizing language models; Pohontsch NJ, 2019, REHABILITATION, V58, P413, DOI 10.1055/a-0801-5465; Ponnudurai P., 2023, The Sun; Putra FW, 2023, J PUBLIC HEALTH-UK, V45, pe840, DOI 10.1093/pubmed/fdad120; Rahman D., 2023, The Star; Rahman M.T., 2023, New Straits Times; Rahman MM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13095783; Rahman MS, 2023, AUSTRALAS J EDUC TEC, V39, P51, DOI 10.14742/ajet.8956; Raman M., 2023, The Star; Sánchez-Ruiz LM, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13106039; Sanders T., 2023, How to work with large language models; Skavronskaya L, 2023, J TEACH TRAVEL TOUR, V23, P253, DOI 10.1080/15313220.2023.2196658; Starcevic S., 2023, FEATURE-As Australian colleges crack down on ChatGPT, disabled students defend AI; Su JH, 2023, ECNU REV EDUC, V6, P355, DOI 10.1177/20965311231168423; Tlili A, 2023, SMART LEARN ENVIRON, V10, DOI 10.1186/s40561-023-00237-x; Wing L., 2023, The Star; Yeadon Will, 2023, Physics Education, DOI 10.1088/1361-6552/acc5cf; Yeoh A., 2023, The Star; Zaideen I.M.M., 2023, The Sun 63 0 0 4 6 ACAD CONFERENCES & PUBL INT LTD NR READING CURTIS FARM, KIDMORE END, NR READING, RG4 9AY, ENGLAND 1479-4403 ELECTRON J E-LEARN Electron. J. E-Learn. JUN 2024 22 7 20 30 10.34190/ejel.22.7.3504 http://dx.doi.org/10.34190/ejel.22.7.3504 11 Education & Educational Research Emerging Sources Citation Index (ESCI) Education & Educational Research I1B8G gold 2025-08-15 WOS:001327687800002 J Bearman, M; Tai, J; Dawson, P; Boud, D; Ajjawi, R Bearman, Margaret; Tai, Joanna; Dawson, Phillip; Boud, David; Ajjawi, Rola Developing evaluative judgement for a time of generative artificial intelligence ASSESSMENT & EVALUATION IN HIGHER EDUCATION English Article Generative artificial intelligence; evaluative judgement; assessment for learning; higher education FEEDBACK Generative artificial intelligence (AI) has rapidly increased capacity for producing textual, visual and auditory outputs, yet there are ongoing concerns regarding the quality of those outputs. There is an urgent need to develop students' evaluative judgement - the capability to judge the quality of work of self and others - in recognition of this new reality. In this conceptual paper, we describe the intersection between evaluative judgement and generative AI with a view to articulating how assessment practices can help students learn to work productively with generative AI. We propose three foci: (1) developing evaluative judgement of generative AI outputs; (2) developing evaluative judgement of generative AI processes; and (3) generative AI assessment of student evaluative judgements. We argue for developing students' capabilities to identify and calibrate quality of work - uniquely human capabilities at a time of technological acceleration - through existing formative assessment strategies. These approaches circumvent and interrupt students' uncritical usage of generative AI. The relationship between evaluative judgement and generative AI is more than just the application of human judgement to machine outputs. We have a collective responsibility, as educators and learners, to ensure that humans do not relinquish their roles as arbiters of quality. [Bearman, Margaret; Tai, Joanna; Dawson, Phillip; Boud, David; Ajjawi, Rola] Deakin Univ, Ctr Res Assessment & Digital Learning CRADLE, Melbourne, Australia; [Boud, David] Univ Technol Sydney, Fac Arts & Social Sci, Sydney, Australia; [Boud, David] Middlesex Univ, Work & Learning Res Ctr, London, England Deakin University; University of Technology Sydney; Middlesex University Bearman, M (corresponding author), Deakin Univ, Ctr Res Assessment & Digital Learning CRADLE, Melbourne, Australia. margaret.bearman@deakin.edu.au Dawson, Phillip/F-6438-2010; Tai, Joanna/AAV-9790-2020; Ajjawi, Rola/HRC-6132-2023; Bearman, Margaret/R-1191-2019; Boud, David/R-7498-2019 Boud, David/0000-0002-6883-2722; Bearman, Margaret/0000-0002-6862-9871; Tai, Joanna/0000-0002-8984-2671; Ajjawi, Rola/0000-0003-0651-3870; Dawson, Phillip/0000-0002-4513-8287; Alkaissi H, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35179; Aoun JE, 2017, ROBOT-PROOF: HIGHER EDUCATION IN THE AGE OF ARTIFICIAL INTELLIGENCE, P1; Autor DH, 2003, Q J ECON, V118, P1279, DOI 10.1162/003355303322552801; Barnett R, 2017, EDUC SCI, V7, DOI 10.3390/educsci7010038; Bearman M., 2020, RE IMAGINING U ASSES, P49, DOI DOI 10.1007/978-3-030-41956-1_5; Bearman M., 2018, DEVELOPING EVALUATIV, P147; Bearman M, 2023, BRIT J EDUC TECHNOL, V54, P1160, DOI 10.1111/bjet.13337; Bearman M, 2023, HIGH EDUC, V86, P369, DOI 10.1007/s10734-022-00937-2; Bearman M, 2023, ASSESS EVAL HIGH EDU, V48, P291, DOI 10.1080/02602938.2022.2069674; Bender EM, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P610, DOI 10.1145/3442188.3445922; Boud D., 2000, Studies inContinuing Education, V22, P151167, DOI [10.1080/713695728, DOI 10.1080/713695728, https://doi.org/10.1080/713695728]; Chen LW, 2022, ASSESS EVAL HIGH EDU, V47, P493, DOI 10.1080/02602938.2021.1933378; Chong SW, 2021, ASIAN-PAC J SEC FOR, V6, DOI 10.1186/s40862-021-00115-4; Dawson P., 2020, Re-imagining university assessment in a digital world, P37, DOI [DOI 10.1007/978-3-030-41956-14, DOI 10.1007/978-3-030-41956-1_4]; De Mello Heredia J., 2023, EV JUDG SOC INF TECH; Escalante J, 2023, INT J EDUC TECHNOL H, V20, DOI 10.1186/s41239-023-00425-2; Freeman J., 2024, PROVIDE PUNISH STUDE; Guo Y, 2023, J CHEM EDUC, V100, P4876, DOI 10.1021/acs.jchemed.3c00505; Gyamfi G, 2022, ASSESS EVAL HIGH EDU, V47, P126, DOI 10.1080/02602938.2021.1887081; Kuhn D, 2000, COGNITIVE DEV, V15, P309, DOI 10.1016/S0885-2014(00)00030-7; Lipnevich AA, 2009, EDUC ASSESS EVAL ACC, V21, P347, DOI 10.1007/s11092-009-9082-2; Lipnevich AA, 2009, J EXP PSYCHOL-APPL, V15, P319, DOI 10.1037/a0017841; Luo JH, 2023, ASSESS EVAL HIGH EDU, V48, P513, DOI 10.1080/02602938.2022.2088690; Malecka B, 2023, TEACH HIGH EDUC, V28, P1761, DOI 10.1080/13562517.2021.1928061; Markauskaite L., 2022, Computers and Education Artificial Intelligence, V3, DOI [DOI 10.1016/J.CAEAI.2022.100056, 10.1016/j.caeai]; McIver S, 2023, ACT LEARN HIGH EDUC, V24, P207, DOI 10.1177/14697874211054755; Molloy E, 2019, MED EDUC, V53, P32, DOI 10.1111/medu.13649; Nam J., 2023, BESTCOLLEGES 1122; Nicol D, 2021, ASSESS EVAL HIGH EDU, V46, P756, DOI 10.1080/02602938.2020.1823314; Prather J, 2023, PROCEEDINGS OF THE 2023 WORKING GROUP REPORTS ON INNOVATION AND TECHNOLOGY IN COMPUTER SCIENCE EDUCATION, ITICSE-WGR 2023, DOI 10.1145/3623762.3633499; SADLER DR, 1989, INSTR SCI, V18, P119, DOI 10.1007/BF00117714; Siiman L. A., 2023, INT C INN TECHN LEAR; Skeat N., 2023, SEMESTER, V1; Tai J, 2018, HIGH EDUC, V76, P467, DOI 10.1007/s10734-017-0220-3; Telio S, 2016, MED EDUC, V50, P933, DOI 10.1111/medu.13063; Watling C, 2012, MED EDUC, V46, P192, DOI 10.1111/j.1365-2923.2011.04126.x; Welding L., 2023, BESTCOLLEGES 0323 37 39 39 55 163 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 0260-2938 1469-297X ASSESS EVAL HIGH EDU Assess. Eval. High. Educ. AUG 17 2024 49 6 893 905 10.1080/02602938.2024.2335321 http://dx.doi.org/10.1080/02602938.2024.2335321 MAR 2024 13 Education & Educational Research Social Science Citation Index (SSCI) Education & Educational Research E4M7Z hybrid 2025-08-15 WOS:001199939900001 J Mcbride, C; Lee, CH; Soep, E Mcbride, Cherise; Lee, Clifford H.; Soep, Elisabeth "Gotta Love Some Human Connection": Humanizing Data Expression in an Age of AI READING RESEARCH QUARTERLY English Article Rapidly developing technological advances have raised new questions about what makes us uniquely human. As data and generative AI become more powerful, what does it mean to learn, teach, create, make meaning, and express ourselves, even as machines are trained to take care of these tasks for us? With youth, and in the context of literacy and media education, we embrace this moment to broaden our social imaginations. Our collaboration with journalists ages 14-25 from 2019 to 2023 has yielded a corpus of over 30 multimodal compositions constructed with and/or about AI reaching audiences in the millions. On the basis of these youth texts - produced within our participatory research at YR Media, a national STEAM learning center and platform for emerging BIPOC content creators - we developed the conceptual framework presented here: Humanizing Data Expression (HDE). The key role of expression in HDE distinguishes the human from the machine through the lens of storytelling. Analysis of this corpus (podcasts, web-based interactives, videos, radio features, online posts, social media assets) revealed four literacy practices of YR Media authors as they made sense of AI: (1) contextualize: try out AI-powered features, reveal how it works; (2) unveil authorship: introduce AI creators and processes; (3) grapple: explore tensions and paradoxes; (4) play: hack, mess with, outsmart, exaggerate AI. From these insights, we end with implications of HDE as a framework for learning and teaching AI literacy, including its potential for critically transforming data literacy practice and pedagogy across schools, teaching, and teacher education. [Mcbride, Cherise] Stanford Univ, Grad Sch Educ, Stanford, CA 94305 USA; [Lee, Clifford H.] Northeastern Univ, Coll Arts Media & Design, Boston, MA USA; [Lee, Clifford H.] Northeastern Univ, Mills Coll, Boston, MA USA; [Soep, Elisabeth] YR Media, Oakland, CA USA Stanford University; Northeastern University; Northeastern University Mcbride, C (corresponding author), Stanford Univ, Grad Sch Educ, Stanford, CA 94305 USA. cherisem@stanford.edu; cl.lee@northeastern.edu; lissa.soep@yrmedia.org Lee, Clifford/0000-0003-0710-0242; McBride, Cherise/0000-0002-6000-2871 Acevedo N, 2023, URBAN EDUC, V58, P1470, DOI 10.1177/00420859211016531; Ascenzi-Moreno L., 2018, NYS TESOL Journal, V5, P10; Baker-Bell A., 2017, English Education, V49, P130; Baker-Bell A., 2020, Linguistic justice: Black language, literacy, identity, and pedagogy, DOI DOI 10.4324/9781315147383; Benjamin R., 2017, NOTE SELVES REMEMBER; Benjamin R., 2019, Race After Technology: Abolitionist Tools for the New Jim Code; Broussard M, 2018, ARTIFICIAL UNINTELLIGENCE: HOW COMPUTERS MISUNDERSTAND THE WORLD; Brown KD, 2013, RACE ETHNIC EDUC-UK, V16, P316, DOI 10.1080/13613324.2012.725039; Camangian P, 2022, RACE ETHNIC EDUC-UK, V25, P901, DOI 10.1080/13613324.2020.1798374; Carroll S. R., 2019, DATA SCI J, V19, P43, DOI [10.5334/dsj-2020-043, DOI 10.5334/DSJ-2020-043]; Chávez V, 2005, HARVARD EDUC REV, V75, P409, DOI 10.17763/haer.75.4.827u365446030386; Clark M., 2024, YOUTH JOURNALISTS US; Coles JA, 2019, J LANG LIT EDUC, V15; D'Ignazio C, 2018, DIGIT HUMANITIES Q, V12; Darder A., 2023, The Antonia Darder reader: Education, art, and decolonizing praxis; De Laure M., 2017, CULTURE JAMMING ACTI; Dixon-Román E, 2016, CULT STUD-CRIT METHO, V16, P482, DOI 10.1177/1532708616655769; Druga S, 2023, ALGORITHMIC RIGHTS AND PROTECTIONS FOR CHILDREN, P193; Dumas MJ, 2016, URBAN EDUC, V51, P415, DOI 10.1177/0042085916628611; Duncan-Andrade J.M. R., 2008, ART CRITICAL PEDAGOG, V285; Eubanks Virginia, 2018, Automating inequality: how high-tech tools profile, police, and punish the poor; Freire Paulo, 1970, Pedagogy of the oppressed; Garcia A, 2023, J LEARN SCI, V32, P1, DOI 10.1080/10508406.2023.2166764; Garcia A, 2021, PHI DELTA KAPPAN, V102, P14, DOI 10.1177/0031721721998148; Griffin AA, 2022, URBAN EDUC, V57, P1699, DOI 10.1177/00420859211003944; Gutiérrez KD, 2019, MIND CULT ACT, DOI 10.1080/10749039.2019.1652327; Harold C, 2004, CRIT STUD MEDIA COMM, V21, P189, DOI 10.1080/0739318042000212693; Hirsh-Pasek K., 2008, ENCY EARLY CHILDHOOD; Irgens GA., 2020, Proceedings of the International Society of Learning Sciences, P406; Johnson L L., 2017, English Journal, V106, P60; Kimmerer RobinWall., 2013, CONT STUDIES ENV IND, P49, DOI [DOI 10.1007/978-94-6209-293-84, DOI 10.1007/978-94-6209-293-8_4]; LADSONBILLINGS G, 1995, TEACH COLL REC, V97, P47; Lankshear C., 2006, NEW LITERACIES EVERY; Lee CH, 2022, ACM T COMPUT EDUC, V22, DOI 10.1145/3484495; Louie J., 2022, Critical data literacy: Creating a more just world with data; Love B.L., 2016, J CURRICULUM PEDAGOG, V13, P22, DOI DOI 10.1080/15505170.2016.1138258; Luke A, 2012, THEOR PRACT, V51, P4, DOI 10.1080/00405841.2012.636324; Lynch T.L., 2017, English Journal, High School Edition, V106, P92; Martinez DC, 2017, REV RES EDUC, V41, P477, DOI 10.3102/0091732X17691741; McBride C., 2023, ENGL J, V112, P44; Medin D.L., 2014, Who's Asking? Native Science, Western Science, and Science Education; Miles M. B., 1994, Qualitative Data Analysis: An Expanded Sourcebook, V2nd, DOI DOI 10.1016/S0272-4944(05)80231-2; Mirra N, 2020, HARVARD EDUC REV, V90, P295; Monroe-White T, 2021, PROCEEDINGS OF THE 2021 COMPUTERS AND PEOPLE RESEARCH CONFERENCE, SIGMIS-CPR 2021, P23, DOI 10.1145/3458026.3462161; Morrell Ernest., 2015, Critical Literacy and Urban Youth: Pedagogies of Access, Dissent, and Liberation; Nichols TP, 2021, CURRICULUM INQ, V51, P389, DOI 10.1080/03626784.2020.1865104; Noble SU, 2018, ALGORITHMS OF OPPRESSION, P1; Pour-Khorshid F., 2020, PLANTING SEEDS EQUIT, P17; Seo S, 2023, J SUPERCOMPUT, V79, P9467, DOI 10.1007/s11227-023-05045-1; Shaw MS, 2020, PROCEEDINGS OF THE 2020 ACM CONFERENCE ON INTERNATIONAL COMPUTING EDUCATION RESEARCH, ICER 2020, P344, DOI 10.1145/3372782.3407114; Snipp CM, 2016, RES MG CENT ABORIG E, V38, P39; Spiranec S, 2019, INFORM RES, V24; Thomas EE, 2016, HARVARD EDUC REV, V86, P313, DOI 10.17763/1943-5045-86.3.313; Toliver S.R., 2022, Recovering Black Storytelling in Qualitative Research: Endarkened Storywork. Futures of Data Analysis in Qualitative Research; Tygel AF., 2016, The Journal of Community Informatics, DOI DOI 10.15353/JOCI.V12I3.3279; Vakil S, 2022, MIND CULT ACT, V29, P336, DOI 10.1080/10749039.2022.2066134; Vossoughi S, 2017, POWER AND PRIVILEGE IN THE LEARNING SCIENCES: CRITICAL AND SOCIOCULTURAL THEORIES OF LEARNING, P139; Warren CA, 2020, EQUITY EXCELL EDUC, V53, P382, DOI 10.1080/10665684.2020.1764882; Weinstein E, 2023, Teaching digital well-being: evidence -based resources to help youth thrive; Wilkerson M., 2020, Online Seminar Series on Programming in Mathematics Education p, P21; Wing JM, 2008, PHILOS T R SOC A, V366, P3717, DOI 10.1098/rsta.2008.0118; Yosso TJ, 2017, CRITICAL RACE THEORY IN EDUCATION: ALL GOD'S CHILDREN GOT A SONG, 2ND EDITION, P113 62 2 2 9 41 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0034-0553 1936-2722 READ RES QUART Read. Res. Q. OCT 2024 59 4 SI 678 689 10.1002/rrq.550 http://dx.doi.org/10.1002/rrq.550 JUN 2024 12 Education & Educational Research; Psychology, Educational Social Science Citation Index (SSCI) Education & Educational Research; Psychology J8C2R 2025-08-15 WOS:001247229000001